生物流变特性测试方法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流变学是研究非牛顿流体在应力、应变、温度等条件下与时间因素有关的变形和流动的科学,是介于物理、力学、医学、生物和工程技术之间的一门边缘交叉学科。在自然界和工程技术界,粘弹性流体、粘塑性流体、血液以及绝大多数生物流体的流动都呈现出非牛顿流体性态,非牛顿流体的流变性质、流体流动与变形的力学分析、流体的本构方程、物质参数与函数的测量、流体粘温性能、流动曲线、凝固性、粘弹性、触变性等一系列流变学特性指标的测试丞待解决。尤其在生物流变学领域,血液流动动力学,血液细胞的变形规律,血液和其他体液、各种软、硬组织的力学性能,各种生物流体的流变特性与疾病的关系等生物流变学特性测试问题被相继提出,血液流变学、细胞流变学以及血液凝固过程中的流变机理和参数测量已经成为研究热点。本论文围绕“血液流变、细胞流变以及血液凝固过程中的流变特性测试方法”等科研项目,开展生物流变学特性测试方法与系统应用研究。
     论文首先全面综述了流变学的国内外研究现状,阐述了非牛顿流体流变学研究领域的分类及研究的重要意义,详细分析了血液流变学、细胞流变学、血液凝固过程中的流变机理和参数测量等生物流变学特性测试的研究内容,阐明了生物流变学与心脑血管疾病、恶性肿瘤及糖尿病等多种疾病的关系以及生物流变学在血液流动状态下对止血、凝血及血栓形成中的生理、病理作用及临床意义。
     其次以流变学的研究对象和研究方法为基础,全面阐述了非牛顿流体流变学测量理论,对非牛顿流体流动与变形进行了力学分析,推导出非牛顿流体流动的基本微分方程,构建了纯粘性非牛顿流体的本构方程,分析了非牛顿流体的典型流动以及流体粘弹性与触变性等流变性质,重点研究了稳态剪切流场的主要流变学参数和小振幅振荡流场与流体粘弹性的流变学参数表征方法。
     针对生物流变学特性测试研究,提出了稳态剪切速度衰减血流变测试方法、基于激光衍射和散射技术的细胞形态、变形与聚集等细胞流变学特性测试方法以及基于小振幅振荡流场的双磁路磁珠振荡法、光学散射测量法和发色底物测量法的等血液凝固过程中的流变特性测试方法,解决了生物流变学领域的血液流动性、细胞变形性、细胞聚集性以及血液凝固性等一系列生物流体流变学特性测试技术与方法。
     提出了基于稳态剪切流场、拉伸流场和小振幅振荡流场的生物流变学特性测试特性模型,建立了高灵敏度、高可靠性的库特式生物流体流变学特性测试系统和动态数据建模平台,采用应力驱动、实时频率扫描、小振幅振荡和强迫振荡四种模式实现生物流体流变学特性测试及动态数据建模。
     论文对提出的稳态剪切速度衰减血流变测试方法和激光衍射细胞流变学特性测试方法进行了实验验证,针对目前非牛顿流体流变特性测试仪器无法标定以及测试结果无法溯源等问题,研制了一种稳定可靠的非牛顿流体标准物质,提出了非牛顿流体标定方法。
     完成了基于稳态剪切速度衰减测试方法的血流变测试系统应用研究。系统采用提出的速度衰减法锥板测试技术实现全量程、逐点扫描、快速、稳态的血流变特性测量,具有自动加样、自动混匀、自动测试、自动清洗、液面感应等先进功能,具有非牛顿流体标准物质标定和校准功能。
     完成了基于双磁路小振幅振荡测试方法的凝血测试系统应用研究。利用提出的双磁路磁珠振荡法测量原理实现血液凝固过程中的流变特性功能测试。系统具有先进的三维空间加样系统、驱动器内置点到点功能、S曲线加速、直线/圆弧插补运动功能以及微弱信号采集放大功能。系统具有功能强大、实时多任务操作、检测速度快、精度高等特点。
     本论文的研究为生物流变学特性测试方法及应用奠定了必要的理论基础,对于推动我国生物流变学特性测试技术研究有着重要的指导意义。
Rheology is a science that studies the time-related deformation and flow ofnon-Newtonian fluids under the conditions of stress, strain, and temperature. It is aninterdisciplinary subject which includes some parts of physics, mechanics, medicine,biology, and engineering. The flow of viscoelastic fluids, viscoplastic fluids, bloods,and most of biofluids demonstrates the characteristics of non-Newtonian fluid. Thetesting of some rheological characteristics, such as the rheological characteristics ofnon-Newtonian fluids, mechanical analysis of fluid flow and deformation,constitutive equations of fluids, parameters and functions of material,viscosity-temperature characteristics of fluids, flow curve, coagulability,viscoelasticity, and thixotropy, demands prompt solution. Especially in the field ofbiomedical engineering, the test problems about the biorheological characteristics,such as the dynamics of blood flow, deformation laws of blood cell, mechanicalproperts of blood, other body fluids, and all kinds of soft and hard tissues, andrelations between the rheological characteristics of biofluids and illnesses, are raisedin succession. Hemorheology, cell rheology, and the rheological mechanism andparameter measurement during the process of blood coagulation, have attractedmany researcher’s attention. This thesis focuses on the research on thebiorheological characteristic testing method and its applications, along with theresearch project Rheological Characteristic Testing Methods in Hemorheology, CellRheology, and the Process of Blood Coagulation.
