氧化锌矿碱浸出工艺基础理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国锌的需求量的增大以及硫化锌矿资源的日趋紧缺,氧化锌矿资源正逐步得到开发和利用。本文针对碱浸氧化锌矿的新工艺,对其做了部分的基础理论研究。具体内容如下:
     (一)研究了ZnO在不同Na20浓度下的溶解平衡时间,绘制了25℃、50℃、75℃和100℃四个温度下Na2O-ZnO-H2O体系的平衡相图,发现Na2O-ZnO-H2O体系平衡相图包括上升曲线段(左支)、最大溶解度点和下降曲线段(右支);曲线左支平衡固相是ZnO,右支平衡固相是NaZn(OH)3; Na2O-ZnO-H2O体系在25℃、50℃、75℃和100℃低碱浓度下(Na20%<29%)的氧化锌溶解曲线相差不大,对左支体系进行稀释可以达到分离氧化锌的目的。但在较高碱浓度(Na20%>29%)时,氧化锌的溶解度随温度有较大的区别,可通过降温来实现NaZn(OH)3的提取分离。
     (二)研究发现100℃Na2O-ZnO-H2O体系在高碱浓度(Na20%>29%)下降温过程中析出针状NaZn(OH)3晶体;同一体系随着降温速度增加,其析晶速率增大,达到平衡需要的时间越短;降温速度越大,降到同一温度时析晶率越低;同一体系,不同降温速度达到最终温度足够长时间析晶率相等;通过四种降温速度作了非等温结晶实验,并用动力学结晶模型对其进行表征,得到三种动力学方程的参数,发现Avrami和R-t关系法适合描述非等温结晶动力学,Ozawa方程也可以得出比较好的线性关系,但不适用于描述Na2O-ZnO-H2O体系的非等温结晶动力学。
     (三)对Na2O-ZnO-H2O平衡体系(Na2O浓度小于29%)用水进行稀释,析出棒状的ZnO晶体;稀释倍数增大时,ZnO晶体变细,ZnO的析出率增大,而且随着稀释倍数的增大,析出率增大的幅度减少;稀释温度越高,ZnO晶体越粗,析出速度越大。
     (四)研究了Na2O-ZnO-H2O体系中分别添加Si02和CaO后对体系平衡的影响,发现Na2O-ZnO-SiO2-H2O体系的ZnO的最大溶解度点随着n(Na2O)/n(SiO2)的增大朝更高的Na20浓度和ZnO浓度移动,随着n(Na2O)/n(SiO2)值的增大,对应的平衡相图右支的下降幅度增大;往Na2O-ZnO-H2O体系中加入Ca(OH)2后,氧化锌在Na20浓度小于15%的氢氧化钠溶液中的溶解度降低,且这种差值随着温度的升高而缩小;CaO比Ca(OH)2对饱和锌酸钠溶液中ZnO溶解度影响更大。
     (五)研究发现添加CaO脱除Na2O-ZnO-SiO2-H2O体系中SiO2的效率随着CaO加入量的增大而提高,但是溶液中锌的损失率也与之俱升,1.5倍理论量的CaO加入量比较合适;CaO的除硅效果受温度影响显著,温度越高脱硅率也越高,且锌的损失率也有所下降。75℃下CaO的除硅率随着时间而迅速提高,在90分钟左右能达到较好的效果。
With the increase of China's demand of zinc source and the increasingly shortage of zinc sulfide, zinc oxide ore resources are gradually getting developed and utilized. This article carried out some basic theory research to the new of technology of zinc oxide alkaline leaching. The specific research content are as follows.
     1) The article investigated the dissolving balance time of ZnO in different Na2O concentration, plotted Na2O-ZnO-H2O system equilibrium diagram at 25℃,50℃,75℃and 100℃, and found Na2O-ZnO-H2O system equilibrium diagram is component of rising curve segment (the left half curve) maximum solubility point and the decline curve segment(the right half curve). The solid-phase on the left half curve of Na2O-ZnO-H2O system equilibrium diagram is ZnO while the one of the right half curve is NaZn(OH)3. There is little difference in ZnO solubility of Na2O-ZnO-H2O system among 25℃,50℃,75℃and 100℃in low alkali concentration (Na2O%< 29%) and it is possible to realize the separation of ZnO by diluting. But ZnO solubility differs quite a lot with temperature in high alkali concentration and it's also possible to separate NaZn(OH)3 from the equilibrium system by cooling down.
