扇贝大防御素和G型溶菌酶的基因克隆与重组表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扇贝养殖是我国传统的海水养殖产业,但自1997年以来,养殖扇贝陆续爆发的大规模死亡,不但造成了巨大的经济损失,而且严重影响了该产业的健康发展。扇贝病害的不断爆发以及病因的多样性迫切要求制定新的疾病防治措施和开发新型的抗菌物质。
    从扇贝自身的免疫防御因子入手,筛选和克隆参与免疫防御的功能基因,一方面可以研究抗病功能基因在病原感染或环境胁迫条件下的表达规律,深入探讨扇贝的免疫防御机制,并可作为抗病良种选育的分子标记,指导扇贝的遗传改良和抗病品系的培育;另一方面,可对抗菌效应物实现重组表达,开发新型的病害预防治疗制剂,取代目前普遍使用的抗生素和化学药物。抗菌效应物是机体在免疫应答过程中产生的多肽类物质,对侵入生物体内的细菌、病毒具有很强的免疫杀灭作用,对抗菌效应物的研究有助于深入了解机体先天性免疫防御的机制。
    本研究采用大规模EST测序方法,结合cDNA末端快速扩增(RACE)技术,从海湾扇贝血淋巴中克隆到了大防御素基因(big defensin, AiBD)的全长cDNA序列,该cDNA全长为531 bp,其中5'非编码区(UTR)为24 bp,开放阅读框(Open Reading Frame, ORF)含有369 bp,编码122个氨基酸残基;随后为138-bp的3' UTR,包括一个多聚腺苷酸信号序列(AATAAA)和ploy A尾巴。分析表明,海湾扇贝大防御素是以前体的形式合成,前体分子包括信号肽、前域和成熟肽三部分。采用Northern blot方法,以DIG标记的DNA探针检测了AiBD mRNA在不同组织中的表达。结果发现,AiBD基因的转录本主要在血淋巴中表达,在鳃中也有微量的表达,而在外套膜、闭壳肌、性腺及肝胰腺中检测不到杂交信号。采用QRT-PCR(quantitative real time PCR)对鳗弧菌感染后海湾扇贝血淋巴中AiBD mRNA的表达量进行了检测,结果发现在感染后8 h内, AiBD mRNA的相对表达量平缓升高;随着刺激时间的增长,AiBD基因的mRNA表达量急剧增加,在刺激后16 h和32 h分别达到了空白组的72.3倍和131.1倍。为了研究海湾扇贝大防御素的抗菌活性,将其成熟肽编码区克隆到毕赤酵母表达载体
Scallop aquaculture is a big industry and contributes enormously to the economicdevelopment of coastal provinces in China. Since the summer of 1997, large-scalemortality of cultured scallop has caused catastrophic losses to scallop aquaculture,which resulted in the production decreasing drastically. The durative outbreak ofdiseases has stimulated intensive efforts for the development of better healthmanagement strategies and characterization of original immune efforts for diseasecontrol.
    The identification and characterization of genes involved in scallop immuneresponses are now considered to be essential for the elucidation of immune defensemechanisms and disease control because of their potential use as therapeutic agentsand genetic improvement biomarkers on disease-resistant strain selection.Antimicrobial effectors constitute the first line of innate immunity for scallop exposedto various potential pathogens in the aquatic environment by exerting broad-spectrummicrobicidal activity.
    The first mollusk big defensin (designated AiBD) cDNA was cloned from bayscallop Argopecten irradians by expressed sequence tag (EST) and rapidamplification of cDNA ends (RACE) techniques. The full-length cDNA of AiBDconsisted of 531 nucleotides with a canonical polyadenylation signal sequenceAATAAA and a poly(A) tail, encoding a polypeptide of 122 amino acids. Consistentwith other known big defensin sequences, AiBD was firstly synthesized as aprepropeptide. After cleavage of the signal peptide, the proregion was processed byKex-2-like proteases and resulted in the mature peptide with a theoretical mass of9.22 kDa and a pI of 9.81. The expression of AiBD in various tissues was measured by
    using Northern blotting analysis. mRNA transcripts of AiBD could be detected inhaemocytes of unchallenged scallops. The temporal expression of AiBD inhaemolymph after Vibrio anguilarum challenge was recorded by quantitative real timePCR. The relative expression level of AiBD in haemolymph was up-regulated evenlyin the first 8 h, followed by a drastic increase, and increased 131.1 fold at 32 h postinjection. These results indicated that AiBD could be induced by bacterial challenge,and it should participate in the immune responses of A. irradians. Biological activityassay revealed that recombinant AiBD could inhibit the growth of both Gram-positiveand Gram-negative bacteria, and also showed strong fungicidal activity towards theexpression host.The genomic structure of the first invertebrate G-type lysozyme from Chlamysfarreri (designated CFGLys) was obtained by genome walking approach. TheCFGLys gene was 8131 bp in length, coded for 829 bp and 200 deduced amino acidresidues. By comparison to the cDNA sequence and its translation product, the codingregion was found separated in six exons of 55 bp,60 bp,90 bp,113 bp,145 bp and140 bp, respectively. The introns range in size from 592 to 2161 bp, and havetraditional spliceosomal intron 5′-GT donor and 3′-AG acceptor sites for splicing.Analysis of the 5′-flanking sequence of CFGLys gene by TRANSFAC softwarerevealed several putative binding sequences for transcriptional factor found in hostdefense genes of other animals, including sequences similar to the NF-κB, OCT-1,AP-1 and NF-IL6. The expression of CFLysG mRNA in various tissues was measuredusing Northern blot analysis. mRNA transcript of CFLysG was most abundantlyexpressed in the tissues of gills, hepatopancreas and gonad, to a lesser degree in thetissues of haemocytes and mantle, while undetectable in the adductor muscle. Theseresults suggested that CFLysG could possess combined features of both the immuneand digestive adaptive lysozymes. In order to determine the in vitro lytic activities ofCFLysG, the mature peptide coding region was cloned into Pichia pastoris forheterogeneous expression. Recombinant CFLysG showed inhibitive effect on thegrowth of both Gram-positive and Gram-negative bacteria with more potent activityagainst Gram-positive bacteria, which demonstrated the involvement of CFLysG in
    the innate immunity of C. farreri.Recombinant expression of AiBD and CFLysG made it possible to furthercharacterize their biological activities, three dimensional structures and immunefunctions, and also provided potential therapeutic agents for disease control inaquaculture.
引文
贺桂珍,李赟,王崇明,黄剑宇,王秀华,宋微波. 栉孔扇贝和海湾扇贝病原体感染与疾病发生关系探讨. 高技术通讯, 2002, 12: 75-81.
    金冬雁,黎孟枫等译.分子克隆实验指南.第二版,北京:科学出版社,1993.
    刘英杰,王崇明,朱明壮,王秀华,李赟,张宏义,任晴光,潘金培. 栉孔扇贝类立克次体自然感染调查及人工感染试验. 中国水产科学, 2002, 9: 59-65.
    李登峰,孙敬锋,吴信忠. 栉孔扇贝体内寄生的病毒的分离纯化及其形态学观察. 海洋学报(中文版), 2002, 23: 141-144.
    李太武,孙修勤,刘艳,张进兴. 栉孔扇贝种群的遗传变异分析. 高技术通讯, 2001, 11: 28-30.
    马洪明,麦康森.贝类血细胞的吞噬作用和非我识别.海洋科学,2003,27:16-18.
    宋微波,王崇明,王秀华等. 栉孔扇贝大规模死亡的病原研究新进展. 海洋科学, 2001, 25: 23-26.
