新型肝靶向去甲斑蝥素修饰物纳米粒的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本课题旨在利用体内肝细胞表面的去唾液酸糖蛋白受体(ASGP-R)能特异性识别药物分子的半乳糖残基,将治疗原发性肝癌的去甲斑蝥素(NCTD)进行乳糖化修饰得到具有主动肝靶向性的修饰物乳糖化-去甲斑蝥素(Lac-NCTD),并初步评价了该新化合物的安全性,同时以其为模型药物制备壳聚糖纳米粒(Lac-NCTD-NPs),并对纳米粒的体内外抗肿瘤活性进行了研究,以期得到一种安全有效的主被动肝靶向相结合的去甲斑蝥素修饰物纳米粒。
     方法:(1)利用乙二胺为连接臂合成Lac-NCTD,并测定了药物的溶解度、油水分配系数和稳定性等基本理化性质。(2)通过急性毒性实验,计算Lac-NCTD腹腔给药的最大耐受量(MTD)。(3)采用离子诱导法制备Lac-NCTD-NPs,以粒径分布、包封率、载药量为综合指标,采用L9(34)正交实验优化制备工艺。(4)采用红外光谱(FT-IR)、差示扫描量热法(DSC)、粉末X-ray衍射和透射电镜等方法和技术,对Lac-NCTD-NPs的表面特征、外观形态进行验证,并以透析袋法考察纳米粒胶体的体外释放特性。(5)通过MTT法考察Lac-NCTD及Lac-NCTD-NPs对肿瘤细胞株HepG2、SMMC-7721和SGC-7901的细胞毒作用和半乳糖化小牛血清(Gal-FBS)的竞争性抑制作用。(6)采用HPLC法评价SMMC-7721细胞对Lac-NCTD的摄取过程。(7)通过建立H22肝癌细胞小鼠荷瘤模型考察药物的体内抗肿瘤活性。
     结果:(1)Lac-NCTD是一种具有良好水溶性的多羟基化合物,其合成产率为68.35%。(2)急性毒性实验结果得出Lac-NCTD单次给药时MTD>20 g?kg-1,多次给药时MTD>30 g?kg-1,远大于人临床去甲斑蝥素的拟用量。(3)经正交优化后,Lac-NCTD-NPs制备工艺条件为:壳聚糖溶液浓度2.0 mg?mL-1、药物浓度2.0 mg?mL-1、壳聚糖和TPP质量比3:1,优化工艺制备的纳米粒的平均粒径(149.46±1.79) nm,包封率(80.29±0.56)%,载药量(9.58±0.09)%。(4)纳米粒的FT-IR、DSC、X衍射图谱中,LCS与TPP的特征吸收峰均消失或转移;透射电镜(TEM)照片显示纳米粒近似球形、边缘清晰;纳米粒体外释放符合Higuch方程。(5)体外细胞毒作用结果显示:对HepG2和SMMC-7721,当细胞培养48 h时Lac-NCTD-NPs的细胞毒作用最强,其次是Lac-NCTD,且都能显著的被Gal-FBS抑制;对SGC-7901,Lac-NCTD-NPs和Lac-NCTD的细胞毒作用并不比NCTD强,且不受Gal-FBS的影响。(6)培养12 h后,SMMC-7721对Lac-NCTD的摄取量为3.89μg?106cell-1。(7)体内抗肿瘤实验表明Lac-NCTD-NPs能有效地抑制H22肿瘤的生长。
     结论:(1)Lac-NCTD合成简单,产率高,吸湿性强,保存时需防潮。(2)急性毒性实验初步证实Lac-NCTD是安全的。(3)该新化合物上大量的-OH能与壳聚糖上正电荷以分子间氢键结合,从而以吸附和包裹的方式形成纳米粒以致Lac-NCTD-NPs的包封率明显地优于相同条件下去甲斑蝥素壳聚糖纳米粒(NCTD-NPs)。(4)FT-IR、DSC、X-衍射图谱和TEM照片显示,纳米粒已经形成,形成机理为三聚磷酸根与壳聚糖氨基发生交联,药物被包裹其中,Lac-NCTD-NPs体外释放具有良好的缓释特性。(5)HepG2和SMMC-7721表面的ASGP-R能识别Lac-NCTD上的半乳糖残基,Lac-NCTD及其纳米粒对HepG2和SMMC-7721的毒性比NCTD强,且能被Gal-FBS抑制,NCTD的作用与ASGP-R的识别无关,它对三种细胞的毒杀作用不受Gal-FBS的影响。(6)SMMC-7721对Lac-NCTD的摄取实验结果进一步证实了部分药物是通过ASGP-R的识别吞噬作用而发挥抗癌效果的。(7)Lac-NCTD-NPs结合了药物的主动靶向性和纳米粒自身的被动靶向性,在体内被肝细胞ASGP-R特异性识别,达到药物在体内的双重肝靶向作用,在小鼠体内表现出强的抑瘤活性。
Objective: Norcantharidin (NCTD) against primary carcinoma of liver was lactosylated to obtain lactosyl-norcantharidin(Lac-NCTD)as initiative derivative, based on the asialoglycoprotein receptor (ASGP-R), situated on the hepatocyte membrane, can recognize the galactose residue of drug, then the safety of Lac-NCTD was preliminarily evaluated. Lac-NCTD-NPs were prepared and their anti-tumor activity in vivo and in vitro were evaluated. As a result, the safe and effective nanoparticles loaded norcantharidin derivative, which combine both active and passive liver-targeting were achieved.