     2) Results showed it is able to get needle-like NaZn(OH)3 crystals when Na2O-ZnO-H2O system in high alkali concentration cools down. Cooling crystallization changes with the initial alkali concentration. With the cooling rate increasing, the crystallization rate of the same system also increases and gets to equilibrium state earlier; however, when it gets to the same temperature, the crystallization ratio becomes lower, but the gap gets narrower as temperature cools down and disappears finaly at the end temperature for enough long time. Research investigated isothermal crystallization through four cooling rate experiments, characterized it with dynamics crystallization model and got 3 series dynamic parameters. Results shows Avrami and R-t methods are able to describe isothermal crystallization. Although Ozawa equation can also get good linear relation for this reaseach, it is not applicable to describe the isothermal crystallization of Na2O-ZnO-H2O system.
     3) Research declared Na2O-ZnO-H2O system crystallizes virgate ZnO crystal by diluting with water. The larger the dilution factor is, the thinner ZnO crystal is and the crystallization ratio will also increase though the increasing scope decreases. As the diluting temperature goes up, ZnO crystal becomes thicker and the crystallization rate goes up too.
     4) Research discussed the effection of SiO2 and CaO on Na2O-ZnO-H2O system, found that the ZnO maximum solubility point of Na2O-ZnO-SiO2-H2O system moves toward higher Na2O and ZnO concentration point and the decline rate of the corresponding right half curve reduces as the n(Na2O)/n(SiO2) value grows up. After Ca(OH)2 is added to Na2O-ZnO-H2O system, ZnO solubility in alkali solution of which the Na2O concentration is under 15% reduces and the decline becomes narrow along with the temperature. Results show CaO does greater influence to ZnO solubility in Saturated zinc sodium solution than Ca(OH)2 does.
     5) Research showed the efficiency of CaO removing SiO2 from Na2O-ZnO-SiO2-H2O system rises with amount of CaO, but the zinc loss ratio goes up too.1.5 times of theoretical additive amount of CaO is most suitable. Desilication efficiency of CaO is remarkablely influenced by temperature:the higher, the better. Meanwhile zinc loss ratio declines. Desilication efficiency of CaO increases with time and it achieves a good result in 90 minutes or so.
引文
[1]李振寰.元素性质数据手册[M].石家庄:河北人民出版社,1985
    [2]张训鹏.冶金工程概论[M].长沙:中南大学出版社,2005
    [3]张平民.工科大学化学[M].长沙:湖南教育出版社,2002
    [4]彭容秋.锌冶金[M].长沙:中南大学出版社,2004
    [5]梅光贵,王德润,周敬元等.湿法炼锌学[M].长沙;中南大学出版社,2001
    [6]赵天从.重金属冶金学(下册)[M].北京;冶金工业出版社,1981
    [7]彭容秋.有色金属提取冶金手册锌镉铅铋卷[M].北京:冶金工业出版社,1992
    [8]《铅锌冶金学》编委会.铅锌冶金学[M].北京:科学出版社,2003
    [9]彭容秋.重金属冶金学[M].长沙:中南大学出版社,2004
    [10]王瑞祥.MACA体系中处理低品位氧化锌矿制取电锌的理论与工艺研究[D].长沙:中南大学,2009
    [11]刘琰,邓军.表生异极矿成因研究及其找矿意义[J].矿物岩石,2005,25(2):1-6
    [12]Norton G A, Groat C G. Mineral Commodity Summaries 2004[M]. Washington: U.S. Government Printing Office,2004.188~189
    [13]奚牲.世界铅锌资源开发现状及其利用[J].中国金属通报,2009(37):32~33
    [14]尹力平.我国有色金属锌市场趋势分析[J],现代商业,2009(1):52~53
    [15]冯君从.今后五年中国的锌工业及市场前景[J],世界有色金属,2000(5):4-8
    [16]张心平.氧化铅锌矿石浮选新药剂的应用研究[J].矿冶,1996,5(3):40-45.