     An overall review of the rheology is given. The classification and researchsignificance of the non-Newtonian fluid rheology are introduced. Research topics ofthe biorheological characteristic testing, such as the hemorheology, cell rheology,and the rheological mechanism and parameter measurement during the process ofblood coagulation, are analyzed in detail. The relations between the biorheology andsome illnesses such as cardiovascular and cerebrovascular disease, malignant tumor,and diabetes, are revealed. The physiological and pathological actions of thebiorheology towards the hemostasis, blood coagulation, and formation of thrombuswhile the blood flows are discussed.
     Based on the research object and method of rheology, the measurement theory of non-Newtonian fluid rheology is introduced. The mechanical characteristics of thenon-Newtonian fluid deformation and flow are analyzed. Basic differentialequations of the non-Newtonian fluid flow are deduced. Constitutive equations ofthe pure viscous non-Newtonian fluids are built. Some typical flows ofnon-Newtonian fluid, and rheological characteristics such as viscoelasticity andthixotropy, are analyzed. The main rheological parameters of the steady state shearflow field and the rheological parameter characterization methods of the smallamplitude oscillatory flow field and fluid viscoelasticity are studied.
     According to the research on the biorheological characteristic testing technique, ahemorheological test method based on steady state shear velocity attenuationmethod is presented. A test method of cell rheological characteristic, such as cellmorpha, deformation and aggregation, based on the technique of laser diffractionand scattering is proposed. Rheological characteristic test methods during theprocess of blood coagulation, such as double magnetic circuits magnetic beadoscillatory method, optical scattering measuring method and chromogenic substratemeasuring method, based on the small-amplitude oscillatory flow field, are alsodemonstrated. The problems of some test techniques and methods of biorheologicalcharacteristic, such as the blood flow, cell deformation, cell aggregation and bloodcoagulation, are resolved.
     Biorheological characteristic test models are given based on steady state shearflow field, elongational flow field, and small-amplitude oscillatory flow field. Ahighly sensitive and reliable Couette biofluid rheological characteristic test systemand dynamic data modeling system are built. The biofluid rheological characteristictest and dynamic data modeling are accomplished by using the models of stressdriving, real-time frequency sweep, small amplitude oscillation, and forcedoscillation.
     Experiments are conducted to verify the proposed hemorheological test methodbased on steady state shear velocity attenuation method and cell rheological testmethod based on laser diffraction method. To sovle the problems that theinstruments for non-Newtonian fluid rheological characteristic testing cannot becalibrated and its testing results cannot be traced, a kind of stable and reliablenon-Newtonian fluid standard substance is developed and a non-Newtonian fluidcalibration method is proposed.