    苏建国,宋林生,胥炜,李红蕾,吴龙涛,蔡中华. 栉孔扇贝脂多糖葡聚糖结合蛋白(LGBP) 基因的克隆及其特征分析. 高技术通讯, 2004, 14: 89-93.
    王金星,赵小凡. 无脊椎动物先天免疫模式识别受体研究进展. 生物化学与生物物理进展, 2004, 31: 112-117.
    吴龙涛,宋林生,胥炜,邱丽华,李红蕾,苏建国,相建海. 栉孔扇贝热休克蛋白70 基因 cDNA 的克隆与分析. 高技术通讯, 2003, 13: 78-82.
    胥炜,王昊,宋林生,吴龙涛,常亚青,夏长革. 栉孔扇贝 C 型凝集素基因的克隆与表达研究. 高技术通讯, 2005, 15: 85-90.
    薛清刚,张学雷,王雷,张志峰. 虾、贝类免疫反应基础及作用.相建海主编:海水养殖生物病害发生与控制.海洋出版社 2001,pp74-84.
    颜子颖等译, 精编分子生物学实验指导.北京:科学出版社,1998.
    张福绥. 中国海湾扇贝养殖业的发展. 海洋科学, 1992, 16: 1-4.
    张福绥,何义朝,亓玲欣,孙鲁宁. 海湾扇贝引种复状的研究. 海洋与湖沼, 1997, 28: 146-152.
    张福绥,杨红生. 栉孔扇贝大规模死亡问题的对策和应急措施. 海洋科学, 1999, 23: 38-42.
    张国范,李霞,薛真福. 我国养殖扇贝大规模死亡的原因分析及防治对策. 中国水产, 1999,9: 34-39.
    张维翥,吴信忠,李登峰,孙敬锋,张扬,杨霞. 海湾扇贝养殖过程中的流行病学调查研究. 海洋学报(中文版), 2005, 26: 139-146.
    朱玲,常亚青,倪多娇,宋林生. 栉孔扇贝(Chlamys farreri) 不同野生种群遗传多样性和遗传分化的研究. 海洋与湖沼. 2003, “973”专辑: 121-127.
    邹慧斌,宋林生,胥炜,杨官品. 海湾扇贝 g 型溶菌酶基因 cDNA 的克隆与分析. 高技术通讯, 2005, 15: 104-109.
    Al-Sharif, W.Z., Sunyer, J.O., 1998. Sea urchin coelomocytes specifically express a homologue of the complement component C3. J. Immunol, 160: 2983-2997.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local alignment search tool. J. Mol. Bio, 215: 403-410.
    Anderson, K.V., 2000. Toll signaling pathways in the innate immune response. Curr. Opin. Immunol, 12: 13-19.
    Araki,T., Yamamoto, T., Torikata, T.,1998. Reptile lysozyme: the complete amino acid sequence of soft shelled turtle lysozyme and its activity. Biosci. Biotechnol. Biochem, 62: 316-324.
    Bachali, S., Jager, M., Hassanin, A., Schoentgen, F., Jollès, P., Fiala-Medioni, A., Deutsch, J.S., 2002. Phylogenetic analysis of invertebrate lysozymes and the evolution of lysozyme function. J. Mol. Evol, 54: 652–664.
    Bachali, S., Bailly, X., Jollès, J., Jollès, P., Deutsch, J.S., 2004. The lysozyme of the starfish Asterias rubens. A paradygmatic type i lysozyme. Eur. J. Biochem, 271: 237–242.
    Bachere, E., Mialhe, E., Noel, D., 1995. Knowledge and research prospects in marine mollusk and crustacean immunology. Aquaculture, 132: 17-32.
    Bae, S., Kim, Y., 2003. Lysozyme of the beet armyworm, Spodoptera exigua: activity induction and cDNA structure. Comp. Biochem. Physiol, 135B: 511-519.
    Bayne, C.J., 1983. The mollusca. Academic Press, Volume 5, pp 407-500.
    Bayne, C.J., 1990. Phagocytosis and non-self recognition in invertebrates. BioScience, 40: 723-731.
    Beintema, J.J., Terwisscha van Scheltinga, A.C., 1996. Plant lysozymes. In: Jollès, P. (Ed.), Lysozymes: Model Enzymes in Biochemistry and Biology, Vol. 75. Birkh?user Verlag, Basel, Switzerland, pp. 75–86.
    Belvin, M., Anderson, K., 1996. A conserved signaling pathway: the Drosophila Toll-dorsal pathway. Ann. Rev. Cell. Dev. Biol, 12: 393-416.
    Bennetzen, J.L., Hall, B.D., 1982. Codon selection in yeast. J. Biol. Chem, 257: 3026-3031.
    Benson, G., 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research, 27: 573-580.
    Beutler, B., 2004. Innate immunity: an overview. Molecular Immunology, 40: 845-859
    Biggaar, W.D., Sturgess, J.M., 1977. Role of lyszoyme in the microbicidal activity of rat alveolar macrophages. Infect Inununol, 16: 974-982.
    Blake, C., Koening, D., 1965. Structure of hen egg white lysozyme. Nature, 206:757-758.
    Blandin, S., Levashina, E.A., 2004. Thioester-containing proteins and insect immunity. Molecular Immunology, 40: 903-908.
    Bradford, M.M., 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem, 72: 248–254.
    Brighthill, H.D., Libraty, D.H., Krutzik, S.R., Yang, R.B., Belisle, J.T., Bleharski, J.R., Maitland, M., Norgard, M.V., Plevy, S.E., Smale, S.T., Brennan, P.J., Bloom, B.R., Godowski, P.J., Modlin, R.L., 1999. Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science, 285: 732-736.
    Brown, P., 2001. Cinderella goes to the ball. Nature, 410: 1018-1020.
    Burnet, F. M., 1959. The clonal selection theory of acquired immunity. Cambridge University Press, Cambridge.
    Cajaraville, M.P., Pal, S.G., 1995. Morphofunctional study of the haemocytes of the Bivalve Mollusc Mytilus galloprovincialis with emphasis on the endolysosomal compartment. Cell Structure and function, 20: 355-367.
    Canfield, R.E., McMurry, S., 1967. Purification and characterization of a lysozyme from goose egg white. Biochem. Biophys. Res. Comm, 26: 38–42.
    Chalk, R., Townson, H., Natori, S., Desmond, H., Ham, P.J., 1994. Purification of an insect defensin from the mosquito, Aedes aegypti. Insect. Biochem. Mol. Biol, 24: 403–410.
    Charlet, M., Chernysh, S., Philippe, H., Hoffmann, J., 1996. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. J. Bio. Chem, 271: 21808-21813.
    Cheng, T.C., Rodrick, G.E., 1975. Lysosomal and other enzymes in the hemolympb of Crassosrrea uirginica and Mercenaria mercenaria. Comp. Biochem. Physiol, 52: 443-447.
    Cheng, T.C., 1976. Aspects of substrate utilization and energy requirement during molluscan phagocytosis. J. Invert. Pathol, 27: 263-268.
    Chong, S., Riggs, A.D., Bonifer, C., 2002. The chicken lysozyme chromatin domain contains a second, widely expressed gene. Nucleic Acids Res, 15: 463–467.
