磁法勘探在河北海兴平原区普查找矿中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据河北海兴平原区航磁异常特征,选择合适的磁测数据处理方法,对海兴地区磁测数据进行分析处理,对河北东部平原区是否存在超大深部矿进行了预测研究,经钻探验证,揭示出磁异常是由深部较厚的太古界变质岩所引起,是形成变质铁矿的地质条件。在研究航磁异常的基础上,划定地面磁异常范围,收集前人地质资料,进行地面磁测野外工作技术设计;然后进行野外数据采集,数据整理,进行物性测定、日变改正等,绘制原始磁测异常平面等值线图,在此基础上确定精测中心剖面位置并进行高精度测量;之后对磁测数据分析处理,结合山东平原区找矿经验,对原始异常进行各种有效地试算和处理;并结合钻井和测井资料,确定引起磁异常的异常体产状,埋深和规模,建立平原区综合方法找矿的模式。
     本文通过收集以往基础地质资料和前人的研究成果,对磁测资料进行预处理和分析,对异常区进行分区确定异常单元。根据磁异常的数学物理特征,对实测磁异常进行必要的数学加工处理,使之满足数据转换的需要。利用中国地质调查局发展研究中心研制的重磁处理软件对经过预处理的数据进行处理转换,获得多参数多参量的信息,对每一处理环节不同参数进行试算,评定计算结果。由于勘查区属于中纬度地区,异常测量的参数是ΔT,受斜磁化影响严重,因此采用化向地磁极的处理方法,将ΔT化为ΔZ⊥,即将ΔT转换为垂直磁化情况下的垂直磁异常,可以使异常简单化,便于解释;其次对化极后的磁异常进行延拓处理,确定最佳处理参数,通过试算,找到最佳延拓高度;并进行磁源重力异常等的处理,得到磁源重力异常,与磁异常进行对比,进行重磁异常的对应分析,确定重磁异常的相关性和同源性,以便对异常进行正确的地质解释。应用磁异常处理技术,对磁异常精测剖面数据进行人机交互式正、反演计算,结合区域地质及钻井资料,对海兴磁异常中心剖面进行反演解释,分析在海兴平原区寻找深部矿床的可能性,推断引起航磁异常的地质原因,最后建立平原区综合物探方法找矿模式。
     该工区内高湾—大山近东西向叠加磁异常带主要是由断层抬升的磁性较强的含辉石变质岩类相对富集引起,通过对钻孔岩心标本磁性测定,认为太古界变质岩属中等磁性,由航磁及地磁异常向上延拓结果可知该异常源向下延深很大,属于规模巨大的深部磁性体。与山东颜店航磁异常比较,海兴地磁异常与重力异常重迭较少,重、磁不同源,据钻孔资料推测该平原区深部成矿的可能性不大。
According to aeromagnetic anomalies of Haixing Plain in Hebei, we select the appropriate method of magnetic survey data processing, analyse magnetic data of Haixing areas, and predict whether there is large deep mine on the eastern plain area of Hebei.Verified by drilling, we can announce that magnetic anomalies cause by the deep thick Archean metamorphic rock, which are geological conditions of metamorphic iron ore formatted. Based on the study of aeromagnetic anomalies, we divide the scope of ground magnetic anomaly, collect previous geological data and design ground magnetic survey field work; then collect and manage the field data, ascertain the physical property and make the correction of Diurnal sun variation and so on.Rendering the original magnetic anomaly contour map, on this basis, we determine the position center of the precise measurement profile and high-precision measurement. Then we analysis and process the magnetic data,combined prospecting experience of Shandong plain, to calculate the original anomaly on a variety of effective way.And combinated of drilling data,we determine abnormal body shape、depth and size by caused the magnetic anomaly and establish an integrated method to explorate in plain.
     In this paper, based on the geological data in the past and collected previous research results, we pretreat and analysis the magnetic data and define the abnormal cells in the abnormal areas.According to the mathematical and physical characteristics of magnetic anomalies, we make the necessary mathematical processing to the measured magnetic anomalies, to meet the needs of data conversion. By using gravity and magnetic processing software developed on the Chinese Development Research Center of Geological Survey, we process and convert the pretreated data, obtain the Multi-parameters information and deal with different aspects of each parameter, to assess results. As the exploration area in mid-latitudes,anomaly measured parameters isΔT,which is seriously affected by the oblique magnetization, we transformΔT intoΔZ⊥by geotropic pole approach,which is convertedΔT to the vertical magnetic anomaly in vertical magnetic case.Anomaly can be simplified and easy to explain;Second,we can treat the pole magnetic anomaly, to determine the optimum processing parameters.Through the tentative calculation,we find the best extension height;and dispose of gravity and magnetic anomalies, obtain Gravity and magnetic anomaly.Compared with the magnetic anomaly.
