工业炉温度场可视化与辐射特性参数解耦重建研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业炉是工业加热的关键设备,广泛应用于国民经济的许多行业,同时工业炉又是高能耗设备。如何节约能源,提高能源利用水平,是目前工业炉研究的当务之急。实现温度场的实时在线测量是使工业炉处于最佳燃烧状态的重要前提,提高工业炉炉膛温度场检测技术,控制炉膛温度均匀分布有助于实现工业炉的安全、优化运行。
     工业炉温度场检测的困难在于炉膛的大尺寸以及燃烧火焰的强脉动等特点,采用常用的热电偶、高温计、声学法、以及基于激光的光学法等都难以实时在线检测炉内三维温度分布。辐射图像处理结合辐射传递逆求解的方法已经被证实可以实现炉内温度场的可视化,并且已经在电站锅炉上得到应用。但与电站锅炉不同的是,工业炉壁面温度很高,壁面辐射不能被忽略,这使得工业炉内辐射传递过程更加复杂。同时,工业炉种类繁多,燃料类型多变,燃烧过程及中间燃烧产物更加复杂,炉内辐射特性参数更难以准确把握。因此,本文将研究如何在工业炉内利用火焰图像处理与辐射传递逆求解来实现炉内三维温度场可视化。具体工作如下:
     本文首先从工业炉与电站锅炉辐射过程的不同点出发,研究了高温壁面条件对辐射成像过程的影响。通过采用DRESOR法对辐射传递方程进行求解,获得了炉膛燃烧温度与火焰辐射图像间的定量传递关系,建立了适用于工业炉的辐射成像模型。
     燃烧火焰的辐射特性参数,是基于辐射传递逆求解的测温方法所必须的输入参数。为实现温度场与辐射特性参数的解耦,本文提出了一种正则化方法与最优化方法相结合的同时重建方法。通过在炉膛边界处安装CCD火焰探测器以获取炉内火焰在红、绿波长下的近似单色辐射强度图像,利用正则化方法从红色单色辐射强度信息中重建炉内温度分布,同时以绿色单色辐射强度为最优化目标重建炉内辐射参数。模拟研究表明,在不同的测量误差下,重建算法均能够较好地还原炉膛温度分布及辐射特性参数。
     进一步,利用CCD火焰图像探测器和相应的计算机图像采集处理系统,在一台热态试验炉上开展了燃烧火焰三维温度场与辐射特性参数同时重建的实验研究,验证了解耦重建算法在工业应用上的可行性。进一步对热态试验炉炉内温度分布开展了实时检测研究,通过比较三个测点处的可视化方法与热电偶测量结果,测温误差都在5%以内,风管表面最大测温误差20℃。
     考虑到同时重建算法非常耗时,不能满足工业现场实时测温的需要,本文提出了一种新的温度场快速重建算法--改进比色法。该方法将传统的比色法从单点测温扩展到处理多维、非均匀温度重建问题上,能够减小辐射参数不准确对温度重建的影响,能够获得比单色法更高精度的温度反演效果。
     最后,以一台步进式加热炉为实验对象开展了工业炉三维温度场可视化研究。通过在4个加热段的南北侧墙上各安装两支CCD火焰探测器,构建了一套加热炉三维温度场在线监测系统。以同时重建算法得到的辐射参数收敛值作为全炉膛辐射参数近似分布,利用改进比色法对炉膛三维温度场开展了可视化研究。通过与现场热电偶测量数据的对比,表明三维温度场可视化系统能够实时、准确地测量步进梁式加热炉内温度变化,给出炉内三维空间和板坯表面加热温度的不均匀性信息。同时,通过与现场计算机控制系统相互通信,可视化系统实现了加热钢坯的在线监测。
     综上所述,本文采用火焰图像处理技术结合辐射逆问题求解实现了工业炉内的三维温度场可视化,同时从火焰图像中反演出燃烧介质以及高温壁面的辐射特性参数。此项技术的深入研究,能够提高工业炉内加热工件质量,节省燃料量,同时减少污染排放,提高工业炉安全和经济运行水平。
As the pivotal heating equipment, industrial furnace was widely used in domestic industrial economy, which was also high energy consumption. The problem of how to improve energy utilization became the top priority of the research of industrial furnaces. Real-time temperature measurement is the premises for optimal combustion of furnace. Improving the temperature detection skill and achieving uniform temperature distribution maybe helpful to safe and optimize operation of industrial furnace.