     Methods: (1) Lac-NCTD was synthesized using ethanediamine as a truss arm and its physicochemical properties such as solubility, oil/water partition coefficient, stability, etc. were determined. (2) MTD for Lac-NCTD was calculated by acu-toxicity test by intraperitoneal injection. (3) Lac-NCTD-NPs were achieved by ionic cross-linkage process and orthogonal experiment design was applied to optimize the formulation and preparation procedure with particle distribution, entrapment rate and drug-loading rate as integrated indexes. (4) Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction, transmission electron microscopy (TEM), etc. were applied to evaluate nanoparticle apatial representable structure; the release in vitro was investigated by dialysis membrane. (5) MTT was used to study the cytotoxic effects of Lac-NCTD and Lac-NCTD-NPs on HepG2, SMMC-7721 and SGC-7901 and the inhibition effects of Gal-FBS. (6) Lac-NCTD accumulated in SMMC-7721 cells was established by high performance liquid chromatogram (HPLC). (7) The H22 hepatoblastoma cell line bearing mice was establishmented to evaluate the in vivo anti-tumor activity of Lac-NCTD and Lac-NCTD-NPs.
     Results: (1) Lac-NCTD was a kind of polyhydroxy compound and the yield of it was 68.35%. (2) Single and multiple dosing of MTD for compound Lac-NCTD exceeded 20 g?kg-1 and 30 g?kg-1 respectively,which exceed the amount of human clinical usage of NCTD fairly far. (3) The optimal preparation condition was as follows: CS concentrations was 2.0 mg?mL-1, drug concentrations was 2.0 mg?mL-1 and CS:TPP was 3:1(m/m). The average particle size of the prepared nanoparticles were (149.46±1.79) nm, entrapment rate was (80.29±0.56)%, drug-loading rate was (9.58±0.09)%. (4) In FT-IR、DSC and X-ray diffraction graph, the diagnostic absorption peak of LCS and TPP vanished or shifted. TEM graph showed that nanoparticles were sphere and distinct. The curve of the release in vitro was suitable for Higuch equation. (5) The in vitro studies showed that the cytotoxic effects of Lac-NCTD-NPs against HepG2, SMMC-7721 cells were the most powerful, then Lac-NCTD and they were inhibited remarkably by Gal-FBS; as for SGC-7901, the cytotoxic effects of Lac-NCTD-NPs and Lac-NCTD were not stronger than NCTD and Gal-FBS had no influence on them at all. (6) The amount of Lac-NCTD accumulated in SMMC-7721 cells was 3.89μg?106cell-1 after treatment for 12 h. (7) The results of the anti-tumor activity in vivo suggested that the tumor-growth of H22 were inhibited effectively by Lac-NCTD-NPs.