    Christophides, G.K., Zdobnov, E., Barillas-Mury, C., Birnay, E., Blandin S., Blass, C., Brey, P.T., Collins, F.H., Danielli, A., Dimopoulos, G., Hetru, C., Hoa, N.T., Hoffmann, J.A., Kanzok, S.M., Letunic, I., Levashina, E.A., Loukeris T.G., Lycett, G., Meister, S., Michel, K., Moita, L.F., Muller, H.M., Osta, M.A., Paskewitz, S.M., Reichhart, J., Rzhetsky, A., Troxler, L., Vernick, K.D., Vlachou, D., Volz, J., Mering, C., Xu, J., Zheng, L., Bork, P., Katatos, F.C., 2002. Immunity-related genes and gene families in Anopheles gambiae. Science, 298:159-165.
    Cross, M., Mangelsdorf, L., Wedel, A., Renkawita, R., 1988. Mouse lysozyme M gene: isolation, characterization and expression studies. Proc. Natl. Acad. Sci. USA, 85: 6232-6236.
    Cross, M., Renkawitz, R., 1990. Repetitive sequence involvement in the duplication and divergence of mouse lysozyme genes. EMBO J, 9: 1283-1288.
    Cushing, J.E., Evans, E.E., Evans, M.L., 1971. Induced bactericidal responses of abalones. J. Invert. Pathol, 17: 446-449.
    Daffre, S., Kylsten, P., Samakovlis, C., Hultmark, D., 1994. The lysozyme locus in Drosophila melanogaster: an expanded gene family adapted for expression in the digestive tract. Mol. Gen. Genet, 242: 152-162.
    Dautigny, A., Prager, E.M., Pham-Dinh, D., Jolles, J., Pakdel, F., Grinde, B., Jolles, P.,1991. cDNA and amino acid sequences of rainbow trout (Oncorhynchus mykiss)lysozymes and their implications for the evolution of lysozyme and lactalbumin. J.Mol. Evol, 32: 187-198.
    Day, A.J., 1994. The C-type carbohydrate recognition domain (CRD) superfamily.Biochem. Soc. Trans, 22: 83-88.
    Destoumieux-Garzón, D., Saulnier, D., Garnier, J., Jouffrey, C., Bulet, P., Bachère, E.,2001. Crustacean Immunity: antifungal peptides are generated from the C terminus ofshrimp hemocyanin in response to microbial challenge. J. Biol. Chem. 276:47070-47077.
    Destoumieux, D., Bulet, P., Strub, J., Dorsselaer, A., Bachère, E., 1999. Recombinantexpression and range of activity of penaeidins, antimicrobial peptides from penaeidshrimp. Eur. J. Biochem, 266: 335-346.
    Dimarcq, J., Bulet, P., Hetru, C., Hoffmann, J., 1998. Cysteine-rich antimicrobial peptidesin invertebrates. Biopolymers, 47: 465-477.
    Dimopoulos, G., Casavant, T.L., Chang, S., Scheetz, T., Roberts, C., Donohue, M.,Schultz, J., Benes, V., Bork, P., Ansorge, W., Bento Soares, M., Kafatos, F.C., 2000.Anopheles gambiae pilot gene discovery project: identification of mosquito innateimmunity genes from expressed sequence tags generated from immune-competentcell lines. Proc. Natl. Acad. Sci. USA, 97: 6619-6624.
    Dimopoulos, G., Christophides, G.K., Meister, S., Schultz, J., White, K.P., Barillas-Mury,C., Kafatos, F.C., 2002. Genome expression analysis of Anopheles gambiae:Responses to injury, bacterial challenge and malaria infection. Proc. Natl. Acad. Sci.USA, 99: 8814-8819.
    Dizarski, R., 2004. Peptidoglycan recognition proteinins (PGRPs). MolecularImmunology, 40: 877-886.
    Düring, K., Porsch, P., Mahn, A., Brinkmann, O., Gieffers, W., 1999. The non-enzymaticmicrobicidal activity of lysozymes. FEBS Lett, 449: 93–100.
    Dupuy, J., Bonami, J., Roch, P., 2004. A synthetic antibacterial peptide from Mytilusgalloprovincialis reduces mortality due to white spot syndrome virus in palaemonidshrimp. J. Fish. Disease, 27: 57-64.
    Engstrom, Y., 1999. Induction and regulation of antimicrobial peptides in Drosophila.Dev. Comp. Immunol, 23: 345-358.
    Ezekowitz, R.A., Hoffmann, J.A., 1998. The blossoming of innate immunity. Curr. Opin.Immunol, 10: 9-11.
    FAO. 1997. Review of the state of world aquaculture. FAO Fisheries Circular No. 886,Rev. 1, Rome.
    Fastrez, J., 1996. Phage lysozymes. In: Jollès, P. (Ed.), Lysozymes: Model Enzymes inBiochemistry and Biology, Vol. 75. Birkh?user Verlag, Basel, Switzerland, pp. 35–64.Fearon, D.T., Locksley, R.M., 1996. The instructive role of innate immunity in theacquired immune response. Science, 272: 50-53.
    Fernandes, J.M., Saint, N., Kemp, G.D., Smith, V.J., 2003. Oncorhyncin III: a potentantimicrobial peptide derived from the non-histone chromosomal protein H6 ofrainbow trout, Oncorhynchus mykiss. Biochemical. Journal, 373: 621-628.
    Foley, D.A., Cheng, T.C., 1975. A quantitative study of phagocytosis by hemolymph cellsof the pelecypods Crassostrea virginica and Mercenaria mercenaria. Journal ofInvertebrate Pathology, 25: 189-197.
    Fraser, I.P., Koziel, H., Ezekowitz, R.A., 1998. The serum mannose-binding protein andthe macrophage mannose receptor are pattern recognition molecules that link innateand adaptive immunity. Seminars in Immunology, 10: 363-372.
    Fujitani, N., Kawabata, S., Ozaki, T., Nitta, K., Kawano, K., 2000. Solution structure ofantimicrobial protein, big defensin isolated from horseshoe crab hemolymph. XIXInternational Conference on Magnetic Resonance in Biological Systems. Florence,Italy.
    Fujita, Y., Kurata, S., Homma, K., Natori, S., 1998. A novel lectin from Sarcophaga.Itspurification, characterization, and cDNA cloning. J. Bio. Chem, 273: 9667-9672.
    Gay, N.J., 1991. A leucine-rich repeat peptide derived from the Drosophila Toll receptorforms extended filaments with a beta-sheet structure. FEBS Lett, 291: 87-91.
    Georgel, P., Kappler, C., Langley, E., Gross, I., Nicolas, E., Reichhart, J.M., Hoffmann,J.A., 1995. Drosophila immunity. A sequence homologous to mammalian interferonconsensus response element enhances the activity of the diptericin promoter. NucleicAcids Research, 23:1140-1145.
    Giga, Y., Ikai, A., and Takahashi, K., 1987. The complete amino acid sequence ofechinoidin, a lectin from the coelomic fluid of the sea urchin Anthocidariscrassispina: homologies with mammalian and insect lectins. J. Bio. Chem, 262:6197–6203.
    Giiardin, S.E., Sansonetti, P.J., Philpot, D.J., 2002. Intracelular vs extracelularrecognition of pathogens-common concepts in mammals and flies. J. Trends.Microbiol, 10: 193-199.
    Girardin, S.E., Philpott, D.J., 2004. The role of peptidoglycan recognition in innateimmunity. Eur. J. Imnumol, 34: 1777-1782.
    Greenberg, J.W., Ffischer, W., Joiner, K.A., 1996. Influence of lipoteichoic acid structureon recognition by the macrophage scavenger receptor. Infect Immun, 64: 3318-3325.Gobert, V., Gottar, M., Matskevich, A.A., Rutschmann, S., Royet, J., Belyin, M.,Hoffmann, J.A., Ferrandon, D., 2003. Dual activation of the Drosophila TollPathway by two pattern recognition Receptors. Science, 302: 2126-2130.