     The difficulty of temperature measurement of industrial furnace lies in the large size of the furnace and the strong pulse of the burning flame, which make it difficult to detection the three-dimensional temperature distribution by commonly used thermocouples, pyrometers, acoustic method, and laser-based method. Radiation image processing combined with radiative inverse solving has been proved to be effect for temperature visualization, which has been applied in the power plant boiler. But different from the boiler, the wall temperature of industrial furnace is high, and the wall radiation can not be ignored, which makes the radiation process in the furnace more complicated. Meanwhile, the wide range of industrial furnaces, the variable of fuel type, the more complex of combustion process and the intermediate products of combustion, would make the radiation parameters more difficult to grasp. Therefore, this article will concentrate on how the use the flame image processing and radiative inverse solving to realize the three-dimensional temperature visualization in industrial furnace. Specifically as follows:
     Firstly, we researched the impact of high wall temperature on radiation imaging process in the industrial furnace, originated from the difference of the furnace and boiler. By using the DRESOR method to solve the radiative transfer equation, we obtained the transitive relation between combustion temperature and flame images, and established a single wavelength radiation imaging model for industrial furnaces.
     Flame radiation parameter is the prerequisite input for temperature measurement by inverse radiative transfer method. In order to decouple the temperature and radiation parameters, this paper presents a new simultaneously reconstruction method which combined by regularization method and optimization method. Firstly, the flame monochromatic radiation intensity under two wavelengths corresponding to red and green color were get by CCD cameras which were installed on the boundary of furnace, then red monochromatic intensity was used to reconstruct the temperature distribution by regularization method, while the green monochromatic intensity was used fo the optimization target to rebuild radiation parameters. Simulation showed that the reconstruction algorithms were able to reconstruct the furnace temperature distribution and radiation parameters under different measurement errors.
     Further, experimental study of simultaneous reconstruction of temperature and radiation parameters were carried out on a hot experimental furnace by using CCD detectors and the corresponding computer image acquisition and processing system, which verified the feasibility of the reconstruction algorithm. Further tests of real-time temperature detection were carried out in the hot experimental furnace. Comparision of three measurement points between thermocouples and visualization system showed that, the measurement error in the whole process was less than 5% and the duct surface temperature measurement error was no more than 20℃.
     The simultaneous reconstruction algorithm was very time consuming, which could not meet the needs of real-time temperature measurement in the furnace. This paper presented a new algorithm for fast temperature reconstruction-Improved colorimetry method. In ths method, the traditional colorimetric method was extended from single-point temperature calculation to solve the multi-dimensional, non-uniform temperature reconstruction. At the same time, the improved colorimetry method could reduce the influence of inaccuracy of radiation parameters, which could obtain a more accurate temperature reconstruction result than monochromatic method.
     At last, three-dimensional temperature visualization of furnace was researched on a walking beaming reheating furnace. A monitoring system was established by installing two CCD cameras on north and south walls of every four sections. The convergent values of simultaneous reconstruction algorithm were set as the approximate radiation parameters distribution in the furnace, and then the three dimensional temperature were visiualized by improved colorimetric method. Compared with thermocouples, the visiualization system could deduct the three-dimensional temperature in the walking beam reheating furnace in real time and accurately, which could also give the asymmetric heating information of furnace and the slab surface. Meanwhile, online monitoring of billet heating was realized by communicating with the on-site computer control system.
     In summary, the three-dimensional temperature visualization and deduction of radiation properties of media and high-temperature wall in industrial furnace was realized by the combination method of flame image processing and radiation inverse solving. Further research of this technology would improve the workpiece heating quality in industrial furnace, reduce the fuel consumption and pollution emissions, and finally, achieve the safe and economic operation of industrial furnaces.
引文
[1]王秉铨.工业炉的现状与发展[J],工业加热,1993(1).
    [2]宋湛平,史竟.工业炉的现状和发展趋势[J],工业炉,2004,26(6):13-18.
    [3]Pricea L, Sinton J, Worrell E, et al. Energy use and carbon dioxide emissions from steel production in China[J], Energy,2002,27:429-446.
    [4]Hu X L, Xin D G, Qu SY. Comparative study on standard energy consumption in high energy using industries between China and other countries. Beijing,1997:Center for Energy, Environment and Climate Change Research, Energy Research Institute,1997.
