含氮杂环生物活性化合物的热化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含氮杂环化合物不仅在农药而且在医药上都具有广泛的应用,因而是一类非常重要的有机化合物。近几十年来,科学家们不断地探索其新的合成工艺,并对其结构和性能进行了很多研究,然而有关这类化合物的基础热力学以及化合物结构与其热力学性质之间的关系还研究得很少。本论文采用精密绝热量热法、燃烧量热法和近代热分析技术对新合成的嘧啶胺类、三唑类和苯并噻唑类含氮杂环化合物的热容、相变、燃烧热、标准摩尔生成焓和热稳定性等基础热力学性质进行了系统的研究,取得如下结果:
     利用含氮有机碱和酸成鎓盐的反应,以嘧霉胺和具有生物活性的酸为原料,合成了9种新型嘧啶胺类化合物,用IR、~1HNMR和元素分析方法确认了其结构,并测试了其生物活性。
     利用改进的精密自动绝热量热仪测量了嘧啶胺类、三唑类和苯并噻唑类共11个含氮杂环化合物在80-380K温区的热容。利用熔化温区热容数据,计算出化合物的熔化温度、熔化焓和熔化熵。由非相变温区热容数据建立了热容随温度变化的拟合方程,根据焓、熵与热容的热力学函数关系,求出了每种化合物相对于298.15K的标准热力学函数值,[ H_(T)-H_(298.15K)]和[S_(T)-S_(298.15K)]。
     通过燃烧量热法测定了部分嘧啶胺类化合物的燃烧热并计算出其标准摩尔生成焓和嘧霉胺与有机酸成盐反应的反应焓,由此推测了化合物结构的稳定性。
     根据量热法和热分析的实验数据,从结构和能量的角度讨论了结构相似化合物热力学性质的变化规律。
Nitrogen-containing heterocyclic compounds are important organic compounds, which has a good activity not only in pesticide but also in medicine. Since several decades of years, great progression has been made for synthesis and characterization of structure and properties about the nitrogen-containing heterocyclic compounds in order to make them more suitable for the industrial production. However, the thermodynamics in the synthesis process and the research on the relationship between the structure and the thermodynamic properties of the compounds are quite few. In the present thesis low-temperature heat capacity, heats of combustion and standard molar enthalpies of formation for pyrimidinamine, triazole and benzothiazole compounds have been investigated by a fully automated precision adiabatic calorimeter, a high precision oxygen bomb calorimeter and TG-DSC, respectively. Major measurements and research results are summarized as follows:
     Nine pyrimidinamine compounds were synthesized with pyrimethanil and biological acid as raw materials and their structures have been confirmed through IR, ~1HNMR and elemental analysis. Their preliminary biological activities have been tested by asp-agar-diluted method. The results of tests showed that most of them exhibited excellent fungicidal activities. The relationship between the structures and the biological activities of the pyrimethanil salts was discussed.
     Low-temperature heat capacities of the compounds were measured in the temperature range from 80K to 380K by the fully automated adiabatic calorimeter. The thermodynamic data, such as temperatures, enthalpies and entropies of the fusions, have been calculated according to the experimental heat capacities. Valid and virtual section of the heat-capacity curve of the compound was fitted and a
引文
[1] 纪梓桐译,国外农药使用的基本趋势,农药译丛,1987, 9(3): 1-8
    [2] 王大翔,杂环化合物在农药发展中的重要作用,农药,1995, 34(1): 6-9
    [1] 张一宾,张怿 主编,《农药》,北京:中国物资出版社,1997: 1.
    [2] 纪梓桐译, 国外农药使用的基本趋势,农药译丛,1987, 9(3), 1-8.
    [3] 林荣寿,梁桂梅,高立明. 我国农药使用现状,农药,1994, 33(1), 9-13.
    [4] K. H. Buchel (Ed.), Chemistry of Pesticides, John Wiley & Sons, New York, 1983, p6.