    Goodson, M.S., Kojadinovic, M., Troll, J.V., Scheetz, T.E., Casavant, T.L., Soares, M.B.,McFall-Ngai, M.J., 2005. Identifying components of the NF-kappaB pathway in thebeneficial Euprymna scolopes-Vibrio fischeri light organ symbiosis. Appl. Environ.Microbiol, 71: 6934-6946.
    Gorman, M.J., Andreeva, O.V., Paskewitz, S.M., 2000. Molecular characterization of fiveserine protease genes cloned from Anopheles gambiae hemolymph. Insect. Biochem.Mol. Biol, 30: 35-46.
    Gottar, M., Gobert, V., Michel, T., Belvin, M., Duyk, G., Hoffmann, J.A., 2002. TheDrosophila immune response against Gram-negative bacteria is mediated by apeptidoglycan recognition protein. Nature, 416: 640-644.
    Grutter, M.G., Weaver, L.H., Matthews, B.W., 1983. Goose lysozyme structure: anevolutionary link between hen and bacteriophage lysozyme? Nature, 303:828-830.Gueguen, Y., Cadoret, J.P., Flament, D., 2003. Immune gene discovery by expressedsequence tags generated from hemocytes of the bacteria-challenged oyster,Crassostrea gigas. Gene, 303: 139-145.
    Guo, X.M., Ford, S.E., Zhang, G.F., 1999. Molluscan aquaculture in China. J. Shellfish.Res, 18: 19-31.
    Hacker, H., Mischak, H., Miethke, T., Liptay, S., Schmid, R., Sparwasser, T., Heeg,K.,Lipford, G.B., Wagner, H., 1998. CpG-DNA-specific activation of
    antigen-presenting cells requires stress kinase activity and is preceded by non-specificendocytosis and endosomal maturation. The EMBO Journal, 17: 6230-6240.
    Hall, M.R., Van-Ham, E.H., 1999. The effects of different types of stress on bloodglucose in the giant black tiger prawn Penaeus monodon. Journal of the WorldAquaculture Society, 29: 290-299.
    Hallock, K.J., Lee, D. K., Omnaas, J., 2002. Membrane composition determinespardaxin's mechanism of bilayer disruption. Biophysical Journal, 83: 1004-1013.
    Hancock, R.E., Diamond. G., 2000. The role of cationic antimicrobial peptides in innatehost defences. Trends. Microbiol, 8: 402-410.
    Hatakeyama, T., Ohuchi, K., Kuroki, M., Yamasaki, N., 1995. Amino acid sequence of aC-type lectin CEL-IV from the marine invertebrate Cucumaria echinata. Biosci.Biotechnol. Biochem, 59: 1314-1317.
    Haug, T., Stensv?g, K., Olsen, ?.M., Sandsdalen, E., Styrvold, O.B., 2004. Antibacterialactivities in various tissues of the horse mussel, Modiolus modiolus. J. Invertebr.Pathol, 85: 112–119.
    Henrik, N., Jacob, E., S?ren, B., Gunnar, V.H., 1997. Identification of prokaryotic andeukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering,10: 1-6.
    Heukeshoven, J., Dernick, R., 1985. Simplified method for silver staining of proteins inpolyacrylamide gels and the mechanism of silver staining. Electrophoresis, 6:103-112.
    Hikima, J., Hirono, L., Aoki, T., 2000. Molecular cloning and novel repeated sequencesof a c-type lysozyme gene in Japanese flounder (Paralichthys olivaceus). Mar.Biotechnol, 2: 241-247.
    Hikima, J., Minagawa, S., Hirono, I., Aoki, T., 2001. Molecular cloning,expression andevolution of the Japanese flounder goose-type lysozyme gene,and the lytic activity ofits recombinant protein. Biochim. Biophys. Acta, 1520: 35–44.
    Hikima, S., Hikima, J., Rojtinnakorn, J., Hirono, I., Aoki, T., 2003. Characterization and function of kuruma shrimp lysozyme possessing lytic activity against Vibrio species.
    Gene, 316: 187–195.
    Himeshima, T., Hatakeyama, T., Yamasaki, N., 1994. Amino acid sequence of a lectin from the sea cucumber, Stichopus japonicus, and its structural relationship to the C-type animal lectin family. J. Biochem, 115: 689–692.
    Hoffmann, J.A., Kafates, F.C., Janeway, C.A., Ezekowitz, R.A.B., 1999. Phylogenetic perspectives in innate immunity.Science, 284: l3l3-l3l8.
    Hoffmann, J.A., 2003. The immune response of Drosophila. Nature, 426: 33-39.
    Hubert, F., Noel, T., Roch, P., 1996. A member of the arthropod defensin family from edible Mediterranean mussels (Mytilus galloprovincialis). Eur. J. Biochem, 240: 302-306.
    Hultmark, D., 1996. Insect lysozymes. In: Jollès, P. (Ed.), Lysozymes: Model enzyme in biochemistry and biology. Vol. 75. Birkh?user Verlag, Basel, Switzerland, pp. 87–102.
    Hultmark, D., 2003. Drosophila immunity: paths and patterns. Curr. Opin. Immunol, l5: 12-l9.
    Hunter, H.N., Jing, W., Schibli, D.J., Trinh, T., Park, I.Y., Kim, S.C., Vogel, H.J., 2005. The interactions of antimicrobial peptides derived form lysozyme with model membrane systems. Biochim. Biophys. Acta. 1668: 175–189.
    Ibrahim, H.R., Matsuzaki, T., Aoki, T., 2001. Genetic evidence that antimicrobial activity of lysozyme is independent of its catalytic function. FEBS Lett, 506: 27–32.
    Inamori, K., Ariki, S, Kawabata, S., 2004. A Toll-like receptor in horseshoe crabs. Immunol Rev, 198:106-115.
    Inouye, M., Tsugita, A., 1970. The amino acid sequence of T4 phage lysozyme. J. Biol. Chem, 245: 3479-3482.
    Ito, Y., Yoshikawa, A., Hotani, T., Fukuda, S., Sugimura, K., Imoto, T., 1999. Amino acid sequences of lysozymes newly purified from invertebrates imply wide distribution of a novel class in the lysozyme family. Eur. J. Biochem, 259: 456–461.
    Iwanaga, S., Kawabata, S., Muta, T., 1998. New types of clotting factors and defense molecules in horseshoe crab hemolymph: their structures and functions. J. Biochem, 123: 1-15.
    Janeway, C.A.J., 1992. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunology Today, 13: 11-16.
    Jeffrey, S.W., John, J.R., Bruce, S.Z., 1981. Lysozyme enhancement of tumor cell immune protection in a murine fibrosarcoma. Cancer Reseach, 41:1642-1652.
    Jiang, H., Kanost, M.R., 1997. Characterization and functional analysis of 12 naturally occurring reactive site variants of serpin-1 from Manduca sexta. J. Biol. Chem, 272: 1082-1087.
    Jiang, H., Wang, Y., Kanost, M.R., 1998. Prophenol oxidase activating proteinase from an insect, Manduca sexta: a bacteria-inducible protein similar to Drosophila easter. Proc. Natl. Acad. Sci. USA, 95: 12220–12225.
    Jiang, H., Wang, Y., Kanost, M.R., 1999. Four serine proteinases expressed in Manduca sexta haemocytes. Insect Mol. Biol, 8: 39-53.