    [5]Zeng SJ, Lan YX, Huang J. Mitigation paths for Chinese iron and steel industry to tackle global climate change[J], IJGGC-179:8.
    [6]Katja S, Ronald D S. Where are the industrial technologies in energy-economy models? An innovative CGE approach for steel production in Germany [J], Energy Economics,2007,29:799-825.
    [7]Ruth M. Technology change in US iron and steel production[J], Resources Policy, 1995.21[3]:199-214.
    [8]蔡晓君,王建军.管式加热炉的节能改造[J],化工设备与管道,2002,39(2):19-20.
    [9]董会忠,宋红丽,薛惠锋等.钢铁铁工业总产值与能源消耗量协整分析及误差修正[J],数理统计与管理,2009,28(3):482-488.
    [10]孙斌,陈振东.工业炉节能现状和发展趋势[J],能源与环境,2007(3):30-31.
    [11]邓伟,张宇,刘常鹏.钢坯在线测温技术在加热炉加热制度优化中的应用[J],冶金能源,2007,26(3):54-57.
    [12]付国利等.钢坯在线温度测定方法及结果的研究[J],冶金能源,2001,20(4):57-60.
    [13]刘新忠,韩静涛,余万华.步进式加热炉内钢坯温度动态测试[J],冶金能源,2006,25(5):54-57.
    [14]赵文华,朱曙光,田阔等.燃煤锅炉火焰温度测量[J],燃烧科学与技术,2001,7[3]:275-277.
    [15]戴景民,孙晓刚,卢小东等.多光谱辐射测温理论与应用[M],北京:高等教育出版社,2002
    [16]Panagiotou T, Levendis Y A. Measurements of particle flame temperature using three-color optical pyrometer [J], Combustion and Flame,1996,104(3):272-287.
    [17]田丰,邵富群,王福利.声学法工业炉温度场检测技术综述[J],仪表技术与传感器,2002(4):52-54.
    [18]Muzio L J, Eskinazi D, Green S F. Acoustic Pyrometer:A new diagnostic tool[J], Power Engineering,1989(11):49-52.
    [19]Green S F. An acoustic technique for rapid temperature distribution measurements [J], J Acoustic. Soc. Am,1985,177 (2):795-763.
    [20]Fumio I, Masayasu S. Fundamental Studies of Acoustic Measurement and Reconst ruction Combustion Temperature in Large Boilers[J],日本机械学会论文集(B篇),1986,153(489):1610-1614.
    [21]沈丙振,周进,韩志强.热轧步进式加热炉内钢坯温度场数值模拟[J],冶金能源,2002,21[4]:24-28.
    [22]郑志伟.基于FLUENT的加热炉模拟与优化[D],博士学位论文,中国石油大学,2010
    [23]Jaklic A, Kolenko T, Zupanc B. The influence of the space between the billets on the productivity of a continuous walking-beam furnace[J], Applied Thermal Engineering, 2005,25:783-795.
    [24]周桂娟,毛羽,江华等.燃油加热炉燃烧过程的三维数值模拟[J],工业炉,2004(6).
    [25]Wang W, Li H X, Zhang J T. A hybrid approach for supervisory control of furnace temperature [J], Control Engineering Practice 11,2003:1325-1334.
    [26]Tsai H H, Chang S M. Improvement of fuel consumption and maintenance of heating furnaces using a modified heating pattern[J], Journal of University of Science and Technology Beijing,2007, 1[14]:27-32.
    [27]尹广毕.基于OpenGL的钢坯三维热状态模型可视化研究[M],硕士学位论文,昆明理工大学,2008.
    [28]Laurinen P, Roning J. An adaptive neural network model for predicting the post roughing mill temperature of steel slabs in the reheating furnace[J], Journal of Materials Processing Technology,2005,168:423-430.
    [29]Han S H, Baek S W, Kang S H. Numerical analysis of heating characteristics of a slab in a bench scale reheating furnace[J], Int J of Heat and Mass Transfer,2007,50; 2019-2023.
    [30]Kim M Y. A heat transfer model for the analysis of transient heating of the slab in a direct-fired walking beam type reheating furnace [J], Int J of Heat and Mass Transfer 2007,50:3740-3748.
    [31]蔡小舒,季棍,赵志军.不同种类燃料火焰的辐射光谱测量[J],工热热物理学报,2004,25[1]:171-173.