     The application research on hemorheological test system based on steady stateshear velocity attenuation method is completed. The system realizes the full-range,point-by-point scanning, rapid and steady-state measurement of the hemorheologicalcharacteristics using the proposed velocity attenuation cone-plate testing method.The system has some advanced functions such as automatic sampling, blending,testing, and cleaning, together with the function of liquid level detecting. It also hasthe functions of non-Newtonian fluid standard substance calibration and adjustment.
     The application research on blood coagulation test system based on doublemagnetic circuit small amplitude oscillation method is also completed. Therheological characteristic test during the process of blood coagulation is achieved byusing the proposed double magnetic circuit magnetic bead oscillatory method. Thesystem has an advanced3D sampling unit, driver embedded point-to-point function,S-curve acceleration and line-circle interpolation motion function, and weak signalsampling-amplifying function. It has the advantages of powerful functions, real-timemultitask operation, rapid detection, and high accuracy.
     This thesis lays a good foundation to build the necessary theoretical principle thatwill benefit the research on the biorheological characteristic testing method and itsapplication. It has important directive significance to the development of thebiofluid rheological characteristic testing method.
引文
[1]金日光,黄惠金,周淑梅.流变学进展[M].北京:化学工业出版社,1996.
    [2]杨挺青,曾繁涤,解孝林.流变学进展[M].武汉:华中理工大学出版社,1999.
    [3]候万国,罗迎社.流变学进展[M].济南:山东大学出版社,2006.
    [4]廖华勇.固液界面流变的若干基本问题研究[D].杭州:浙江大学学位论文,2007:1.
    [5]李文阳,卢拥军,单文文等.流变学进展[M].北京:中国科学技术出版社,2002.
    [6] Luo K. H.,Xia J.,Monaco E. Multiscale modelling of multiphase flow withcomplex interactions[J]. Journal of Multiscale Modell,2009(1):125-156.
    [7]朱克勤.非牛顿流体力学研究的若干进展[J].力学与实践,2006,28(4):1-8.
    [8]陈文芳.非牛顿流体力学[M].北京:科学出版社,1984.
    [9]沈仲棠,刘鹤年.非牛顿流体力学及其应用[M].北京:高等教育出版社,1989.
    [10]黄春兰,方波,程巍.不同分子量降解壳聚糖和降解卡拉胶复合凝胶体系及其流变特性[J].食品科技,2007,32(4):27-31.
    [11]方波.化工流变学概论[M].北京:中国纺织出版社,2010.
    [12]江体乾.化工流变学[M].上海:华东理工大学出版社,2004.
    [13]方波,姜舟,卢拥军.低聚瓜胶压裂液体系流变特性及其本构方程[J].天然气工业,2008,28(2):102-103,110.
    [14] C. Y. Cheng. Double diffusion from a vertical wavy surface in a porousmedium saturated with a non-Newtonian fluid[J]. InternationalCommunication in Heat and Mass Transfer,2007,34(3):285-294.
    [15]戴干策,陈敏恒.化工流体力学[M].北京:化学工业出版社,1988.
    [16]毛在砂.化工数学模型方法[M].北京:高等教育出版社,2008.
    [17] W. Y. Fan, Y. G. Ma, S. K. Jiang,et al. An experimental investigation forbubble rising in non-Newtonian fluids and empirical correlation of dragcoefficient[J]. Journal of Fluids Engineering,2010,132(2):1-7.
    [18] J. C. Charpentier. Among the trends for a modern chemical engineering, thethird paradigm:The time and length multiscale approach as an efficient toolfor process intensification and product design and engineering. Chem. Eng.Res. Des.2010(88):248-254.
    [19] Molla,M. M., Hossain,M. A., Yao, L. S. Natural Convection Along a VerticalComplex Wavy Surface with Uniform Heat Flux[J]. Journal of Heat Transfer,2007(129):1403-1407.