    Jiang, H., Kanost, M.R., 2000. The clip-domain family of serine proteinases in arthropods. Insect Biochem. Mol. Biol, 30: 95-105.
    Johansson, M., 1999. Cell adhesion molecules in invertebrate immunity. Dev. Com. Immunol, 23: 303-315.
    Jollès, J., Jollès, P., 1975. The lysozyme from Asterias rubens. Eur. J. Biochem, 54: 19–23.
    Jollès, P., Jollès, J., 1984. What's new in lysozyme research? Mol. Cell. Biochem, 63: 165–189.
    Jollès, P., 1996. From the discovery of lysozyme to the characterization of several lysozyme families. Experiential. Suppl. 75: 3–5.
    Jollès, J., Fiala-Medioni, A., Jollès, P., 1996b. The ruminant digestion model using bacteria already employed early in evolution by symbiotic molluscs. J. Mol. Evol, 43: 523–527.
    Jomori, T., Natori, S., 1991. Molecular cloning of cDNA for lipopolysaccharide-binding protein from the hemolymph of the American cockroach Periplaneta americana. J. . Bio. Chem, 266: 13318-13323.
    Jung, A., Seppel, A.E., Grez, M., Schutz, G., 1980. Exons encode functional and structural units of chicken lysozyme. Proc. Natl. Acad. Sci. USA, 77: 5759-5763.
    Kakinuma, Y., Endo, Y., Takahashi, M., Nakata, M., Matsushita, M., Takenoshita, S., Fujita, T., 2003. Molecular cloning and characterization of novel ficolins from Xenopus laevis. Immunogenetics, 55: 29-37.
    Kang, D.,Romans, P., Lee, J. Y, 1996. Analysis of a lyszoyme gene from the malaria vector mosquito Anopheles gambiae. Gene, 174: 239-244.
    Kanost, M.R., 1999. Serine proteinase inhibitors in arthropod immunity. Dev. Com. Immunol, 23: 291-301.
    Kawabata, S., Tokunaga, F., Kugi, Y., Motoyama, S., Miura, Y., Hirata, M., Iwanaga, S., 1996. Limulus factor D, a 43-kDa protein isolated from horseshoe crab hemocytes, is a serine proteinase homologue with antimicrobial activity. FEBS Lett, 398: 146-150.
    Kawabata, S., Saito, T., Saeki, K., Okino, N., Mizutani, A., Toh, Y., Iwanaga, S., 1997. cDNA cloning, tissue distribution, and subcellular localization of horseshoe crab big defensin. Biol. Chem. 378: 289-292.
    Kim, Y.S., Ryu, J.H., Han, S.J., Choi, K.H., Nam, K.B., Jang, I.H., Lemaitre, B., Lee, W.J., 2000. Gram-negative bacteria-binding protein, a pattern recognition receptor for lipopolysaccharide and β-1,3-Glucan that mediates the signaling for the induction of innate immune genes in Drosophila melanogaster cells. J. Biol. Chem, 275: 32721-32727.
    Kimbrell, D.A., Beutler, B., 2001. The evolution and genetics of innate immunity. Nat. Rev. Genet, 2: 256-267. Kolatkar, A., Weis, W.I., 1996. Structural basis of galactose recognition by C-type animal lectins. J. Bio.l Chem, 271: 6679-6685.
    Kopácek, P., Grubhoffer, L., S?derh?ll, K., 1993. Isolation and characterization of a hemagglutinin with affinity for lipopolysaccharides from plasma of the crayfish Pacifastacus leniusculus. Dev. Com. Immunol, 17: 407-418.
    Krutzik, S.R, Sieling, P.A., Modlin, R.L., 2001, The role of Toll-like receptors in host defense against microbial infection. Current Opinion in Immunology, 13: 104-108.
    Kumar, S., Tamura, K., Jakobsen, I.B., Nei, M., 2001. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics, 17, 1244–1245.
    Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of bacteriophage T4. Nature, 227: 680-685.
    Lanz-Mendoza, H., Bettencourt, R., Fabbri, M., Faye, I., 1996. Regulation of the insect immune response: the effect of hemolin on cellular immune mechanisms.Cellular Immunology, 169: 47-54.
    Lagueux, M., Perrodou, E., Levashina, E.A., Capovilla, M., Hoffmann, J.A., 2000. Constitutive expression of a complement-like protein in Toll and JAK gain-of-function mutants of Drosophila. Proc. Natl. Acad. Sci. USA, 97: 11427-11432.
    Lavine, M.D., Strand, M.R., 2002. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol, 32: 1295-1309.
    Lee, S.Y., Cho, M.Y., Hyun, H.H., Lee, K.M., Homma, K., Natori, S., Kawabata, S., Iwanaga, S., Lee, B.L., 1998. Molecular cloning of cDNA for pro-phenoloxidase activating factor I, a serine proteinase is induced by lipopolysaccharide or 1, 3-b-glucan in a coleopteran insect Holotrichia diomphalia larvae. Eur. J. Biochem, 257: 615–621.
    Lee, W.J., Brey, P.T., 1995. Isolation and characterization of the lysozyme-encoding gene from the silkworm Bombyx mori. Gene, 161: 199-203.
    Lehrer, R.I., Ganz, T., Selsted, M.E., 1991. Defensins: Endogenous antibiotic peptides of animal cells. Cell, 64: 229-230.
    Lemaitre, B., Reichhart, J.M., Hoffmann, J.A., 1997. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl. Acad. Sci. USA, 94: 14614-14619.
    LeMosy, E.K., Hong, C.C., Hashimoto, C., 1999. Signal transduction by a protease cascade. Trends in Cell Biol, 9: 102-107.
    Levashina, E.A., Moita, L.F., Blandin, S., Vriend, G., Lagueux, M., Kafatos, F.C., 2001. Conserved rile of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell, 104: 709-718.
    Liu, F.T., Patterson, R.J., Wang, J.L., 2002. Intracellular functions of galectins. Biochimica. Biophysica. Acta, 1572: 263-273.
    Liu, M., Zhang, S., Liu, Z., Li, H., Xu, A., 2006. Characterization, organization and expression of AmphiLysC, an acidic c-type lysozyme gene in amphioxus Branchiostoma belcheri tsingtauense. Gene, 367: 110–117.
    Lopez, C., 1997. Enzyme characterisation of the circulating haemocytes of the carpet shell clam Ruditapes decussates (Mollusca: bivalvia). Fish Shellfish Immunology, 7: 595-608.
    Martin, G.G, Kay, J., Poole, C., 1998. In vitro nodule formation in the ridgeback, Sicyonia ingentis, and the American lobster, Homarus amerianus. Invertebr. Biol, 117: 155-156.
    Martin, G.G., Hose, J.E., Choi, M., Provost, R., Omori, G., McKrell, N., Lam, G., 1993. Organization of hematopoietic tissue in the intermoult lobster Homarus americanus. J. Morphol, 261: 65-78.
    Martin, M.U., Wesche, H., 2002. Summary and comparison of the signaling mechanisms of the Toll/interlenkin-1 receptor family. Biochim. Biophys. Acta, 1592: 265-280.
    Masschalck, B., Michiels, C.W., 2003. Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Critical. Rev. Microbiol, 29: 191–214.
    Matthews, B.W., Gruter, M.G., Anderson, W.E., 1981. Common precursor of lysozyme of hen egg white and bacteriophage T4. Nature, 290: 334-335.
    McDade, J.E., Tripp, M.R., 1967. Lysozyme in the hemolymph of the oyster, Crassostrea virginica. J. Invertebr. Pathol, 9: 531–535.