    [17]朱建光.浮选药剂的进展[J].国外金属矿选矿,1999(4):30-36.
    [18]汪伦.有机螯合剂在氧化锌矿浮选中的应用研究[J].昆明理工大学学报,1999,23(2):25-28
    [19]汪伦.有机活化剂在氧化锌矿浮选中的应用研究[J].昆明理工大学学报,1998(4):21-23
    [20]王资.有机活化剂在菱锌矿浮选中的活化作用[A].铅锌矿选冶学术会议论文集[C].1989
    [21]赵景云.水杨羟肟酸浮选菱锌矿和硫酸铅试验[J].有色金属,1991.4(5):27-32
    [22]王湘英.复合新型起泡剂24号油的开发利用[J].广东有色金属,1998,(3):54-57
    [23]刘荣荣,文书明.氧化锌矿浮选现状与前景[J].国外金属矿选矿,2002,39(7): 17-19
    [24]北京有色冶金设计研究总院.重有色金属设计手册(铅锌铋卷)[M].北京:冶金工业出版社,1996
    [25]谢美求,陈志飞等.氧化锌矿湿法浸出提锌工艺研究[J].矿冶工程,2004,24(1): 67-68
    [26]江容广.高硅氧化锌矿制硫酸锌的方法[P].C87102024.6,1987.05.16
    [27]刘三军,欧乐明,冯其明等.低品位氧化锌矿石的碱法浸出[J].湿法冶金,2005,24(1):23-25
    [28]段秀梅,罗琳.氧化锌矿浮选现状评述[J].矿冶,2000,9(4):47-51
    [29]张覃,唐云.氧化锌矿石活化浮选行为的观察[J].贵州工业大学学报,1998,19(2):89-91
    [30]贺山明,王吉坤.氧化锌矿冶金处理的研究现状[J].矿冶,2010,19(3):58-65
    [31]李国民.高硅氧化锌矿浸出脱硅工艺的研究[J].中国有色冶金,2005,(4):32-35
    [32]Bodas, M.G. Hydrometallurgical treatment of zinc silicate ore from Thailand[J]. Hydrometallurgy,1996(40):37-49
    [33]张显生,石明忠,许永红等.高硅天然氧化锌矿浸出新工艺的研究[J].有色金属(冶炼部分),2003(2):14~15
    [34]Matthew G, Elsner D. Hydrometallurgical treatment of zinc silicate ores[J]. Metallurgical Transactions 8B,1977:73-83.
    [35]陈爱良,赵中伟,贾希俊等.氧化锌矿综合利用现状与展望[J].矿冶工程,2008(6):62-66
    [36]彭清静,段友构等.氨浸一碳化法制活性氧化锌[J].化工生产与技术,2001,8(6): 15-17
    [37]张荣良.锌焙砂氨浸法制活性氧化锌的研究[J].有色金属(冶炼部分),1998(2):13-14
    [38]张保平,唐漠堂,杨声海.氨法处理氧化锌矿制取电锌[J].中南工业大学学报,2003,34(6):519-523
    [39]张元福等.铵盐处理氧化锌矿的研究[J].贵州工业大学学报(自然科学版),2002(1):37-41
    [40]杨声海.Zn(II)-NH3-NH4Cl-H2O体系制备高纯锌理论及应用[D].长沙:中南大学,2003
    [41]杨声海等.由氧化锌烟灰氨法制取高纯锌[J].中国有色金属学报,2001, 11(6):1110-1113
    [42]刘继军.烟化炉烟灰制备高等级氧化锌的研究[J].矿冶,2006,15(3):49-51
    [43]唐谟堂,欧阳民.硫铵法制取等级氧化锌[J].中国有色金属学报,1998,8(1):118-121
    [44]Jean Frenay. Leaching of oxided zinc ores in various media[J]. Hydrometallurgy, 1985(15):243-253
    [45]Gttrmen S, Emre M. A laboratory-scale investigation of alkaline zinc electrowinning[J]. Minerals Engineering,2003(16):559-562
    [46]St-Pierre J, Piton D L. Electrowinning of zinc from alkaline solutions[J]. Journal of Applied Electrochemistry 1986(16):447-456
    [47]刘三军,欧乐明等.氧化锌矿的碱法浸出研究[J].矿产保护与利用,2004(4):39-43
    [48]马肩坤,李晓阳等.一种处理低品位氧化锌矿石的方法[P].C02133784.5,2002.09.17