    [20] Cheng, C. Y. Double-diffusive natural convection along a vertical wavytruncated cone in non-Newtonian fluid saturated porous media with thermaland mass stratification[J]. International Communication in Heat and MassTransfer,2008,35(8):985-990.
    [21] Yingshe Luo, Fei Liu, Liu Yang, et al. The Numerical Simulation andMechanics Analysis for Deep-Draw Thermo-rheological Forming of One TiAlloy Rectification Internal Hood[J]. Key Engineering Materials,2004,274-276:721-726
    [22]梁基照.聚合物材料加工流变学[M].北京:国防工业出版社,2008.
    [23]王鸿儒,阮晓生等.血液流变学[M].北京:北京医科大学、中国协和医科大学联合出版社,1997.
    [24]赵春亭,赵子文.临床血液流变学[M].北京:人民卫生出版社,1997.
    [25]冯元祯.生物力学[M].北京:科学出版社,1983.
    [26] Ruan Ping, Yong Jun-guang. Analysis and significance of whole bloodapparent viscosity casson viscosity and yield stress in hemorheology[J].Chinese Journal Clinical Rehabilitation,2005,9.
    [27] R. Ponalagusamy. The blood flow through an artery with mild stenosis: Atwo-layered Model,Different shapes of stenosis and slip velocity at the wall[J].Journal of Applied Sciences,2007(7):1071-1077.
    [28]周红.血栓与止血检验诊断的发展趋势[J].临床检验杂志,2008,26(1):74-75.
    [29]梁子钧.生物流变学(BIORHEOLOGY)简介[J].医学与哲学,1982(,12):23-27.
    [30]戴豪良.血液流变学研究的问题及出路[J].中国中西医结合杂志,2002,22(12):888-889.
    [31]朱增民.红细胞压积对全血黏度关系的影响研究[J].当代医学杂志,2011,29:20-21.
    [32]祁贺栋.冠心病时血液流变学指标变化及临床意义[J].现代检验医学杂志,2005,20(6):76-77.
    [33]汪钟,郑植荃.现代血栓病学[M].北京:中国协和医科大学出版社,1996.
    [34]胡金麟.细胞流变学[M].北京:科学出版社,2000.
    [35] Munganga,J.M.W.; Maritz,R.A stability result on the orientation of red bloodcells in the venule network[J]. Journal of Mathematical FluidMechanics,2011,13(2):155-172.
    [36] Herna′ndez RM, Orive G, Murua A, et al. Microcapsules and microcarriersfor in situ cell delivery[J]. Adv Drug Delivery Rev.2010(62):711-730.
    [37]胡金麟.脑微循环与生物流变学[J].微循环学杂志,1996,6(3):53-55.
    [38] Teramura Y, Iwata H. Bioartificial pancreas. Microencapsulation andconformal coating of islet of Langerhans[J]. Adv Drug Delivery Rev.2010(62):827–840.
    [39]韦慧玲,蒋翠霞,师勇等血液流变学及其各项指标在临床上的应用[J].中国现代医生,2010,48(8):16-17.
    [40]王学锋,王鸿利.血栓与止血的检测及应用[M].上海:世界图书出版公司,2002.
    [41]骆晓森.血液流变学及其各项指标在临床上的应用[D].南京:南京理工大学学位论文,2002.
    [42]那履弘.血流变检测仪性能研究[J].中国血液流变学杂志.2007(1):49.
    [43]黄燕婷,黄惠.全自动酶免分析仪前处理加样系统检测HBcAb方法的优化[J].黑龙江科技信息,2009,(36):380.
    [44]邢培清,刘玉振,李伍升等.全自动加样仪加液精密度测试结果分析[J].中国输血杂志,2005,18(01):31-32.
    [45]骆晓森.弱激光照射疗法治疗机理与过程研究[D].南京:南京理工大学学位论文,2002.
    [46]蔡锦达,程曦,刘聪.全自动生物芯片加样检测系统设计[J].医疗卫生装备,2009,30(02):58-59.
    [47]卜宪庚,韩卫民,李路.新型微机控制血流变综合分析系统的研制与应用[J].哈尔滨医科大学学报,1995,29(6):491-492.