    Medzhitov, R., Janeway, C.A., 1997a. Innate immunity: impact on the adaptive immune response. Curr. Opin. Immunol, 9: 4-9. Medzhitov, R., Janeway, C.A., 1997b. Innate immunity: the virtues of a nonclonal system of recognition. Cell, 91: 295-298.
    Medzhitov. R., 2001. Toll-like receptors and innate immunity. Nat. Rev. Immunol, 1: 135-145.
    Michel, T., Reichhart, J.M., Hoffmann, J.A., Royet, J., 2001. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature, 414: 756-759.
    Millar, D.A., Ratcliffe, N.A., 1994. Invertebrates. In: Turner, R.J. ( editor). Immunology, a comparative approach. John Wiley & Sons Ltd, England, pp. 29-68.
    Mine, Y., Ma, F., Lauriau, S., 2004. Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme. J. Agric. Food Chem, 52: 1088–1094.
    Minagawa, S., Hikima, J., Hirono, I., Aoki, T., Mori, H., 2001. Expression of Japanese flounder C-type lysozyme cDNA in insect cells. Dev. Comp. Immunol. 25: 439–445.
    Mitta, G., Vandenbulcke, F., Hubert, F., Roch, P., 1999a. Mussel defensins are synthesizedand processed in granulocytes then released into the plasma after bacterial challenge.J. Cell. Sci, 112: 4233-4242.
    Mitta, G., Hubert, F., Noel, T., Roch, P., 1999b. Myticin, a novel cysteine-richantimicrobial peptide isolated from haemocytes and plasma of the mussel Mytilusgalloprovincialis. Eur. J. Biochem, 265: 71-78.
    Mitta, G., Vandenbulcke, F., Hubert, F., Roch, P., 2000a. Involvement of mytilins inmussel antimicrobial defense. J. Bio. Chem, 275: 12954-12962.
    Mitta, G., Vandenbulcke, F., Noel, T., Roch, P., 2000b. Differential distribution anddefense involvement of antimicrobial peptides in mussel. J. Cell. Sci, 113: 2759-2769.
    Mitta, G., Hubert, F., Roch, P., 2000c. Mytilin B and MGD2, two antimicrobial peptidesof marine mussels: gene structure and expression analysis. Dev. Com. Immunol, 24:381-393.
    Montagnani, C., Kappler, C., Reichhart, J.M., Escoubas, J.M., 2004. Cg-Rel, the firstRel/NF-κB homolog characterized in a mollusk, the Pacific oyster Crassostrea gigas.FEBS Lett, 561: 75-82.
    Moore, M.N., Lowe, D.M., 1977. The cytology and cytochemistry of the hemocytes ofMytilus edulis and their responses to experimentally injected carbon particles. Journalof Invertebrate pathology, 29: 18-30.
    Mori, K., Murayama, K., Kanno, N., Nakamura, M., Ohira, E., Kato, Y., Nomura, T.,1984. Occurrence and characterization of the defence factors in the Japanese oysterCrassostrea gigas. J. Agric. Res, 35: 5548-5560.
    Mulnix, A.B., Dunn, P.E., 1994. Structure and induction of a lysozyme gene from thetobacco hornworm Manduca Sexta. Insect Biochem. Molec. Biol, 24: 271-281.
    Munoz, M., Cedeno, R., Rodriguez, J., Van der Knaap, W.P.W., Mialhe, E., Bachère, E.,2000. Measurement of reactive oxygen intermediate production in haemocytes of thepenaeid shrimp, Penaeus vannamei. Aquaculture, 191: 89-107.
    Munoz, M., Vandenbulcke, F., Saulnier, D., Bachère, E., 2002. Expression anddistribution of penaeidin antimicrobial peptides are regulated by haemocyte reactionsin microbial challenged shrimp. Eur. J. Biochem, 269: 2678-2689.
    Muramoto, K., Kamiya, H., 1990. The amino-acid sequence of multiple lectins of the acorn barnacle Megabalanus rosa and its homology with animal lectins. Biochimica.
    Biophysica. Acta, 1039: 42-51.
    Muta, T., Hashimoto, R., Miyata, T., Nishimura, H., Toh, Y., Iwanaga, S.,1990. Proclotting enzyme from horseshoe crab hemocytes: cDNA cloning, disulfide locations, and subcellular localization. J.Biol. Chem, 265: 22426-22433.
    Muta, T., Iwanaga, S., 1996. The role of hemolymph coagulation in innate immunity. Curr. Opin. Immunol, 8: 41-47.
    Muta, T., Oda, T., Iwanaga, S., 1993. Horseshoe crab coagulation factor B: a unique serine proteinase zymogen activated by cleavage of an Ile–Ile bond. J. Biol. Chem, 268: 21384-21388.
    Myrnes, B., Johansen, A., 1994. Recovery of lysozyme from scallop waste. Prep. Biochem, 24: 69–80.
    Nakai, S., Li-Chan, E., Dou, J., 2005. Pattern similarity study of functional sites in protein sequences: lysozymes and cystatins. BMC Biochem, 6: 1–17.
    Nakano, T., Graf, T., 1991. Goose-type lysozyme gene of the chicken: sequence, genomic organization and expression reveals major differences to chicken-type lysozyme gene. Biochim. Biophys. Acta, 1991: 273–276.
    Nakayama, K., Miyuki, N., 1997. Morphological and functional charicterizition of hemocytes in the giant clam Tridacna crocea. J. invert. pathol, 69: 105-111.
    Nilsen, I.W., ?verb?, K., Sandsdalen, E., Sandaker, E., Sletten, K., Myrnes, B., 1999. Protein purification and gene isolation of chlamysin, a cold-active lysozyme-like enzyme with antimicrobial activity. FEBS Lett, 464: 153–158.
    Nilsen, I.W., Myrnes, B., 2001. The gene of chlamysin, a marine invertebrate type lysozyme, is organized similar to vertebrate but different from invertebrate chicken-type lysozyme genes. Gene, 269: 27–32.
    Nilsen, I.W., Myrnes, B., Edvardsen, R.B., Chourrout, D., 2003. Urochordates carry multiple genes for goose-type lysozyme and no genes for chicken-or invertebrate-type lysozymes. Cell. Mol. Life Sci, 60: 2210–2218.
    O'Brien, D., McVey, J., 1993. Blood coagulation, inflammation, and defense. In: Sim, E. ( Ed.) The Natural Immune System, Humoral Factors. IRL Press, New York, pp: 257-280.
    Olsen, ?.M., Nilsen, I.W., Sletten, K., Myrnes, B., 2003. Multiple invertebrate lysozymesin blue mussel (Mytilus edulis). Comp. Biochem. Physiol, 136B: 107–115.
    Pace, K.E., Lebestky, T., Hummel, T., Armoux, P., Kwan, K., Baum, L.G., 2002.Characterization of a novel Drosophila melanogaster galectin: expression indeveloping immune, neural, and muscle tissues. J. Biol. Chem, 277: 13091-13098.
    Paskewitz, S.M., Reese-Stardy, S., Gorman, M.J. 1999. An easter-like serine proteasefrom Anopheles gambiae exhibits changes in transcript levels following immunechallenge. Insect Molecular Biology, 8: 329-338.
    Patrzykat, A., Zhang, L., Mendoza, V., Iwama, G.K., Hancock, R.E., 2001. Synergy ofhistone-derived peptides of coho salmon with lysozyme and flounder pleurocidin.Antimicrob. Agents Chemother, 45: 1337–1342.