    [5] P. T. Anastas, T. C. Warner, Green Chemistry:Theory and Practice, London: Oxford Science Publications, 1998.
    [6] B. M. Trost, The atom economy – a search for synthetic efficiency, Science, 1991, 254, 1471-1477.
    [7] 闵恩泽,环境友好石油炼制技术的进展,化学进展,1998, 10 (2), 207-214.
    [8] J. M. Tanko, J. F. Blackert, Free-radical side-chain bromination of alkylaromatics in supercritical carbon-dioxide, Science, 1994, 263, 203-205.
    [9] K. M. Daraths, J. W. Forst, Environmentally compatible synthesis of adipic acid from D-glucose, J. Am. Chem. Soc., 1994, 116, 399-400.
    [10] 闵恩泽,傅军,绿色化学的进展,化学通报,1999, 11(1), 10-15.
    [11] 花文廷编,《杂环化学》,北京:北京大学出版社,第一版,1990, 13-14.
    [12] R. Breslow, M. Oda, T. Sugimoto, Bicyclotropones, J. Amer. Chem. Soc., 1974, 96, 1639-1640.
    [13] A. G. Anastassiou, Angew. Chem., Int. ed., 1974, 13, 404.
    [14] L. A. Paquette et al., Unsaturated heterocyclic systems. LXXIV. Electrochemical studies of the reduction of 2-methoxyazocines in aprotic solvents. Comparison with the cyclooctatetraene system, J. Amer. Chem. Soc., 1971, 93, 161-167.
    [15] A.G. Anastassiou, S. W. Eachus, Alkali metal azonides. Acidity of 1H-azonine, J. Amer. Chem. Soc., 1972, 94, 2537-2538.
    [16] 陈敏为,甘礼骓编,《有机杂环化合物》,北京:高等教育出版社,第一版,1990, 9-16.
    [17] 王大翔,杂环化合物在农药发展中的重要作用,农药,1995, 34(1), 6-9.
    [18] D. G. Archer and D. R. Kirklin, NIST and standards for calorimetry, Thermochim. Acta, 2000, 347, 21-30.
    [19] F. J. Romero, M. C. Gallardo, J. Jiménez and J. Del Cerro, Discrimination of the transition order extremely close to a tricritical point, Thermochim. Acta, 2001, 372, 25-31.
    [20] S.L. Lai, G. Ramanath, and L.H. Allen, Heat capacity measurements using a thin-film differential scanning calorimeter with 0.2 nJ sensitivity, Appl. Phys. Lett., 1997, 70, 43-45.
    [21] D.E. Ibbotson, T.S. Wittrig, and W.H. Weinberg, The chemisorption of hydrogen on the (110) surface of iridium, J. Chem. Phys., 1980, 72, 4885-4895.
    [22] R. Androsch, B. Wunderlich, Temperature-modulated DSC using higher harmonics of the Fourier transform, Thermochim. Acta, 1999, 333, 27-32.
    [23] B. Wunderlich, M. Pyda, J. Pak and R. Androsch, Measurement of heat capacity to gain information about time scales of molecular motion from pico to megaseconds,Thermochim. Acta, 2001, 377, 9-33.
    [24] H. Huth, M. Beiner, S. Weyer, M. Merzlyakov, C. Schick and E. Donth, Glass transition cooperativity from heat capacity spectroscopy – temperature dependence and experimental uncertainties, Thermochim. Acta, 2001, 377, 113-124.
    [25] B. Wunderlich, R. Androsch, M. Pyda and Y. K. Kwon, Heat capacity by multi-frequencies sawtooth modulation, Thermochim. Acta, 2000, 348, 181-190.
    [26] R. Androsch, I. Moon, S. Kreitmeier, B. Wunderlich, Determination of heat capacity with a sawtooth-type, power-compensated temperature-modulated DSC, Thermochim. Acta, 2000, 357-358, 267-278.
    [27] Y. K. Kwon, R. Androsch, M. Pyda, B. Wunderlich, Multi-frequency sawtooth modulation of a power-compensation differential scanning calorimeter, Thermochim. Acta, 2001, 367-368, 203-215.