    [48] A. Mongruel, N. Lecoq, E. Wajnryb, et al. Motion of a sphero-cylindricalparticle in a viscous fluid in confined geometry[J]. Eur. J. Mech. B/Fluids,2011,30:405–408.
    [49] A. Mongruel, C. Lamriben, S. Yahiaoui, et al. The approach of a sphere to awall at finite reynolds number[J]. J. Fluid Mech,2010,661:229-238.
    [50] A.M. Ardekani, R.H. Rangel, D.D. Joseph, Motion of a sphere normal to awall in a second-order fluid[J]. J. Fluid Mech,2007,587:163-172.
    [51] A.M. Ardekani, D.D. Joseph, D. Dunn-Rankin,et al. Particle-wall collision in aviscoelastic fluid[J]. J. Fluid Mech,2009,633:475-483.
    [52]李俊青,孟明亮,张翔等.运动对红细胞流变性的影响[J].中国临床康复,2003,(15):2255.
    [53]赵洪,王暄,崔思海.基于计算机测控技术的转矩流变仪的研制[J].塑料工业,2002,30(3):52-53.
    [54] Webster, M. F., H. Matallah, K. S. Sujatha, et al. Numerical modelling ofstep-strain for stretched filaments[J]. J. Non-Newtonian Fluid Mech,2008,(151):38-58.
    [55] Belmiloud, Naser, Dufour. Vibrating microcantilever used as viscometer andmicrorheometer[J]. Proceedings of IEEE Sensors,2006,(2):53-75.
    [56]何英武.检验医学所面临的机遇和挑战[J].当代医学,2010,16(26):20-21.
    [57]王加瑞.血流变常测指标间关系及应用价值[J].中国血液流变学杂志,2005,15(2):304-305.
    [58]鲍修增,王岚.利用毛细管测量血液粘度的研究[J].中国医学物理杂志,2004,21(2):102-103.
    [59] Tirtaatmadja, V.,G. H. McKinley, J. J. Cooper-White. Drop formation andbreakup of low-viscosity elastic fluids:Effects of molecular weight andconcentration[J]. Phys. Fluids,2006,18:043101-18
    [60]施永德.切变率的施加顺序和剪切史对全血粘度测定影响的初步研究[J].中国血液流变学杂志,2001,11(1):5-8.
    [61]陈中新,袁宜仲等.旋转锥板测量粘度新方法的探讨[J].计量技术,2001,2:16-18.
    [62]赵红丽,赵俊月. LBY-N6A旋转式血液粘度计测定血液粘度分析[J].医学理论与实践,2002,15(10):1196-1196.
    [63]赵秋生,高卫平.通用型锥板血液粘度计的研制[J].医疗卫生装备,2002,(2):10-11.
    [64]文明,祝连庆,董明利.一种基于速度衰减的锥板粘度测量方法[J].北京机械工业学院报.2005,20(1):28-30.
    [65] Estelle,Patrice, Christophe,etc. Shear flow curve in mixing systems-Asimplified approach[J]. Chemical Engineering Science,2008,63:5887-5890.
    [66]张翊.血液流变特性检测的现状与评论[J].上海计量测试,2007,(5):16-18.
    [67]陈文芳,袁龙蔚,许元泽.流变学进展[M].北京:学术期刊出版社,1986.
    [68] Kumar R, Raghavan S. R. Photogelling fluids based on light–activatedgrowth of zwitterionic wormlike micelles[J]. Soft Matter,2009(5):797.
    [69] Song B, Hu Y, Zhao J. A single–component photo–responsive fluidbased on a gemini surfactant with an azo-benzene spacer[J]. Journal of Colloidand Interface Science,2009(333):820-822.
    [70]张惠风.血液粘度计的选择[J].中国血液流变学杂志,2006,16(2):322-324.
    [71] Pouliquen G, Amiel C,Tribet C. Photoresponsive viscosity and host–guestassociation in aqueous mixtures of poly–cyclodextrin with azobenzene–modified poly(acrylic) acid[J]. J. Phys. Chem B,2007(111):5587.