    [32]蔡小舒,罗武德.采用发射光谱法检测煤粉锅炉火焰的技术研究[J],动力工程,2000,20[6]:955-959.
    [33]程智海.火焰特征辐射谱线测温方法实验研究[J],工热热物理学报,2007,28[2]:221-224.
    [34]Shakher C, Nirala A K. A review on refractive index and temperature profile measurements using laser-based interferometric techniques [J], Optics and Lasers In Engineering,1999,31(6):455-491.
    [35]Asseban A, Lallemand M, Saulnier J B, et al. Digital speckle photography and speckle tomography in heat transfer studies [J], Optics & Laser Technology,2000, 32(7-8):583-592.
    [36]Kobayashi H. Experimental study of high-pressure turbulent premixed flames[J], Experimental Thermal and Fluid Science,2002,26(2-4):375-387.
    [37]Xiao X, Choi C W, Puri I K. Temperature measurements in steady two-dimensional partially premixed flames using laser interferometric holography [J], Combustion and Flame,2000,120(3):318-332.
    [38]吕伟,周怀春,艾育华.乙烯火焰的径向剪切干涉测温模拟研究[J],工程热物理学报,2008(4):707-710.
    [39]Sutton G, Levick A, Edwards G, et al. A combustion temperature and species standard for the calibration of laser diagnostic techniques [J], Combustion and Flame,2006, 147(1-2):39-48.
    [40]Sato A, Oguchi S, Nakamura K G. Temperature measurement of carbon tetrachloride under laser shock compression by nanosecond Raman spectroscopy[J], Chemical Physics Letters,2007,445(1-3):28-31.
    [41]Vestin F, Bengtsson P E. Rotational CARS for simultaneous measurements of temperature and concentrations of N2,O2, CO, and CO2 demonstrated in a CO/air diffusion flame[J], Proceedings of the Combustion Institute,2009,32(1):847-854.
    [42]Omrane A, Ossler F, Alden M. Temperature measurements of combustible and non-combustible surfaces using laser induced phosphorescence[J], Experimental Thermal and Fluid Science,2004,28(7):669-676.
    [43]Ono R, Oda T. Measurement of OH density and gas temperature in incipient spark-ignited hydrogen-air flame[J], Combustion and Flame,2008,152(1-2):69-79.
    [44]Huang Y, Yan Y, Riley G. Vision-based measurement of temperature distribution in a 500KW model furnace using the two-color method[J], Measurement,2000,28: 175-183
    [45]Huang Y, Yan Y. Transient two-dimensional temperature measurement of open flames by dual-spectral image analysis[J], Transactions of the Institute of Measurement and Control,2000,22(5):371-384
    [46]Yan Y, Lu G, Colechin M. Monitoring and characterisation of pulverized coal flames using digital imaging techniques[J], Fuel,2002,81:647-656
    [47]Bheemul H C, Lu G, Yan Y. Three-dimensional visualization and quantitative characterization of gaseous flames[J], Measurement Science and Technology,2002, 13(10):1643
    [48]卫成业,严建华,商敏儿等.利用面阵CCD进行火焰温度分布测量(Ⅰ)—二维投影温度场的测量[J],热能动力工程,2002,17(1):58-61
    [49]卫成业,严建华,商敏儿等.利用面阵CCD进行火焰温度分布测量(ⅡI)——三维截面温度场的测量[J],热能动力工程,2002,17(2):161-165
    [50]王飞,马增益,严建华等.利用火焰图像重建三维温度场的模型和实验[J],燃烧科学与技术,2004,10(2):140-145
    [51]徐伟勇,余岳峰,孙江等.数字图像处理技术在火焰检测上的应用[J],中国电力,1994(10):41-44
    [52]何万青,余岳峰,张银桥等.基于图像处理和数字视频技术的锅炉多路火焰检测系统[J],热力发电,2000(3):45-48
    [53]王式民,吕震中,麻庭光等.图像处理技术在全炉膛火焰监测中的应用[J],动力工程,1996,16(6):68-72
    [54]王式民,赵延军,汪风林.光学分层热成像法重建火焰三维温度场分布的研究[J],工程热物理学报,2002,23(S1):233-236
    [55]邹煜,吕震中,王式民.锅炉全炉膛火焰数字图象处理与监测系统开发与研究[J],热能动力工程,1998,13(4):261-263
    [56]盛锋,周怀春,韩曙东等.基于图象处理及辐射传热逆问题求解的二维炉膛温度场重建[J],中国电机工程学报,1999,19(10):1-5.