    [28] M. Pyda, Y. K. Kwon, B. Wunderlich, Heat capacity measurement by sawtooth modulated standard heat-flux differential scanning calorimetry with sample temperature control, Thermochim. Acta, 2001, 367-368, 217-227.
    [29] M. Merzlyakov, C. Schick, Step response analysis in DSC – a fast way to generate heat capacity spectra, Thermochim. Acta, 2001, 380, 5-12.
    [30] S. L. Simon, Temperature-modulated differential scanning calorimetry: theory and application, Thermochim. Acta, 2001, 374: 55-71.
    [31] E. Y. Ding, R. S. Cheng, Theory of general temperature modulated differential scanning calorimetry, Thermochim. Acta, 2001, 378, 51-68.
    [32] I. Hatta, S. Nakayama, First-order phase transitions studied by temperature-modulated calorimetry, Thermochim. Acta, 1998, 318, 21-27.
    [33] B. Wunderlich, I. Okazaki, K. Ishikiriyama, A. Boller, Melting by temperature-modulated calorimetry, Thermochim. Acta, 1998, 324: 77-85.
    [34] B. Wunderlich, A. Boller, I. Okazaki, K. Ishikiriyama, W. Chen, M. Pyda, J. Pak, I. Moon, R. Androsch, Temperature-modulated differential scanning calorimetry of reversible and irreversible first-order transitions, Thermochim. Acta, 1999, 330, 21-38.
    [35] G. W. H. H?hne, Temperature modulated differential scanning calorimetry (TMDSC) in the region of phase transitions. Part 1: theoretical considerations, Thermochim. Acta, 1999, 330, 45-54.
    [36] G. W. H. H?hne, Temperature modulated differential scanning calorimetry (TMDSC) in the region of phase transitions. Part 2: some specific results from polymers, Thermochim. Acta, 1999, 330, 93-99.
    [37] R. Androsch and B. Wunderlich, Reversing melting and crystallization of indium as a function of temperature modulation, Thermochim. Acta, 2000, 364, 181-191.
    [38] R. Androsch and B. Wunderlich, Reversibility of melting and crystallization of indium as a function of the heat conduction path, Thermochim. Acta, 2001, 369, 67-68.
    [39] 张国政,郑淑娴,卢冠忠,硫脲和过氧化氢合成二氧化硫脲过程的热效应,华东理工大学学报,1996, 22, 206-210.
    [40] 陆晓清,张际标,对同系物燃烧热的研究,广东石油化工高等专科学校学报,2000, 10, 19-21.
    [41] P.C. Hiberty, D. Danovich, A. Shurki, S. Shaik, Why Does Benzene Possess a D6h Symmetry? A Quasiclassical State Approach for Probing .pi.-Bonding and Delocalization Energies, J. Am. Chem. Soc., 1995, 117, 7760-7768.
    [42] T. Kiyobayashi, M. Sakiyama, M. Sorai, R.H. Mitchell, Combustion Calorimetry of Dimethyldihydropyrene-A Carbon Bridged [14] Annulene, J. Org. Chem., 1997, 62 , 7469-7470.
    [43] 倪才华, 烷基苯的热力学性质与分子拓扑指数的关系研究,原子与分子物理学报,1995, 12, 213-218.
    [44] 梅平,刘平,倪才华,R 指数研究直链烷烃的燃烧热,化学工程师,1990,1, 34-37.
    [45] 彭昌军,链烷烃标准燃烧热的拓扑计算法,天然气化工,1996, 21, 53-57.
    [46] 韩长日,利用基团的电负性计算烷基衍生物的燃烧热,湖北师范学院学报(自然科学版),1992, 3, 12-16.
    [47] 张秀利,李伟,戴玉杰,极化效应指数与正链烷基衍生物的燃烧热,河北省科学院学报,98, 2, 47-49.