     We do something about gravity and magnetic anomaly corresponding analysis, determine the relevance and homologous of gravity and magnetic anomalies, to obtain the geological interpretation of the abnormal. Applied processing technology to magnetic anomalies,we do forward calculation and inverse calculation about human-machine interactive to the magnetic anomaly profile data of Precision measurements.Combined with regional geological and drilled data,we explain the center of magnetic anomalies on the Haixing inversion profiles,analysis the possibility of looking for deep deposits in Haixing plain.Inferred reasons caused by geological aeromagnetic anomaly,finally we establish the mode of integrated geophysical prospecting methods in plains.
     In this work area, Gaowan-Dashan magnetic anomaly zone mainly is caused by the relative enrichment of pyroxene metamorphic rocks which is the strong magnetic of the fault uplift. By the determination of magnetic drill core samples,we know that the Archean metamorphic rock magnetic is medium, the upward continuation results of magnetic anomaly and the aeromagnetic suggest that the deep anomaly source downward is very deep,and huge magnetic body. Comparison to Shandong Yandian aeromagnetic anomalies, Haixing magnetic anomaly and gravity anomaly overlap is less, that gravity and magnetic is different sources.It is projected that the plain bored deep mineralization is unlikely.
引文
[1]Chandler V W, Kelley Carlson Malek.Moving-window Poisson analysis of gravity and magnetic data from the Penokean orogen, east-central Minnesota[J].Geophysics,1991.
    [2]SAILHAC P,GALDEANO A, GILBERT D, et al. Identification of sources of potential fields with the continuous wavelet transform:Complex wavelets and application to aeromagnetic profiles in French Guiana[J].J Geophys Res,2000.
    [3]Colin G.Farquharson,James A.Craven.Three-dimensional inversion of magnetotelluric data for mineralexploration:An example from the McArthur River uraniumeposit,Saskatchewan,Canada. Applied Geophysics,2008.
    [4]AN Yulin. Summary of the theory of all-directional imagery forlocal gravity and magnetic anomaly sources[J].Geophysical and Geochemical Exploration,2001.
    [5]Vallee M A, Keating P, Smith R S, et al. Estimating depth and model type using the continuous wavelet transform of magnetic data. Geophysics,2004.
    [6]Salem A, Ravat D, Smith R, Ushijima K. Interpretation of magnetic data using enhanced local wavenumber(ELW) method.Geophysics,2005.
    [7]Reid AN, Allsop J M, Granser H, et al. Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics,1990.
    [8]Chen Yudong.Identification of magnetic sources with continous complex potential wavelets transform(1). Computing techniques for geophysical and geochemical exploration,2003.
    [9]Bastani M,Pedersen L B.Automatic interpretation of magnetic dike parameters using the analytic signal technique. Geophysics,2001.
    [10]Parker,R.L.,The rapid calculation of potential anomalies.G.J.R.1973,31:447-455.
    [11]Parker,R.L.,Best bound on density and depth from gravity data.Geophysics.1974,39:644-649.
    [12]DeGroot-Hedlin,C.,and Constable,S.C.,1990,Occam's inversion to generate smooth.
    [13]Smith,J.T.and Booker,J.R.,1991,Rapid Inversion of Two-and Three-Dimensional magnetotelluric Data[J],JGR,96(B3):3902-3922.
    [14]Rodi,W.and Mackie,R.L.,2001,Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion[J],Geophysics,66(1).
    [15]Baker RL,Cull JP.Acquisition and signal processing of ground-penotrating radar forshallow exploration and open-pit mining.Exploration Geophysics,1992,23(1-2):17.
    [16]Turner G,Yelf RJ,Haathely PJ,Coal mining application of Ground radar,Exploration Geophysics,1990,21 (1-2):165.
    [17]Daniels,J J Pundamendal of Ground penterting Radar,Londoen soft Earth Association,1990.
    [18]Deng R L,Linc PM-Cw radar performance in a lossay layered medium.Apply Geophys,1999, 42(1):23.