    [57]Zhou H C, Lou C, Cheng Q, et al. Experimental Investigation on Visualization of Three-dimensional Temperature Distributions in a Large-scale Pulverized-coal-fired Boiler Furnace[J], proceedings of the 30th International Symposium on Combustion, Chicago, USA, July 25-30,2004.
    [58]程强,周怀春,娄春等.工业炉三维温度场可视化试验研究[J],工业加热,2005(1).
    [59]李兴龙,颜卓勇等.基于双色法测量气化火焰温度场的研究[J],煤炭转化,2008,31[3]:23~26.
    [60]杨宏,唐晓军,刘勇顾等.基于湍流气体火焰热图像特性的温度分布[J],东南大学学报,1997,27[3]:103-108.
    [61]张龙,夏智勋,胡建新.基于图像处理技术的补燃室火焰温度场测量[J],火箭推进,2007,33[6]:57-61.
    [62]Coelho P J. Numerical simulation of radiative heat transfer from non-gray gases in three-dimensional enclosures[J]. Journal of Quantitative Spectroscopy & Radiative Transfer,2002,74:307-328
    [63]Byuna D, Seung W B. Numerical investigation of combustion with non-gray thermal radiation and soot formation effect in a liquid rocket engine[J]. International Journal of Heat and Mass Transfer 50 (2007) 412-422
    [64]秦裕琨.炉内传热(第二版)[M],机械工业出版社,1992.
    [65]周洁,浦兴国,袁镇福.利用消光法测量气体发光火焰辐射率和温度[J],中国电机学报,2000,20[6]:65-67.
    [66]Williams A, Backreedy R, Habib R, et al. Modelling coal combustion:the current position[J]. Fuel,2002,81:605-618.
    [67]Jiang X M, Han X X, Cui Z G. Progress and recent utilization trends in combustion of Chinese oil shale[J]. Review Article. Progress in Energy and Combustion Science, Volume 33, Issue 6, December 2007, Pages 552-579
    [68]Goldstein R J, Ibele W E, Patankar S V, et al. Heat transfer—A review of 2005 literature [J]. Review Article. International Journal of Heat and Mass Transfer, Volume 53, Issues 21-22, October 2010, Pages 4397-4447.
    [69]Goldstein R J, Ibele W E, Patankar S V, et al. Heat transfer—A review of 2004 literature[J]. Review Article. International Journal of Heat and Mass Transfer, Volume 53, Issues 21-22, October 2010, Pages 4343-4396
    [70]周剑光,盛凯夫等.利用火焰发射光谱来研究汽油机的燃烧过程[J],光学学报,1994,14(2):208-213.
    [71]王琼.燃气燃烧火焰燃烧过程光学测量方法研究[M],硕士学位论文,浙江大学,2005.
    [72]余其铮,谈和平,阮立明.煤在燃烧过程中各种产物辐射特性的研究[J],动力工程,1993,13(3):18-12
    [73]Brewster M Q. Radiative heat transfer and properties [J]. New York:John Willey & Sons Inc.,1993
    [74]Agueda A, Pastor E, Perez Y, et al. Experimental study of the emissivity of flames resulting from the combustion of forest fuels[J]. International Journal of Thermal Sciences, Volume 49, Issue 3, March 2010, Pages 543-554
    [75]Sudheer S, Prabhu S V. Measurement of flame emissivity of gasoline pool fires[J]. Nuclear Engineering and Design, Volume 240, Issue 10, October 2010, Pages 3474-3480
    [76]万振刚,蔡小舒,余大勇等.锅炉设计算法在火焰监测中的应用[J],锅炉制造,2001,11(4):8-10
    [77]Taylor P B, Foster P J. The total emissivities of luminous and non-luminous flames[J]. International Journal of Heat and Mass Transfer, Volume 17, Issue 12, December 1974, Pages 1591-1605
    [78]何旭,马骁,王建昕.用激光诱导炽光法定量测量火焰中的碳烟浓度[J],燃烧科学与技术,2009,15(4):344-348
    [79]王飞,马增益,严建华等.利用火焰图像同时重建温度场和浓度场的试验研究[J],动力工程,200(3)
    [80]娄春,周怀春等.煤粉炉内颗粒辐射特性的检测与分析[J],工程热物理学报,,2007,28[2]:217~220.