    [48] 贾欣欣,戴玉杰,张秀利,刘慧敏,诱导效应指数与某些直链碳氢化合物的燃烧热,河北大学学报,1999, 19, 308-310.
    [49] 王克强,李勤,应用基团键贡献法计算液态烷烃的燃烧热,宁夏大学学报,2000, 21, 239-241.
    [50] Y. Nagano and T. Sugimoto, Micro-combustion calorimetry aiming at 1 mg samples, J. Therm. Anal. Calorim., 1999, 57, 867-874.
    [51] 吴方迪,徐蓓,西维因、叶蝉散、呋喃丹三种农药标准物质的研制,现代计量测试,1999, 5, 45-47.
    [52] 侯怀思,武雪芬,贾永艳,β-环糊精·氯氰菊酯包合物的制备及性能测试,化学世界,2002, 11, 592-594.
    [53] 潘平,李震,新型农药及中间体的鉴定和纯度测定条件的研究,天津化工,2004, 18, 51-52.
    [54] P. J. Sanchezsoto, E. Morillo, J. L. Perezrodriguez, Thermoanalytical study of the pesticide 3-amino-1,2,4-triazole, Journal of Thermal Analysis, 1995, 45, 1189-1197.
    [55] T. Matsuo and O. Yamamuro, Equilibrium and non-equilibrium transitions studied by adiabatic calorimetry, Thermochim. Acta, 1999, 330, 155-165.
    [56] J. E. Callanan, R. D. Weir and E. F. Westrum, Thermodynamics of ammonium haloplatinates IV. Heat capacity, phase transitions, and thermodynamic properties of (NH4)2PtBr6 fromT = 6 K to T = 320 K, J. Chem. Thermodyn., 1998, 30, 1483-1493.
    [57] J. E. Callanan, R. D. Weir and E. F. Westrum, Thermodynamics of ammonium haloplatinates V. Heat capacity, phase transitions and thermodynamic properties of (ND4)2PtBr6 from T = 5 K to T = 350 K, J. Chem. Thermodyn., 2000, 32, 1131-1143.
    [58] Z. Liu and D. D. L. Chung, Calorimetric evaluation of phase change materials for use as thermal interface materials, Thermochim. Acta, 2001, 366, 135-147.
    [59] K. Nakasone, K. Shikawa, Y. Urabe and N. Nemoto, Symmetrical Ketone/n-Alkane Systems. 1. Phase Diagrams from DSC, J. Phys. Chem. B, 2000, 104, 7483-7489.
    [60] J. Pak, A. Boller, I. Moon, M. Pyda and B. Wunderlich, Thermal analysis of paraffins by calorimetry, Thermochim. Acta, 2000, 357, 259-266.
    [61] G. C. Kresheck, Comparison of the Calorimetric and van't Hoff Enthalpy of Micelle Formation for a Nonionic Surfactant in H2O and D2O Solutions from 15 to 40oC, J. Phys. Chem. B, 1998, 102, 6596-6600.
    [62] K. Kaneko, A. Watanabe, T. Iiyama, R. Radhakrishan and K. E. Gubbins, A Remarkable Elevation of Freezing Temperature of CCl4 in Graphitic Micropores, J. Phys. Chem. B, 1999, 103, 7061-7063.
    [63] T. Takei, Y. Onoda, M. Fuji, T. Watanabe and M. Chikazawa, Anomalous phase transition behavior of carbon tetrachloride in silica pores, Thermochim. Acta, 2000, 352-353, 199-204.
    [64] L. D. Hansen, B. N. Smith, R. S. Criddle and R. W. Breidenbach, Calorimetry of plant respiration, J. Therm. Anal. Calorim., 1998, 51, 757-763.
    [65] Y. H. Guan, P. C. Lloyd and R. B. Kemp, A calorimetric flow vessel optimised for measuring the metabolic activity of animal cells, Thermochim. Acta, 1999, 332, 211-220.