    [19]Greet Uytterhoeven,Dike Roose,Adhemar Bultheel. Wavelet transform using the lifting scheme. Report ITA-Wavelets-Wp1.1 (Revised version),1997.
    [20]Ramesh Neelamani. Wavelet transform via lifting. ELEC 696 Project, Department of Electrical and Computer Engineering,Rice University,Houston,1998.
    [21]Oldenburg,D.W,The inversion and interpretation of gravity The inversion and interpretation of gravity anomalies.Geophysics.1974,39(4):526-536.
    [22]Daubechies I,Sweldens W.Factoring wavelet transforms into lifting steps.J.Fourier Anal. Appl.1998,4(3):245-267.
    [23]Gilbert Strang,Truong Nguyen.Wavelets and Filter Banks [M].Wellesley-Cambridge Press,1997.
    [24]Sweldens W. Wavelets and the lifting scheme:A minute tour.Z. Angew. Math. Mech.,1996, 76 (Suppl.2):41-44.
    [25]Sweldens W,Schroder P.Building your own wavelets at home.Technical Report,Industrial Mathematics Initiative, Department of Mathematics, University of South Carolina,1995.
    [26]Oldenburg,D.W.and McGrillivray,P.RGeneralize subspace methods for large-scale inverse problems.Geophys.1993,114.12-20.
    [27]Stockwell R G,Mansinha L,Lowe R P.Localization of the complex spectrum:the Stransform[J].IEEE Tran.On Signal Processing,1996,998-1001.
    [28]Sweldens W. The lifting scheme:A custom-design construction of biorthogonal wavelets[J]. Appl. Comput. Harmon. Anal,1996,3(2):186-200.
    [29]Calderbank R, Daubechies I, Sweldens W, B.-L.Yeo.Wavelet transforms that map integers to integers.Appl. Comput. Harmon. Anal.1998,5(3):332-369.
    [30]Sweldens W.The lifting scheme:A construction of second generation wavelets[J].Siam J. Math. Anal,1997,29(2):511-546.
    [31]Greet Uytterhoeven.Wavelets:software and application[D].Leuven(Belgium):University leuven,1999.
    [32]安玉林,陈玉东,黄金明.重磁勘探反演理论方法研究的新进展[J].地学前缘,2003,10(1):141-148.
    [33]娄德波,宋国玺,李楠等.磁法在我国矿产预测中的应用[J].地球物理学进展,2008,23(1):249-256.
    [34]管志宁.我国磁法勘探的研究和发展[J].地球物理学报,1997,40(增刊):299-306.
    [35]王芳.重磁勘探方法新技术[J].地质与资源,2004,9:184-186.
    [36]窦喜英,吴燕冈,王恩利等.重磁对应分析方法在东北地区实际资料处理中的应用[J].吉林地质,2006,25(2):42-47.
    [37]吴天彪.我国地面重磁仪器的现状与前景[J].地质装备,2007,4:11-16.
    [38]管志宁.地磁场与磁力勘探[M].北京:地质出版社,2005.
    [39]林珍,易海,王衍堂.重磁资料在北黄海盆地综合地球物理解释中的应用[J].物探与化探,2008,32(2):111-115.
    [40]王邦华,王理.重磁位场的正则化向下延拓[J].物探化探计算技术,1998,20(1):30-35.
    [41]方东红,曾昭发,陈家林.基于小波分析的重磁数据求导方法及应用[J].吉林大学学报,2008,38(6):1049-1054.
    [42]宋明春,李培远等.山东省济宁强磁异常区深部铁矿初步验证及其意义[J].地质学报,2008,82(9):1285-1291.
    [43]姚长利,管志宁,吴其斌.欧拉反演方法分析及实用技术改造[J].物探与化探,2004,28(2):150-155.
    [44]刘彦华,陈宗刚,欧阳长亮.重磁异常对应分析在相山地区的应用[J].物探与化探,2008,32(6):586-589.
    [45]曾昭发,吴燕冈等.基于伯松定理的重磁异常分析分析方法及应用[J].吉林大学学报,2006,36(2):279-283.
    [46]张季生.位场自动反演技术的研究现状及意义[J].地球学报,2006,27(6):609-612.
    [47]刘天佑.位场勘探数据处理新方法[M].北京:科学出版社,2007:37-38.
    [48]孙中任,赵雪娟,甄凡玉.地面高精度磁测成图工作中异常分离的重要性[J].物探与化探,2007,B10:43-46.