    Patrzykat, A., Douglas, S.E., 2003. Gone gene fishing: how to catch novel marineantimicrobials. Trends. Biotechnol, 121: 362-369.
    Peiser, L., Mukhopadhyay, S., Gordon, S., 2002. Scavenger receptors in innate immunity.Current Opinion in Immunology, 14: 123-128.
    Peters, C.W., Kruse, U., Pollwein, R., Grzeschik, K.H., Sippel, A.E., 1989. The humanlysozyme gene: sequence organization and chromosomal localization. Eur. J.Biochem, 182: 507-516.
    Pipe, R.K., 1990. Hydrolytic enzymes associated with the granular haemocytes of themarine mussel Mytilus edulis. Histochemical Journal, 22: 595-603.
    Prager, E.M., 1996. Adaptive evolution of lysozyme: changes in amino acid sequence,regulation of expression and gene number. In: Jollès, P. (Ed.), Lysozymes: Modelenzyme in biochemistry and biology. Vol. 75. Birkh?user Verlag, Basel, Switzerland,pp. 323–345.
    Qasba, P.K., Kumar, S., 1997. Molecular divergence of lysozymes and α-lactalbumin.Crit. Rev. Biochem. Mol. Biol, 32: 255–306.
    Ramet, M., Pearson, A., Manfruelli, P., Li, X., Koziel, H., Gebel, V., Chung, M., Krieger,M., Ezekowitz, R.A., 2001. Drosophila scavenger receptor CI is a pattern recognitionreceptor for bacteria. Immunity, 15: 1027-1038.
    Richman, A.M., Bulet, P., Hetru, C., Barillas-Mury, C., Hoffmann, J.A., Kafatos, F.C.,1996. Inducible immune factors of the vector mosquito Anopheles gambiae: biochemical purification of a defensin antibacterial peptide and molecular cloning of
    preprodefensin cDNA. Insect Mol Biol, 5: 203-210.
    Roch, P., 1999. Defense mechanisms and disease prevention in farmed marine invertebrates. Aquaculture, 172: 125–145.
    Romestand, B., Molina, F., Richard, V., Roch, P., Granier, C., 2003. Key role of the loop connecting the two beta strands of mussel defensin in its antimicrobial activity. Eur. J. Biochem, 270: 2805–2813.
    Russell-Pinto, F., Raquel, R., 1994. Haemocytes in Cerastoderma edule (Mollusca, Bivalvia): distinct cell types engage in different responses to sheep erythrocytes, Fish Shellfish Immunology, 4: 383-397.
    Saito, T., Kawabata, S., Shigenaga, T., Takayenoki, Y., Cho, J., Nakajima, H., Hirata, M., Iwanaga, S., 1995. A novel big defensin identified in horseshoe crab hemocytes: isolation, amino acid sequence and antibacterial activity. J. Biochem, 117:1131-1137.
    Saitou, N., Nei, M., 1987. The neighbor-joining method: a new method fro reconstructing phylogenetic trees. Mol. Bio. Evol, 4: 406–425.
    Satoh, D., Horii, A., Ochiai, M., Ashida, M., 1999. Prophenoloxidase activating enzyme of the silkworm, Bombyx mori: purification, characterization and cDNA cloning. J. Biol. Chem, 274: 7441-7453.
    Savan, R., Aman, A., Sakai, M., 2003. Molecular cloning of G type lysoyzme cDNA in common carp (Cyprinus carpio L.). Fish Shellfish Immunol, 15: 263–268.
    Schmid, L.S., 1975. Chemotaxis of hemocytes from the Snail Viviparus malleatus. J. Inverte. Pathol, 25: 125-131.
    Schultz, J., Milpetz, F., Bork, P., Ponting, C.P., 1998. SMART, a simple modular architecture research tool: identification of signalling domains. Proc. Natl. Acad. Sci. USA, 95: 5857–5864.
    Selsted, M.E., Tang, Y.Q., Morris, W.L., McGuire, P.A., Novotny, M.J., Smith, W., Henschen, A.H., Cullor, J.S., 1993. Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils. J. Biol. Chem, 268: 6641-6648.
    Seo, J., Crawford, J.M., Stone, K.L., Noga, E.J., 2005. Purification of a novel arthropod defensin from the American oyster, Crassostrea virginica. Biochem. Biophys. Res. Commun, 338: 1998–2004.
    Shai, Y., 1999. Mechanisms of the binding, insertion and destabilization of phospholipids bilayer membranes by K-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochimica Biophysica Acta, 1462: 55-70.
    Shigenaga, T., Muta, T., Toh, Y., Tokunaga, F., Iwanaga, S., 1990. Antimicrobial tachyplesin peptide precursor: cDNA cloning and cellular localization in the horseshoe crab (Tachypleus tridentatus). J. Biol. Chem, 265: 21350-21354.
    Shoichiro, K., 2004. Recognition of infectious non-self and activation of immune responses by peptidoglycan recognition protein (PGRP)-family members in Drosophila. Dev. Comp. Immunol, 28: 89-95.
    Simpson, R.J., Begg, G.S., Dorow, D.S., Morgan, F.J., 1980. Complete amino acid sequence of the goose-type lysozyme from the egg white of the black swan. Biochemistry, 19: 1814–1819.
    Simpson, R.J., Morgan, F.L., 1983. Complete amino acid sequence of Embden goose (Anser anser) egg-white lysozyme. Biochem. Biophys. Acta, 744: 349–351.
    Smith, E.L., 1955. Isolation and properties of a crystalline mercury derivative of a lysozyme from papaya latex. J. Biol. Chem, 215: 67-72.
    S?derh?ll, K., Cerenius, L., Johansson, M.W., 1996. The prophenoloxidase activating system in invertebrates. In: S?derh?ll K, Iwanaga S and Vasta GR ( editors) . New Directions in Invertebrate Immunology, SOS Publications, Fair Haven, pp. 229-253.
    Song, L., Xu, W., Li, C., Li, H., Wu, L., Xiang, J., Guo, X., 2006. Development of expressed sequence tags from the bay scallop, Argopecten irradians irradians. Mar. Biotechnol. (In press)
    Song, Y.L., Hsieh, Y.T., 1994. Immunostimulation of tiger shrimp (Penaeus monodon) hemocytes for generation of microbicidal substances: analysis of reactive oxygen species. Dev. Comp. Immunol, 18: 201-209.
    Sotelo-Mundo, R., 2003. cDNA cloning of the lysozyme of the white shrimp Penaeus vannamei. Fish Selfish Immunology, 15: 325-330.
    Stahl, P.D., Ezekowitz, R.A., 1998. The mannose receptor is a pattern recognition receptor involved in host defense. Current Opinion in Immunology, 10: 50-55.
    Steiner, H., Hultmark, D., Engstrom, A., Bennich, H., Boman, H.G., 1981. Sequence and specificity of two antimicrobial proteins involved in insect immunity. Nature, 292:
    246–248.
    Su, J., Song, L., Xu, W., Wu, L., Li H., Xiang, J., 2004. cDNA cloning and mRNA expression of the lipopolysaccharide-and beta-1,3-glucan-binding protein gene from scallop Chlamys farreri. Aquaculture, 239: 69-80.
    Sun, S.C, Asling, B., Faye, I., 1991. Organization and expression of the immunoresponsive lysozyme gene in the giant silk moth Hyalophora cecropia. J.Biol.Chem, 266: 6644-6649.
    Supungul, P., Klinbunga, S., Pichyangkura, R., Hirono, I., Aoki, T., Tassanakajon, A., 2004. Antimicrobial peptides discovered in the black tiger shrimp Penaeus monodon using the EST approach. Dis. Aquat. Org, 61: 123-135.