     Conclusions: (1) The synthesis procedure of Lac-NCTD was simple and the yield was high. It should be protected against the tide when stored because of its strong moisture absorption. (2) Acute toxicity test demonstrated the compound Lac-NCTD was safe. (3) The large scale hydroxy group on the new chemical, Lac-NCTD, could combine with the positive charge of chitosan, shaped in the diluted acid, through intermolecular hydrogen bond to form nanoparticles by the means of adsorbing and encapsulation. As a result, the entrapment rate of Lac-NCTD-NPs was significantly higher than the norcantharidin nanoparticles(NCTD-NPs)prepared in the same condition. (4) The results of FT-IR、DSC、X-ray diffraction and TEM graph showed that the nanoparticles were shaped by the linkage of tripolyphosphate acid radical and the -NH2+ on the surface of chitosan. Effect of sustained drug release of Lac-NCTD-NPs was evident. (5) The ASGP-R on the surface of HepG2 and SMMC-7721 can recognize the galactose residue of Lac-NCTD, therefore, the cytotoxic effects of Lac-NCTD and Lac-NCTD-NPs on these two cell lines were stronger than NCTD and they were inhibited significantly by Gal-FBS. (5) The results of Lac-NCTD accumulated in SMMC-7721 cells further indicated that Lac-NCTD can partly permeate the cell membrance with the prime type through the ASGP-R pathway. (6) Lac-NCTD-NPs combined both the active targeting of Lac-NCTD and passive targeting of nanoparticles itself and were recognized specially by ASGP-R on the hepatocyte surface to achive liver-targeting and show powerful anti-tumor activity in vivo.
引文
[1]Stewart SG, Hill TA, Gilbert J, et al. Synthesis and biological evaluation of norcantharidin analogues:towards PP1 selectivity[J]. Bioorg Med Chem. 2007,15(23):7301-7310.
    [2] Liu XH, Heng WS, Paul, Qi L, Chan LW. Novel polymeric microspheres containing norcantharidin for chemoembolization[J]. J Controlled Release,2006,116:35-41.
    [3]Yang EB, Tang WY, Zhang K, et al. Norcantharid ininhibits growth of human HepG2 cell-transplanted tumor in nude mice and prolongs host survival[J]. Cancer Lett, 1997, 117 (1): 93-98.
    [4] Wang GS. Medical uses of mylabris in ancient and recent studies[J]. JEthnopharmacol, 1989, 26: 147.
    [5]刘飞,黄树模,王广生.去甲基斑蝥素抗癌作用的分子机制研究[J].南通医学院学报,1991,11(4):285-287.
    [6]孙震晓,赵天德,魏育林等.去甲斑蝥素诱导人肝癌BEL-7402细胞凋亡的研究[J].解剖学报,1999,30 (1):65-68.
    [7]戴书静,王继峰,莫日根等.去甲斑蝥素增强Bel7402中IkBα表达和抑制细胞增殖的研究[J].解剖学报,2001,32 (2):155-158.
    [8]郑兰英,史春雷,贺延新.去甲斑蝥素治疗肝癌的研究[J].河北医学,2005,11(9):820- 822.
    [9]吴光兴,杨志华,陈恩碧.化疗联合复方斑蝥素注射液治疗恶性淋巴瘤临床观察[J].中国医师杂志,2005,7 (10):1425- 1428.
    [10]史健,魏速菊,单保恩.斑蝥酸钠注射液治疗癌性胸腔积液的临床观察[J].中国中西医结合杂志,2005,25 (5):451-453.
    [11]Wu JM, Ren TC, Yu M. The development of pharmaceutics and clinical research norcantharidin [J].Chin Pharm J, 2002, 37(8): 566-568.
    [12]丁茹茹,张英鸽.纳米粒子在肝癌靶向治疗中的应用研究进展[J].生物技术通讯,2008,19(2):277-278.
    [13]Chen JH, Wang ZM, Wu DC. Early dynamical body distribution ofnanoparticle- associated adriamycin after administration into the hepatic artery of rats determined with HPLC technique [J]. J Fourth Mil Med Univ, 2000, 21(1): 89- 91.
    [14]Barraud L, Merle P, Soma E, et al. Increase of doxorubicin sensitivity by doxorubicin - loading into nanoparticles for hepatocellular carcinoma cells in vitro and in vivo[J]. J Hepatol, 2005(6), 42: 29- 31.
    [15]Yu BT, Zhang ZR, Zeng RJ. Study on the liver targeted 5- Fluorouracil solid lipid nanoparticles [J]. Acta Pharmaceutica Sinica, 2000, 35(9): 700- 705.