    [66] E. Schmolz, N. Br¨1ders, B. Schricker and I. Lamprecht, Direct calorimetric measurement of heat production rates in flying hornets (Vespa crabro; Hymenoptera), Thermochim. Acta, 1999, 328, 3-8.
    [67] A. Schiraldi, in Chemical Thermodynamics, ed. T. M. Letcher, Blackwell Science, London, 1999, 251-264.
    [68] M. Riva, F. Dimitrios and A. Schiraldi, Isothermal calorimetry approach to evaluate shelf life of foods, Thermochim. Acta, 2001, 370, 73-81.
    [69] F. Dimitrios and A. Schiraldi, State diagrams of arabinoxylan-water binaries, Thermochim. Acta, 2001, 370, 83-89.
    [70] T. Unruh, H. Bunjes, K. Westesen and M. H. J. Koch, Observation of Size-Dependent Melting in Lipid Nanoparticles, J. Phys. Chem. B, 1999, 103, 10373-10377.
    [71] A. Navrotsky, High Temperature Reaction Calorimetry Applied to Metastable and Nanophase Materials, J. Therm. Anal. Calorim., 1999, 57, 653-658.
    [72] M. V. Korobov, A. L. Mirakyan, N. V. Avramenko, G. Olofsson, A. L. Smith and R. S. Ruolf, Calorimetric Studies of Solvates of C60 and C70 with Aromatic Solvents, J. Phys.Chem. B, 1999, 103, 1339-1346.
    [73] M. R. Randae, F. Tessier, A. Navrotsky, V. J. Leppert, S. H. Risbud, F. J. DiSalvo and C. M. Balkas, Enthalpy of Formation of Gallium Nitride, J. Phys. Chem. B, 2000, 104, 4060-4063.
    [74] M. R. Randae, F. Tessier, A. Navrotsky and R. Marchand, Calorimetric determination of the enthalpy of formation of InN and comparison with AlN and GaN, J. Mater. Res., 2001, 16, 2824- 2831.
    [75] Zbigniew Moser and Krzysztof Fitzner, The use of experimental thermodynamic data in the phase equilibria verification, Thermochimica Acta, 1999,332, 1-19.
    [76] W. Litz, On-line calorimetry for determination of the rate of heat generation due to reaction in a stirred tank reactor, Chem. Ing. Technol., 1998, 70, 1296-1299.
    [77] T. Basalik, Reaction calorimetry: The link between the laboratory and the plant, Am. Lab., 1998, 30, 33
    [78] O. Ubrich, B. Srinivasan, P. Larena, D. Bonvin and F. Stoessel, The use of calorimetry for on-line optimisation of isothermal semi-batch reactors, Chem. Eng. Sci., 2001, 56, 5147-5156.
    [79] K. Heldt, H. L. Anderson and B. Hinz, Investigation of run-away reactions by precision calorimetry, Thermochim. Acta, 1998, 310, 179-184.
    [1] 吴世昌 主编《新农药荟萃》,北京:中国农业科技出版社,1992:291-315
    [2] Z. C. Tan, G. Y. Sun, A. X. Yin, W. B. Wang, J. C. Ye, L. X. Zhou, An Adiabatic Low-Temperature Calorimeter for Heat Capacity Measurement of Small Samples. J. Therm. Anal., 1995, 45, 59-67.
    [3] M. H. Wang, Z. C. Tan, X. H. Sun, H. T. Zhang, B. P. Liu, L. X. Sun, T. Zhang, Determination of heat capacities and thermodynamic properties of 2-(chloromethylthio)benzothiazole by an adiabatic calorimeter, The Journal of Chemical and Engineering Data, 2005, 50 (1), 270-273.
    [4] Candace Plato and Augustus R. Glasgow, Jr., Differential scanning calorimetry as a general method for determining the purity and heat of fusion of high-purity organic chemicals. Application to 95 compounds, Analytical Chemistry, 1969, 41, 330-336.