    [72] Mahmood-Ul-Hassan,Murthy, P.V.S.N. A modified approach to exact solutionsof a general form of a non-Newtonian second grade fluid[J]. Computers andMathematics with Applications,2012,63(1):94-99.
    [73] Ambari, Abdelhak. Slow motion of a sphere towards a plane through confinednon-Newtonian fluid[J]. Journal of Non-Newtonian Fluid Mechanics,2012,(167-168):38-45
    [74] Frank, Xavier, Charpentier, Jean-Claude,Ma,Youguang, Midoux,No.l,Li,HuaiZ. A multiscale approach for modeling bubbles rising in non-newtonianfluids[J]. Industrial and Engineering Chemistry Research,2012,51(4):2084-2093.
    [75] Tuladhar,T. R., M. R. Mackley. Filament stretching rheometry and break-upbehaviour of low viscosity polymer solutions and ink jets fluids[J]. J.Non-Newtonian Fluid Mech,2008(148):97-108.
    [76] Qin Xin,Thompson M.R.,Hrymak,A.N. Rheology studies of foam flow duringinjection mold filling[J]. Polymer Engineering and Science,2007(47):522-526.
    [77] Noreen sher Akbar, S. Nadeem, Mohamed Ali. Jeffrey. Fluid model for bloodflow through a tapered artery with a stenosis[J]. Journal of Mechanics inMedicine and Biology(JMMB),2011,11(3):529-545.
    [78] Kazakov,V.N., Barkalova, E.L., Levchenko,L.A, et al. Dilation rheology asmedical diagnostics of human biological liquids[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2011,391(1-3):190-194.
    [79]方波.关于构建轻化工程流变学知识结构的思考[J].化工高等教育,2011,(21):46-49.
    [80] M. M. Rashidi, M. Keimanesh,O. Anwar B é g, T. K. Hung.Magnetohydrodynamic biorheological transport phenomena in a porousmedium: A simulation of magnetic blood flow control and filtration[J].International Journal for Numerical Methods in Biomedical Engineering,2011,27(6):805-821.
    [81]王锦燕.聚合物流变参数拟合及主曲线的生成[D].郑州:郑州大学学位论文,2003.
    [82] Komoda, Yoshiyuki, Nakashima, et al. Viscosity measuring technique forgas-solid suspensions[J]. Advanced Powder Technology,2006(17):333-343.
    [83] Gasljevic K, Hoyer K,Matthys E F. Temporary degradation and recovery ofdrag–reducing surfactant solutions [J]. J. Rheology,2007,51(4):645-667.
    [84] Ketner A M, Kumar R, Davies T S, et al. A simple class of photorheologicalfluids: stu: factant solutions with vis-cosity tunable by light [J]. J. Am ChemSoc.2007,129:1553.
    [85] Sakai H,Orihara Y, Kodashima H, et al. Photoinduced reversible change offluid viscosity[J]. J. Am Chem Soc,2005,127(39):13454-13455.
    [86] Faure D, Gravier J, Labrot T. Photoinduced morphism of Gemini surfactantaggregates [J]. Chem. Commun,2005(9):1167-1169.
    [87] Li Jianping, Deng Guiling. Technology Development and Basic Theory Studyof Fluid Dispensing-a Review[J]. IEEE,2004,44(3):151-156.
    [88] M. Guedda. Similarity and pseudosimilarity solutions of degenerate bound-ary-layer equations[M]. HandBook of Differential Equations, StationaryPartial Differential Equations,2007(4):117-198.
    [89] E. Magyari. Translation groups of the boundary-layer flows induced bycontinuous surfaces[J]. J. Fluid Mech,2010,655:327-343.
    [90] Hang G, et al. A new approach to measurement of thixotropic properties ofwhole human blood[J]. Hua Xi Yi Ke Da Xue Xue Bao.1991,22(1):8-12.
    [91] Khan, W. A., Culham,J. R., Yovanovich,M. M. Fluid Flow and Heat Transferin Power Law Fluids Across Circular Cylinders: Analytical Study[J]. Journalof Heat Transfer,2006(128):870-878.