    [49]赵由才,易天晟.一种用氧化锌矿生产高纯度金属锌的[P].C03116754.3,2003.05.07
    [50]Gohan Orhan, Leaching and cementation of heavy metals from electric arc furnace dust in alkaline medium[J]. Hydrometallurgy 2005,78:236-245
    [51]Zhao Zhongwei, Long Shuang, Chen Ailiang, Huo Guangsheng, Li Honggui, Jia Xijun, Chen Xingyu.Mechanochemical leaching of refractory zinc silicate (hemimorphite) in alkaline solution[J]. Hydrometallurgy 2009,99:255-258
    [52]赵中伟,贾希俊,陈爱良等.氧化锌矿的碱浸出[J].中南大学学报,2010,41(1):39-43
    [53]贾希俊.氧化锌矿物碱法提取新工艺研究[D].硕士学位论文,长沙:中南大学冶金科学与工程学院,2009
    [54]赵中伟,贾希俊,陈爱良等.碱浸氧化锌矿中硅的浸出动力学[J].江西有色金属.2008.22(4):31-34
    [55]龙双.氧化锌矿物碱法提取新工艺研究[D].硕士学位论文,长沙:中南大学冶金科学与工程学院,2010
    [57]北京矿冶研究总院分析室.矿石及有色金属分析手册[M].北京:冶金工业出版社,1990:65
    [58]杨重愚.氧化铝生产工艺学[M].北京:冶金工业出版社,1982:24-57
    [59]Dyson W H, Schreier L A, Sholette W P, Salkind A J. Physical-Chemical studies of KOH-ZnO electrolytes[J]. Electrochemical Science,1968,115(6):566-569
    [60]刘林,田学达,张小云.同离子效应对含钙矿物可浮性的影响[J].湘潭大学自然科学学报,1999(2):67-69
    [61]石征宇,石大安,吕孟.物质溶解度影响因素的调研[J].大众科技,2007,11(99):102-103
    [62]周宏明,张懿,郑诗礼.K2O-Nb2O5-H2O三元水盐体系相图[J].化工学报,2005,56(3):387-391
    [63]张亦飞,郑诗礼,张懿.氧化铝的常压低温溶出生产方法[P].中国专利:03148717.3,2003.06.29
    [64]铝酸钠溶液晶种分解过程宏观动力学的研究进展[J].甘肃冶金,2006,28(3):1-4
    [65]King W R, Some studies of alumina trihyarate precipitation klnetics[J]. Light Metals,1973(1):551-563
    [66]李小斌,龙远志等.铝酸钠溶液晶种分解动力学初步研究[J].轻金属,1988,11(3):10-15
    [67]周秋生,李小斌等.高浓度铝酸钠溶液晶种分解动力学[J].中南大学学报,2004,35(4):557-561
    [68]Ozawa T. Kinetics of non-isothermal crystallization [J]. Polymer,1971(12): 150-158
    [69]张志英.测定高聚物结晶动力学参数的非等温理论和方法[J].高分子通报,1994(3):67
    [70]Avrami M. Kinetics of phase change.I.General theory[J]. Chem Phys 1939(7): 1103-1112
    [71]刘结平,莫志深.聚合物结晶动力学[J].高分子学报,1991(4):199-207
    [72]LI T S, LIVK I, ILIEVSKI D. Supersaturation and temperature dependency of gibbsite growth in laminar and turbulent flows[J]. Journal of Crystal Growth, 2003,258(3):409-419
    [73]Ram A Sharma. Physico-Chemical Properties of Calcium Zincate [J]. Journal of the Electrochemical Society,1986,133(11):2215-2219

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700