    [5] Zhang L.-M., Tan Z.-C., Wang S.-D., Wu D.-Y., Combustion calorimetric and thermogravimetric studies of graphite and coals doped with a coal-burning additive, Thermochim. Acta, 1997, 299, 13-17.
    [6] Wu X.-M., Tan Z.-C., Meng S.-H., Sun C.-X., Wang F.-D., Qu S.-S., Study on thermodynamic properties of polypyromellitimide molding powder, Thermochim. Acta, 2000, 359, 103-107.
    [7] J.D. Cox, D.D. Wagman, V.A. Medvedev, CODATA Key Values for Thermodynamics, Hemisphere, New York, 1989.
    [1] T. Matsuo, Some new aspects of adiabatic calorimetry at low temperatures, Thermochimica Acta, 1990, 163, 57-70.
    [2] D. Wlosewicz, T. Plackowski, K. Rogacki, Simple calorimeter for temperature range 50–350 K, Cryogenics, 1992, 32, 265-268.
    [3] M. Sorai, K. Kajik, Y. Kaneko, An automated adiabatic calorimeter for the temperature-range 13 K to 530 K – The heat capacities of benzoic-acid from 15 K to 305 K and of synthetic sapphire from 60 K to 505 K, J. Chem. Thermodyn., 1992, 24, 167-180.
    [4] K. Kaji, K. Tochigi, T. Suzuki, An adiabatic calorimeter for samples of mass less than 0.1 g and heat-capacity measurements on benzoic acid at temperatures from 19 K to 312 K, J. Chem. Thermodynamics, 1993, 25, 699-709.
    [5] H. Fujimori, M. Oguni, Construction of an adiabatic calorimeter at low-temperatures and glass-transition of crystalline 2-bromothiophene, Journal of physics and chemistry of solids, 1993, 54 (2), 271-280.
    [6] N. Semmar, J. L. Tanguier, J. Kleinclauss, Adaptation of an adiabatic calorimeter to liquids, International Journal of Heat and Mass Transfer, 1994, 37 (8), 1227-1233.
    [7] M. Bienzle, F. Sommer, A new adiabatic calorimeter for the investigation of the heat-capacity of liquid alloys, Zeitschrift fur Metallkunde, 1994, 85 (11), 766-770.
    [8] D. Varandani, A. K. Bandyopadhyay, V. S. Yadav, E. Gmelin, A. V. Narlikar, A simple, versatile and high-precision quasi-adiabatic calorimeter for specific-heat measurement in the temperature range 77-300 K, Measurement science & Technology, 1996, 7 (4), 511-514.
    [9] S. Takahara, O. Yamamuro, M. Ishikawa, T. Matsuo, H. Suga, Development of an adiabatic calorimeter for simultaneous measurement of enthalpy and volume under high pressure, Review of scientific instruments,1998, 69 (1), 185-192.
    [10] J. W. Magee, R. J. Deal, J.C. Blanco, High-temperature adiabatic calorimeter for constant-volume heat capacity measurements of compressed gases and liquids, Journal of research of the national institute of standards and technology, 1998, 103 (1), 63-75.
    [11] K. Kobashi, T. Kyomen, M. Oguni, Construction of an adiabatic calorimeter in the temperature range between 13 and 505 K, and thermodynamic study of 1-chloroadamantane, Journal of physics and chemistry of solids, 1998, 59 (5), 667-677.
    [12] H. Suga, Adiabatic calorimeter as an ultra-low frequency spectrometer: interplay between phase and glass transitions in solids, Thermochimica Acta, 2001, 377 (1-2), 35-49.
    [13] van Miltenburg JC, van den Berg GJK, van Genderen ACG, An adiabatic calorimeter for small samples - the solid-liquid system naphthalene-durene, Thermochimica Acta, 2002, 383 (1-2), 13-19.
    [14] Y. Arita, K. Suzuki, T. Matsui, Development of high temperature calorimeter: heat capacity measurement by direct heating pulse calorimetry, Journal of physics and chemistry of solids, 2005, 66 (2-4), 231-234.