    [16]Soma CE, Dubernet C, Barratt G, et al. Investigation of the role of macrophages on the cytotoxicity of doxorubicin and doxorubicinloaded nanoparticles on M5067 cells in vitro[J]. J Control Release, 2000, 68: 283- 289.
    [17]Jain RK. Delivery of molecular medicine to solid tumors : lessons from in vivo imaging of gene expression and function [J] . J Control Release, 2001, 74(123): 7-25.
    [18]Damge C, Vranckx H, Balschmidt P, et al. Poly(alkyl cyanoacrylate)nanospheres for oral administration of insulin[J]. J Pharm Sci, 1997, 86(12): 1403-1409.
    [19]Cristiano RJ. Targeted ,non-viral gene delivery for cancer gene therpy[J]. Front Biosic, 1998, 15(3): 1161-1170.
    [20]Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macrmolecular[J]. J Control Release, 2000, 65 (122): 271-284.
    [21]Kuang CC, Wen HE, Luo SD, et al. Study on the distribution and l iver targeting of norcantharidin nanoparticles in mice[J]. Chin Hosp Pharm J, 2005, 25 (6): 527-530.
    [22]Friedman SL. The cellular basis of hepatic fibrosis: mechanismsand treatment strategies[J]. N Engl J Med, 2008, 3(8): 1828-1835.
    [23]Wu J, Zern MA. Modification of liposomes for liver targeting[J]. Joumal of Hepatology. 2006, 24: 757-776.
    [24]Mitsuru H, Makiya NK, Fumiyoshi Y, et al. Cell-specific delivery of genes with glycosylated carriers[J]. Advanced Drug Delivery Reviews, 2008,3 (52): 187–196.
    [25]Khorev O, Stokmaie D, Schwardt O, et al. Trivalent, Gal/GalNAc-containing ligands designed for the asialoglycoprotein receptor[J]. Bioorganic & Medicinal Chemistry, 2008, 5(16): 5216–5231.
    [26]Kawakami SG , Wong J, Sato A, et al. Biodistribution characteristics of mannosylated, fucosylated,and galactosylated liposomes in mice[J]. Biochimica et Biophysica Acta, 2004, 24 (15): 258-265.
    [27]Hashida M, Nishikawa M, Yamashita FS, et al. Cell-specific delivery of genes with glycosylated carriers[J]. Advanced Drug Delivery Reviews, 2007, 12(52): 187–196.
    [28]Opanasopit P , Sakai MG , Nishikawa M, et al. Inhibition of liver metastasis by targeting of immunomodulators using mannosylated liposome carriers[J]. Journal of Controlled Release, 2006, 6(80): 283–294.
    [29]Higuchi YK, Kawakami SG, Yamashita FS, et al. The potential role of fucosylated cationic liposome/NFkB decoy complexes in the treatment of cytokine-related liver disease[J]. Biomaterials, 2007, 4(28): 532–539.
    [30]Watanabe T, Umehara T, Yasui F, et al. Liver target delivery of small interfering RNA to the HCV gene by lactosylated cationic liposome. Journal of Hepatology[J]. 2008, 12(2): 321–329.
    [31]Jiang HL, Kwon JT, Kim EM, et al. Galactosylatedpoly(ethyleneglycol) -chitosan-graft-polyethylenimine as a gene carrier for hepatocyte targeting[J]. Journal of Controlled Release, 2008, 10(16): 29-39.
    [32]Sun X,Hal L,W u Y, el a1.Targeted gene delivery to hepatoma cells using galactosylated liposome-polycation-DNA complexes(LPD)[J]. J Drug Target, 2008, 13(2): 121-123.
    [33]Yuzawa H, Fuiioka H, Mizoe A, et al. Inhibitory effects of safe and hovel SOD derivatives, galactosylated-SOD, on hepatic warm ischemia/reperfusion in jury in pigs[J].Hepatoga stroenterologN, 2008, 52(63): 839-843.
    [34]蔡春,苏敏,杨健,等.乳糖化人血清白蛋白氟尿啼陡偶联物的合成及靶向作用[J].中国药学杂志,2006,41(10):786-789.
    [35]Feng MQ, Cai QS, Huang H, et al. Liver targeting and anti-HBV activity of reconstituted HDL–acyclovir palmitate complex.European Journal of Pharmaceutics and Biopharmaceutics[J]. 2008, 6(8): 688–693.