    Suzuki, T., Takagi, T., Furukohri, T., Kawamura, K., and Nakauchi, M., 1990. A calcium-dependent galactose-binding lectin from the tunicate Polyandrocarpa misakiensis. J. Bio. Chem, 265: 1274-1281.
    Takahashi, H., Komano, H., Kawaguchi, N., Kitamura, N., Nakanishi, S., Natori, S., 1985. Cloning and sequencing of cDNA of Sarcophaga peregrina humoral lectin induced on injury of the body wall. J. Bio. Chem, 260: 12228-12233.
    Takeuchi, O., Akira, S., 2001. Toll-like receptors: their physiological role and signal, transduction system. Int. Immunopharmacol, 4: 625-635.
    Tanguy, A., Guo, X., Ford, S.E., 2004. Discovery of genes expressed in response to Perkinsus marinus challenge in Eastern Crassostrea virginica and Pacific oysters C. gigas. Gene, 338: 121-131.
    Tatiana, A., Tatusova, Thomas, L., Madden, 1999. Blast 2 sequences -a new tool for comparing protein and nucleotide sequences. FEMS. Microbiol. Lett, 174: 247-250.
    Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., 1997. The ClustalX-windows interface: flexible strategies for multiple sequence alignement aided by quality analysis tools. Nucleic. Acids. Res, 25: 4876–4882.
    Tzou, P., De Gregorio, E., Lemaitre, B., 2002. How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions. Current Opinion in Microbiology, 5: 102-110.
    Turner, M.W., 1998. 90 years on: a therapy to stimulate the phagocytes? Scand. J. Immunol, 48: 124-128.
    Wang, X.G., Fuchs, J.F., Infangera, L.C., Rocheleau, T.A., Hillyer, J.F., Chen, C. C., Christensen, B.M., 2005. Mosquito innate immunity: involvement of β-1,3-glucan recognition protein in melanotic encapsulation immune responses in Armigeres subalbatus. Molecular and Biochemical Parasitology, 139: 65-73.
    Vargas-Albores, F., Yepiz-Plascencia, G., 2000. β-glucan binding protein and its role in shrimp immune response. Aquaculture, 191: 13-21.
    Vasta, G.R., Cheng, T.C., Marchalonis, J.J., 1984. A lectin on the hemocyte membrane of the oyster Crassostrea virginica. Cell lmmunol, 88: 475-488.
    Vasta, G.R., Quesenberry, M., Ahmed, H., O'Leary, N., 1999. C-type lectins and galectins mediate innate and adaptive immune functions: their roles in the complement activation pathway. Dev. Comp. Immuno,, 23: 401-420.
    Vizioli, J., Bulet, P., Charlet, M., Lowenberger, C., Blass, C., Müller, H.M., Dimopoulos, G., Hoffmann, J., Kafatos, FC., Richman, A., 2000. Cloning and analysis of a cecropin gene from the malaria vector mosquito, Anopheles gambiae. Insect. Mol. Biol, 9: 75-84.
    Wang, L., Ho, B., Ding, J.L., 2003. Transcriptioanal regulation of limulus factor C. J. Bio. Chem, 278: 49428-49437.
    Wang, L., Song, L., Chang, Y., Xu, W., Ni, D., Guo, X., 2005. A preliminary genetic map of Zhikong scallop (Chlamys farreri). Aquaculture Research, 36: 643-653.
    Wang, R., Lee, S.Y., Cerenius, L. Soderhall K., 2001. Properties of the prophenoloxidase activating enzyme of the freshwater crayfish, Pacifastacus leniusculus. Eur. J. Biochem, 268: 895-902.
    Weaver, L.H., Grutter, M.G., Matthews, B.W., 1995. The refined structure of goose lysozyme and its complex with a bound trisaccharide show that the goose-type lysozyme lacks a catalytic aspartate residue. J. Mol. Biol, 245:54-68.
    Werner, T., Liu, G., Kang, D., Ekengren, S., Steiner, H., Hultmark, D., 2000. A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proceedings of the National Academy of Sciences USA, 97: 13772-13777.
    Werner, T., Borge-Renberg, K., Mellroth, P., Steiner, H., Hultmark, D., 2003. Functional diversity of the Drosophila PGRP-LC gene cluster in the response to lipopolysaccharide and peptidoglycan. J. Bio. Chem, 278: 26319-26322.
    Wingender, E., Chen, X., Hehl, R., Karas, H., Liebich, I., Matys, V., Meinhardt, T., Prü?, M., Reuter, I., Schacherer, F., 2000. TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Research, 28: 316-319.
    Xing, J., Zhan, W.B., Zhou, L., 2002. Endoenzymes associated with haemocyte types in the scallop (Chlamys farreri). Fish Shellfish Immunol, 13: 271-278.
    Yang, L., Harroun, T.A., Weiss, T.M., 2001. Barrel-save model or toroidal model? A case study on melittin pores. Biophysical Journal, 81:1475-1485.
    Yang, Y., Mitta, G., Chavanieu, A., Calas, B., Sanchez, J., Roch, P., 2000. Solution structure and activity of the synthetic four-disulfide bond Mediterranean Mussel defensin (MGD-1). Biochemistry, 39: 14436-14447.
    Yeh, M.S., Chen, Y.L., Tsai, I.H., 1998. The hemolymph clottable proteins of tiger shrimp, Penaeus monodon, and related species. J. Biol. Chem, 121: 169-176.
    Yeh, M.S., Huang, C.J., Leu, J.H., Lee, Y.C., Tsai, I.H., 1999. Molecular cloning and characterization of a hemolymph clottable protein from tiger shrimp Penaeus monodon. Eur. J. Biochem, 266: 624-633.
    Yeh, T.C., Wilson, A.C., Irwin, D.M., 1993. Evolution of rodent lysozyme: isolation and sequence of the rat gene. Mol. Phylogenet. Evol, 2: 65-75. Yoshida, H., Kinoshita, K., Ashida, M., 1996. Purification of peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J. Bio. Chem., 271: 13854-13860.
    Yu, X.Q., Zhu, Y.F., Ma, C., Fabrick, J.A., Kanost, M.R., 2002. Pattern recognition proteins in Manduca sexta plasma. Insect Biochemistry and Molecular Biology, 32: 1287-1293.
    Yuasa, H.J., Furuta, E., Nakamura, A., Takagi, T., 1998. Cloning and sequencing of three C-type lectins from body surface mucus of the land slug, Incilaria fruhstorferi. Comp. Biochem. Physiol, 119B: 479-484.
    Zasloff, M., 2002. Antimicrobial peptides of multicellular organisms. Nature, 415: 389-395.
    Zavalova, L.L., Baskova, L.P., Lukyanov, S.A., Sass, A.V., Snezhkov, E.V., Akopov, S.B., Artamonova, L.L., Archipova, V.S., Vesmeyanov, V.A., Kozlov, D.G, Benevolensky, S.V., Kiseleva, V.L., Poverenny, A.M., Sverdlov, E.D., 2000.
    Destabilase from the medicinal leech is a representative of a novel family of
    lysozymes. Biochem. Biophys. Acta, 1478: 69-77.
    Zheng, L., Cornel, A.J., Wang, R., 1997. Quantitative trait loci for refractoriness of Anopheles gambiae to Plasmodium cynomolgi B. Science, 276: 425-428.
    Zhu, Y., Saravanan, T., Bow H., 2005. The ancient origin of the complement system.. The EMBO Journal, 24: 382-394.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700