    [92] Denier,J. P.,and Hewitt,R. E. Asymptotic Matching Constraints for aBoundary-Layer Flow of a Power Law Fluid[J]. Journal of Fluid Mechanics,2004,(518):261-279.
    [93] Ben Khelifa,N, Alloui,Z,Beji,H.,Vasseur,P. Natural convection in a horizontalporous cavity filled with a non-Newtonian binary fluid of power-law type[J].Journal of Non-Newtonian Fluid Mechanics,2012,(169-170):15-25.
    [94] D. Filipussi,J. Gratton,F. Minotti. The self-similar laminar boundary-layer ofpower law non-Newtonian fluids[J]. Nuovo Cimento,2001,(116):393-402.
    [95] Zuhaila Ismail, Ilyani Abdullah, Norzieha Mustapha,Norsarahaida Amin. Thepower law model of blood flow through a tappered overlaping stenosedartery[J]. Appl. Math. Comput,2008,(195):669-680.
    [96] J.D. Sherwood. Squeeze flow of a power-law fluid between non-parallelplates[J]. J. Non-Newton. Fluid Mech,2011,(166):289-296.
    [97] J.P. Denier,P.P. Dabrowski. On the boundary-layer equations for power-lawfluids[J]. Proc. R. Soc. London,2004,460:3143-3158.
    [98]杨健茂.高分子多相复杂流体的多尺度流变学研究[D].上海:复旦大学学位论文,2007.
    [99] V.N. Kazakov, V.M. Knyazevich,O.V. Sinyachenko,V.B. Fainerman,R. Miller.Interfacial Rheology[M]. R. Miller,L. Liggieri. Progress in Colloid andInterface Science,Leiden:Brill Publ.,2009:519–566.
    [100] Muramatsu,Hiroshi,Kim,Jong M.,Chang,Sang Mok. Quartz-crystal sensors forbiosensing and chemical analysis[J]. Analytical and BioanalyticalChemistry,2002,372(2):314-321.
    [101] Tripathi,Dharmendra. A Mathematical Study on Three Layered OscillatoryBlood Flow Through Stenosed Arteries[J]. Journal of BionicEngineering,2012,9(1):119-131.
    [102] Olivares-Mar í n,Mara,Castro-D í az,Miguel,Drage,Trevor C.,MercedesMaroto-Valer,M. Use of small-amplitude oscillatory shear rheometry to studythe flow properties of pure and potassium-doped Li2ZrO3sorbents during thesorption of CO2at high temperatures[J]. Separation and PurificationTechnology,2010,73(3):415-420.
    [103] Moghadam H,Samimi M,Samimi A,Khorram M. Electro-spray of high viscousliquids for producing mono-sized spherical alginate beads[J]. Particuology,2008(6):271-275.
    [104] Wagner,C.,Y. Amarouchene,D. Bonn,and J. Eggers,Droplet detachment andsatellite bead formation in viscoelastic fluids[J]. Physical Review Letters,2005,95(16):16-45.
    [105] D. Srinivasacharya,D. Srikanth. The effects of couple stresses on the pulsatileflow through a constructed annulus[J]. Comptes Rendus Mécanique,2008,336:820-827.
    [106] V.N. Kazakov,V.B. Fainerman,P.G. Kondratenko,A.F. Elin,O.V.Sinyachenko,R.Miller. Dilational rheology of serum albumin and blood serumsolutions as studied by oscillating drop tensiometry[J]. Colloids Surf.B,2008,62:77-82.
    [107] Ohsaka A,Ishii K,Yamamoto T,Horii T,et al. Automated mixing studies andpattern recognition for the laboratory diagnosis of a prolonged activated partialthromboplastin time using an automated coagulation analyzer[J]. InternationalJournal of Laboratory Hematology,2011,128(1):86-91.
    [108] Milos M,Herak DC,Zadro R. Discrepancies between APTT results determinedwith different evaluation modes on automated coagulation analyzers[J].International Journal Of Laboratory Hematology,2010(32):33-39.