    [36]Chen J, Wu H, Han DY, et al.Using anti-VEGF McAb and magneticnanoparticlesas double-targeting vector for the radioimmunotherapy of liver cancer[J]. Cancer Letters, 2006, 23(1): 169–175.
    [37]信涛,赵玉莹,徐玉清等.阿霉素白蛋白磁性纳米颗粒栓塞治疗大鼠原发性肝癌的实验研究[J].中国肿瘤临床,2007,34(24):1422-1427.
    [38]Salvage JP, Rose SF, Phillips GJ, et al. Nover biocompatible phosphorylcholine-based self-assembled nanoparticles for drug delivery[J].Journal of Controlled Release, 2008, 10(4): 259-270.
    [39]Ponnappa BC, Israel Y, Aini M, et al. Inhibition of tumor necrosis factor alpha secretion and prevention of liver injury in ethanol-fed rats by antisense oligonucleotides[J]. Biochemical Pharmacology 2008, 9(6): 569–577.
    [40]Rijcken CJ, Snel CJ, Schiffelers RM, et al. Hydrolysable core-crosslinked thermosensitive polymeric micelles: Synthesis, characterisation and in vivo studies[J]. Biomaterials, 2007, 8(2): 5581–5593.
    [41]Xu ZH, Chen L, Gu WW, et al.The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma[J]. Biomaterials, 2008, 30 (2): 226–232.
    [42]应雪,陈文,姚新成,等.肝靶向前体药物的研究进展[J].中国药房, 2006,17(5):21-22.
    [43]Hill TA, Stewart SG, Ackland SP. Synthesis and anticancer activity:Synthesis of new norcantharidin analogues and their anticancer evaluation [J]. Bioorganic & Medicinal Chemistry, 2007, 15 (2): 6126–6134.
    [44]Mantovani G, Lecolley F, Tao L, et al. Design and synthesis of N-maleimido-functionalized hydrophilic polymers via copper-mediated living radical polymerization: a suitable alternative to PEGylation chemistry[J]. J Am Chem Soc, 2005,127 (9): 2966-2973.
    [45]Bijsterbosch MK, Ying C, Vrueh RL, et a1. Carrier-mediated delivery improves the efficacy of 9-(2-pho-sphonylmethoxyethy1)adenine against hepatitis B virus [J]. Mol Pharmacol, 2001, 60(3): 521-531.
    [46]Stewart SG, Hill TA, Gilbert J, et al. Synthesis and biological evaluation of norcantharidin analogues: Towards PP1 selectivity[J]. Bioorg Med Chem, 2007, 15(23) :7301–7310.
    [47]Williams TJ, Plessas NR, Goldstein IJ, et al.A new class of model glycolipids: synthesis, characterization, and interaction with lectins [J]. Arch Biochem Biophys. 1979, 195(1):145-151.
    [48]Zhang ZZ, Fukuna GK, Sufimura Y. Practical method for synthesis of new glycolipids N-[4-(Dialkyl-L-Glutamatecarbonylethylethylcarbo-Nylamino) Butyl] Lactobionamides[J]. Chinese Chemical Letters, 1996, 7(2): 119-112.
    [49]王本祥.现代中药药理学[M ] .天津:天津科学技术出版社,1996:1437 - 1472.
    [50]谭志美.自制去甲斑蝥素急性毒性实验研究[J].2008,7(5):74-75.
    [51]Isbell HS, Schatfer R, Wethods Carbohydr Chem, 1963, 15(2):17-18.
    [52]Gao SY, Chen JN, Xu XR, et al. Galactosylated low molecular weight chitosan as DNA carrier for hepatocyte-targeting[J]. Intern J Pharm, 2003, 255 (1-2): 57–68.
    [53]吴建梅,任天池.去甲斑蝥素脂质体的制备方法及理化性质研究[J].中国药学杂志[J].2005,40(19):1485-1489.
    [54]Park IK, Kim TH, Park YH. Galactosylated chitosan-graft-poly(ethylene glycol) as hepatocyte-targeting DNA carrier[J]. J Control Release, 2001, 76(2): 349–362.