    [81]聂宇宏,陈海耿,姚寿广.反演计算不同炉气温度下非灰气体的当量吸收系数的方法[J],动力工程,2009,25(6):830-833.
    [82]崔苗,陈海耿,吴彬等.基于加热炉内炉气非灰辐射特性的总括热吸收率[J].工 业炉,2007,1[30]:5-7.
    [83]Modest M F. Radiative heat transfer[M],2nd Edition. San Diego:Academic Press, 2003.
    [84]Siegel R, Howell J R. Thermal Radiation Heat Transfer[J].4th Edition. New York: Taylor & Francis,2002.
    [85]Fiveland W A. Discrete Ordinates solutons of the radiative transport equation for rectangular Enclosures [J]. ASME Journal of Heat Transfer,1984,106:699-706.
    [86]Lemonnier D, Le Dez V. Discrete ordinates solution of radiative transfer across a slab with variable refractive index[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2002,73(2-5):195-204.
    [87]贺志宏,谈和平,董士奎等.用贴体坐标系下离散坐标法求解再入目标辐射场[J],目标与环境特性研究,2001(1):33-42.
    [88]董士奎,谈和平,贺志宏等.高超声速再入体可见红外辐射特性数值模拟[J],红外与毫米波学报,2002,21(3):180-184.
    [89]周怀春.炉内火焰可视化检测原理与技术[M].北京:科学出版社,2005.
    [90]程强.求解辐射传递方程的DRESOR法及其应用[D],博士学位论文,华中科技大学,2007.
    [91]Daun K J, Howell J R. Inverse design methods fo radiative transfer systems[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2005,93(1):43-60.
    [92]徐果明.反演理论及其应用[M].北京:地震出版社,2005.
    [93]Liu L H, Man G L. Reconstruction of time-averaged temperature of non-axisymmetric turbulent unconfined sooting flame by inverse radiation analysis[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2003,78:139-149
    [94]Liu L H, Tan H P, Yu Q Z. Inverse radiation problem of temperature field in three-dimensional rectangular furnaces [J]. International Communication of Heat and Mass Transfer,1999,26(2):239-248
    [95]Liu L H, Tan H P. Inverse radiation problem in three-dimensional complicated geometric systems with opaque boundaries[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2001,68(5):559-573.
    [96]王飞,马增益,卫成业等.根据火焰图像测量煤粉炉截面温度场的研究[J],中国电机工程学报,2000,20(7):40-43
    [97]Kudo K, Kuroda A, Eid A, et al. Radiative load problem using the singular value decomposition technique[J]. JSME, International Journal, Series B,1996,39(4): 808-814.
    [98]Zhou H C, Han S D, Sheng F, et al. Visualization of Three-Dimensional Temperature Distributions in a Large-Scale Furnace via Regularized Reconstruction from Radiative Energy Images[J],Numerical Studies. Journal of Quantitative Spectroscopy and Radiative Transfer,2002,72(4):361-383
    [99]盛锋.基于辐射成像逆问题求解的温度场重建方法研究[D],博士学位论文,华中科技大学,2000.
    [100]韩曙东.大型燃煤锅炉炉膛温度场重建逆问题研究[D],博士学位论文,华中科技大学,2002.
    [101]周怀春,李芳,娄春.轴对称辐射传递逆问题的三种求解算法比较[J],华中科技大学学报(自然科学版),2007,11(35):121-123.
    [102]Bokar J C. The estimation of spatially varying albedo and optical thickness in a radiating slab using artificial neural networks[J]. Int Comm Heat Mass Transfer,1999, 26(13):359
    [103]Li H Y. Inverse radiation problem in two-dimensional rectangular media[J]. Journal of Thermophysics and Heat Transfer,1997,11(4):556-531
    [104]Chen Y, Farinelli U, Thomas B. Technological leapfrogging--a strategic pathway to modernisation of the Chinese iron and steel industry?[J], International Institute for Industrial Environmental Economics, P.O. Box 196, SE-22100 Lund, Sweden.
    [105]Cheng Q, Zhou H C, The DRESOR method for a collimated irradiation on an Isotropically scattering layer[J], Journal of Heat Transfer, Transactions of the ASME, 2007,129(5):634-645.