    [49]金鑫,贾立国,孙忠任等.1:5万矿产调查磁测资料对隐伏岩体的推断及意义实践[J].地质与资源,2008,(1):65-68.
    [50]工程地质手册.北京:中国建筑工业出版社.2007.
    [51]王玉华,雷茂盛,雷裕红等.高精度重磁资料在松辽盆地古龙断陷火山岩气藏勘探中的应用,石油地球物理勘探[J],2008,43(1):107-11.
    [52]耿喜哲,刘天佑,丁艳红等.小波神经网络在重磁资料反演中的应用前景[J].物探与化探,2001,25(2):102-108.
    [53]王怀生,郭永春.重磁多参数模拟技术及其应用[J].石油物探,2009,48(1):96-104.
    [54]刘大为,刘天佑,董建华.小波多尺度分析在煤田火烧区磁法探测中的应用[J].煤田地质与勘探,2005,33(6):61-63.
    [55]霍光辉,王海芹,王仁祥.郯庐断裂带中南段重磁特征与深部构造[J].山东国土资源,2009,25(8):9-13.
    [56]王亮,张应文,刘盛光.区域重磁资料圈定贵州境内侵入岩体及局部地质构造[J].物探与化探,2009,33(3):245-249.
    [57]高祥真,王居云,黄建明等.磁法仪器与电法仪器观测地磁场水平强度(H)精度及一致性的对比分析[J].内陆地震,1998,12(3):228-233.
    [58]熊盛青.我国航空重磁技术现状与发展趋势[J].地球物理学进展,2009,24(1):113-117
    [59]王涛,徐鸣洁,王良书,刘绍文,胡旭芝.鄂尔多斯及邻区航磁异常特征及其大地构造意义[J].地球物理学报,2007,50(1):163-170.
    [60]贺日政,高锐,郑洪伟,张季生.青藏高原中西部航磁异常的匹配滤波分析与构造意义[J].地球物理学报,2007,50(4):1131-1140.
    [61]江为为,周立宏,肖敦清等.东北地区重磁场与地壳结构特征[J].地球物理学进展,2006,21(3):730-738.
    [62]张胜业,潘玉玲.应用地球物理学原理[M].武汉:中国地质大学出版社,2004,155-156.
    [63]《地面磁测资料解释推断手册》编写组.地面磁测资料解释推断手册[M].北京:地质出版社,1979,1124-1127.
    [64]陈玉东.利用位场连续复小波变换识辨磁场源.物探化探计算技术,2003,25(3):220-225.
    [65]王谦身,滕吉文,王光杰.徐亚.内蒙古阴山地区特异区域重磁场与深部构造.地球物理学报[J],2005,48(2):314-320.
    [66]于德福.中国东部铁矿获得重大进展[N].地质勘查导报,2007,(380).
    [67]张燕,董云鹏,程顺有等.蒙古赤峰地区重磁特征及其地质意义[J].地质通报[J],2009,28(5):594-602.
    [68]管志宁,郝天珧,姚长利.21世纪重力与磁法勘探的展望[J].地球物理进展.2002,17(2):237-244.
    [69]谭承泽,郭绍雍.磁法勘探教程[M].北京,地质出版社,1984.212-253.
    [70]杨四路.磁法勘探在河北省青龙县楮杖子铁矿中的应用与研究[D].中国地质大学.2006.
    [71]赵鹏大,陈建平,张寿庭.“三联式”成矿预测新进展[J].地学前缘,2003,10(2):455-463.
    [72]金钢燮,胡祥云,超敬来等.复杂形体重磁异常的等参数有限元积分算法研究[J].石油地球物理勘探,2009,23(2):231-239.
    [73]王慧琳,陈超,张昌达等.最新的岩石圈磁场模型及中国磁异常特征的几点认识[J].地学前缘,2008,4(3):64-71.
    [74]骆遥,姚长利,薛典军.2.5D地质体重磁异常无解析奇点正演计算研究[J].石油地球物理勘探,2009,22(4):487-493.
    [75]刘天佑;吴招才;詹应林.磁异常小波多尺度分解及危机矿山的深部找矿:以大冶铁矿为例[J].黄金,2007,20(1):135-140.
    [76]申宁华,管志宁.磁法勘探问题[M].北京:地质出版社,1985.329-335.
    [77]《河北省北京市天津市区域地质志》.北京:地质出版社,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700