    [55]Zhang W, Liu Y, Zhang X N, et al. Spatial representable structure and release in vitro of low molecular weight(LMW)chitosan nanoparticles loading-norcantharidin. (低分子量壳聚糖-去甲基斑蝥素纳米粒的表征及体外释放研究)[J]. Chinese Traditional and Herbal Drug(中草药), 2008, 39(10): 4-9.
    [56]张玮,张学农[J].壳聚糖纳米粒制备技术研究进展[J].抗感染药学,2008,5(2):65-69.
    [57]Zhang W,Gong JH, Zhang XN, et al. Multi-variable regression analysis applied to synchronously optimize preparation of nanoparticles(多元回归综合优化去甲斑蝥素壳聚糖纳米粒的制备工艺)[J]. Chin Pharm J(中国药学杂志),2008, 43(15): 1162-1166.
    [58]Yoshie M, Kumi K, Kazuyo Y, et al. Efficiency of liposomes surface-modified with soybean-derived sterylglucoside as a liver targeting carrier in HepG2 cells[J]. J Control Release, 2001, 75( 3): 381-389.
    [59]Mantovani G, Lecolley F, Tao L, et al. Design and synthesis of N-maleimido-functionalized hydrophilic polymers via copper-mediated living radical polymerization: a suitable alternative to PEGylation chemistry[J]. J Am Chem Soc. 2005,127 (9): 2966-2973.
    [60]Teng BS, Hua Y, Lu ZT, et al. In vitro anti-tumor activity of isorhamnetin isolated from Hippophae rhamnoides L against BEL-7402 cells[J]. Pharm Res, 2006, 54(3): 186-194.
    [61]Shimura N, Sogawa Y, Kawakita Y, et al. Radioiodination of glycoprotein-conjugated liposomes by using the Bolton-Hunter reagent and biodistribution in tumor-bearing mice[J]. Nucl Med Biol, 2002,29(4):491-496.
    [62]Xiong XB, Huang Y, Lu W L, et al. Enhanced intracellular delivery and improved antitumor efficacy of doxorubicin by sterically stabilized liposomes modified with a synthetic RGD mimetic[J]. J Control Release, 2005,107( 2-3 ): 262-275.
    [63] Bodnar M, Fory? U. A model of immune system with time-dependent immune reactivity[J]. Nonlinear Analysis: Theory, Methods & Applications, 2009.70(2): 1049-1058.
    [64]董兰凤,张英俊,刘京生等.附子多糖与阿霉素长循环热敏脂质体的抗肿瘤作用及其机制探讨[J].细胞与分子免疫学杂志,2006,22(4):458-462.
    [65]王文杰.红花水煎剂对肿瘤组织病理学改变及血管生成的影响[J].2007,23(6):59-60.
    [66]孙纪元,朱妙章,王四旺等.华西药学杂志苦马豆素对肝癌细胞在体内外生长的抑制作用[J].2006,21(3):221-224.
    [67]Gao SY, Chen JN, Xu XR, et al. Galactosylated low molecular weight chitosan as DNA carrier for hepatocyte-targeting[J]. International Journal of Pharmaceutics, 2003.255 (1-2): 57–68.
    [68]Maitani Y, Kawano K, Yamada K, et al.Efficiency of liposomes surface-modified with soybean-derived sterylglucoside as a liver targeting carrier in HepG2 cells[J]. J Control Release, 2001, 75 (3): 381–389.
    [69]Stewart SG, Hill TA, Gilbert J, et al. Synthesis and biological evaluation of norcantharidin analogues: Towards PP1 selectivity[J]. Bioorg Med Chem. 2007,15(23) :7301–7310.
    [70]Hill TA, Stewart SG, Ackland SP,et al. Synthesis and anticancer activity: Synthesis of new norcantharidin analogues and their anticancer evaluation[J]. Bioorg Med Chem. 2007,15 (18): 6126–6134.
    [71]Hill TA, Stewart SG, Sauer B, et al. Heterocyclic substituted cantharidin and norcantharidin analogues-synthesis, protein phosphatase (1 and 2A)inhibition, and anti-cancer activity[J]. Bioorg Med Chem, 2007,17 (12): 3392–3397.
    [72]James DB, Tania B, Lisa BP.Active targeting schemes for nanoparticle systems in cancer therapeutics[J].Adv Drug Del Rev, 2008, 60(15): 1615-1626.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700