    [106]Cheng Q, Zhou H C, The DRESOR method for radiative heat transfer in a two-dimensional, rectangular enclosure [J]. Proceedings of the Fifth International Symposium on Radiative Transfer. Istanbul, Turkey:2007, July.
    [107]娄春.煤粉炉内三维温度场及颗粒辐射特性重建[D],博士学位论文,华中科技大学,2007.
    [108]Mccormick N J. Inverse radiative transfer problems:a review [J].Nuclear Science and Engineering,1992(112):185~198.
    [109]Wang F, Yan J, Cen K, et al. Simultaneous Measurements of Two-Dimensional Temperature and Particle Concentration Distribution from the Image of the Pulverized-Coal Flame[J]. Fuel.2010,(89):202-211
    [110]Zhou H C, Hou Y B, Chen D L. An inverse radiative transfer problem of simultaneously estimating profiles of temperature and radiative parameters from boundary intensity and temperature measurements [J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2002,74:605-620.
    [111]Zhou H C, Yuan P, Sheng F, et al. Simultaneous estimation of the profiles of the temperature and the scattering albedo in an absorbing, emitting, and isotropically scattering medium by inverse analysis[J]. International Journal of Heat and Mass Transfer,2000,43(23):4361-4364.
    [112]Zhou H C, Han S D. Simultaneous reconstruction of temperature distribution, absorptivity of wall surface and absorption coefficient of medium in a 2-D furnace system[J]. International Journal of Heat and Mass Transfer,2003,46:2645-2653
    [113]娄春,周怀春,姜志伟等.炉膛内断面温度场与辐射参数同时重建实验研究[J],中国电机工程学报,2006,26[14]:98~103.
    [114]娄春,周怀春.炉膛中二维温度场与辐射参数的同时重建[J],动力工程,2005,25[5]:633-638.
    [115]艾育华,周怀春.含烟黑火焰烟黑浓度和火焰温度分布同时重建模拟研究[J],工程热物理学报,2004,25(3):469-471.
    [116]艾育华.基于辐射成像成像的扩散火焰温度和烟黑浓度分布研究[D],博士学位论文,华中科技大学,,2005.
    [117]Ai Y H, Zhou H C. Simulation on simultaneous estimation of non-uniform temperature and soot volume fraction distributions in axisymmetric sooting flames [J]. Journal of Quantitative Spectroscopy and Radiative Transfer.2005,91(1):11-16.
    [118]Liu L H, Tan H P, Yu Q Z. Inverse radiation problem of sources and emissivities in one-dimensional semitransparent media[J]. International Journal of Heat and Mass Transfer,2001,44(1):63-72.
    [119]Liu L H. Simultaneous identification of temperature profile and absorption coefficient in one-dimensional semitransparent medium by inverse radiation analysis [J]. Int. Comm. Heat Mass Transfer,2000,27(5):635-643.
    [120]钱家麟.管式加热炉(第二版)[M],中国石化出版社,北京,2007.
    [121]张文学.步进式加热炉的发展[J],工业炉,1995(1).
    [122]邓维理.步进式加热炉技术及国内发展概况[J],工业加热,1992(5).
    [123]李智敏,彭晓峰,曲艺.工业炉窑节能的思考[J],工业加热,2000(6):4-8.
    [124]李敬,翟国营.步进梁式加热炉节能方向的探讨[J],冶金能源,2008,27[4]:41-43.
    [125]姜凡,刘石,卢钢.双色法火焰监测分析技术用于火焰温度场的实测试验[J],中国电机工程学报,2002,12(22):133-137.
    [126]Coppa P, Consorti A. Normal emissivity of samples surrounded by surfaces at diverse temperatures[J], Measurement 38,2005:124-131.
    [127]Davies M A, Ueda T, M'Saoubi R, et al. On The Measurement of Temperature in Material Removal Processes[J], Annals of the CIRP Vol.56/2/2007.
    [128]Han S H, Baek S W, Kimb M Y. Transient radiative heating characteristics of slabs in a walking beam type reheating furnace[J], Int J of Heat and Mass Transfer,2009 (52):1005-1011.
    [129]江瑞宝,周怀春,程强等.工业炉内钢坯温度及表面热流重建模型研究[J],工业加热,2006(5).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700