    [109] Nadeem,S,Akbar,Noreen Sher. Exact and numerical simulation of peristalticflow of a non-Newtonian fluid with inclined magnetic field in an endoscope[J].International Journal for Numerical Methods in Fluids,2011,66(7):919-934.
    [110] Jiang,S. K,Ma,Y. G,Fan,W. Y,Yang,K,Li,H. Z. Fractal and chaotic behaviour ofbubble coalescence in non-Newtonian fluids:A multiscale analysis[J]. KoreanJ. Chem. Eng.2011(28):56-63.
    [111]周玉兰.微量加样顺序的分析和改进[J].镇江医学院学报,1998,8(01):126-127.
    [112] D. Bohrer, P.C. do Nascimento, R. Binotto, et al. Improvement of precision forpipetting blood serum samples into a graphite furnace[J]. Spectrochimica ActaPart B:Atomic Spectroscopy,2002,57(12):2167-2173.
    [113] Zhu Lianqing, Li Hong, Na Yunxiao, et al. Novel Method for ELISA TracesPipetting System by Air Displacement Pipetting. Applied Mechanics andMaterials [C]. Switzerland:Trans Tech Publications,2012,103:252-256.
    [114]谢青红,张筱荔. TMS320F2812DSP原理及其在运动控制系统中的应用
    [M].电子工业出版社,2009:5-13,30-176.
    [115] Jang GH., Kim MG. Optimal commutation of a BLDC motor by utilizing thesymmetric terminal voltage[J]. IEEE Transactions on Magnetics.2006,42(10):3473-3475.
    [116]闫未丹.栅缝元件上粘弹性流体降膜流动研究[D].上海:华东理工大学学位论文,2011.
    [117] LI Hong, ZHU Lianqing, CHANG Haitao, BAO Yan. Design of liquid levelmeasurement for sampling module of full-automatic Enzyme ImmunoassayInstrument. Fourth International Seminar on Modern Cutting andMeasurement Engineering[C]. Proc. of SPIE,2011,7997:79971V.
    [118]钟晓强.基于单片机实现的液位控制器设计[J].现代电子技术,(2009)51-58.
    [119] Zhu Lianqing, Li Hong, Na Yunxiao, et al. Novel Method for ELISA TracesPipetting System by Air Displacement Pipetting. Applied Mechanics andMaterials [C]. Switzerland:Trans Tech Publications,2012,103:252-256.
    [120]杨雷,李广明,康丽等.基于多周期测量方法的气压传感器信号采集[J].仪器仪表学报,2007,28(4):687-691.
    [121]刘学东,郑冬,关伟军.细胞凋亡检测方法研究[J].上海畜牧兽医通讯,2007,(2):52-54.
    [122]曹力元.流式细胞计光学系统的研究[J].长春:长春理工大学学位论文,2009.
    [123]张旭凯,陆海峰.五分类血液细胞分析仪的原理及应用[J].中国医疗器械信息,2006,12(10):52-56.
    [124]郑秋月,吴广礼.血液流变性标本采集的标准化管理[J].护士进修杂志,2011,16(10):749.
    [125]王建鸣.朗伯—比耳定律的物理意义及其计算方法的探讨[J].高等函授学报(自然科学版),2000,13(3):32-33.
    [126]刘超英.酶联免疫吸附实验原理和酶标仪原理及维修[J].医疗卫生装备,2009,30(2):110-111.
    [127]祝连庆,董明利,丁裕栋.非牛顿流体流变学特性测试与建模[J].北京机械工业学院学报,1997,12(1).
    [128]祝连庆,董明利.非牛顿流体流变学特性测试系统[J].仪器仪表学报,2001,22(3):155-156.
    [129]金麟,贾银红,宋欣.正常人的血液粘弹性和触变性研究[J].微循环学杂志,1998,8(1):30-33.
    [130]翁维良,王怡.临床常用血液流变学指标的含义与评价[J].微循环学杂志,1994,4(4):39-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700