    [15] Z. C. Tan, G. Y. Sun, A. X. Yin, W. B.ang, J. C. Ye, L. X. Zhou, An Adiabatic Low-Temperature Calorimeter for Heat Capacity Measurement of Small Samples. J. Therm. Anal. 1995, 45, 59-67.
    [1] 刘长令,新型嘧啶胺类杀菌剂的研究进展,农药,1995, 34(8), 25-28.
    [2] 朱瑞林,贺桂珍,胺苯磺隆的化学合成,农药,1993, 32(2), 17-20.
    [3] 罗宣干,卓仁禧,5-氟脲嘧啶的 D-氨基葡萄糖衍生物的合成及其抗肿瘤活性的研究,高等学校化学学报,1996, 17(9), 1416-1421.
    [4] 孙晓红,王慧芳,刘源发等,新杀菌剂嘧霉胺盐的合成,有机化学,2004, 24(5), 506-511.
    [5] M. C. Shephard, Fungicidal processes and compositions, GB. 1245085 (1968).
    [6] S. A. Green, R. J. Williamis, D. Stock, Influence of formulants and salt formation on volatilization and activity of pyrimethanil, Pestic Sci., 1998, 54(3), 313-314.
    [7] 化学工业部科学技术局,农药研究报告选集,北京:科学技术文献出版社,1949-1979, 193.
    [8] 沙家骏,张敏恒,姜雅君,国外新农药品种手册,北京:化学工业出版社,1993, 453.
    [9] D. Stock, Mixtures of pyrimethanil or pyrimethanil salts with an organic acid and their use as fungicides, WO. 9740682(1997).
    [1] Keith Chamberlain, Volatile analogs of penconazole and their activity against the take-all fungus, Pest.Sci., 1991, 31, 185-196.
    [2] Ciba-Gergy, Microbicide agent, EP 0060223 (1982).
    [3] Jan Heeres, Leo J.J.Backx, Fungicidal 1-(2-aryl-2-R-ethyl)-1H-1,2,4-triazoles, U. S. Patent 4598085 (1986)
    [4] Hansjorg Wetter, Baumeister, Pierre Martin, Process for producing 1-[2-(2,4-dichlorophenyl)-pentyl]-1H-1,2,4-triazole, U.S. Patent 4556717 (1985)
    [5] Laboratory Chemical and Analytical Reagents. Fluka Chemie AG, 1999/2000: 970 (No.34360).
    [6] Ted T. Fujimoto, Alpha-alkyl-alpha-(4-halophenyl)-1H-1,2,4-triazole-1-propane- nitrile , U.S. Patent 4920139 (1990).
    [1] R. T. Meister, G. L. Berg, C. Sine, Poplyk, J. Farm Chemicals Handbook, 70th ed., Meister Publishing Co., Willoughby, 1984.
    [2] L. Muthusubramanian, V. S. Sundara Rao, B. Mitra Rajat, Efficient synthesis of 2-(thiocyanomethylthio)benzothiazole, Journal of Cleaner Production, 2001, 9, 65-67.
    [1] Lupu D, Biris A, Indrea E. Hydrogen absorption in beryllium substituted Mg2Ni. Int J Hydrogen Energy 1982; 7: 783-785.
    [2] Iwakura C, Hazui S, Inoue H. Effect of temperature on electrochemical characteristics of Mg2Ni alloy. Electrochim Acta 1996; 41: 471-472.
    [3] S. Orimo, K. Ikeda, H. Fujii, K. Yamamoto, Thermal stabilities of amorphous Mg(Ni1?xTx) (T=3d transition metals; x=0, 0.2, 0.4 and 0.5), J. Alloys Comp., 1997, 260, 143-146.
    [4] W.H. Liu, H.Q. Wu, Y.Q. Lei, Q.D. Wang, J. Wu, Amorphization and electrochemical hydrogen storage properties of mechanically alloyed Mg–Ni, J. Alloys Comp., 1997, 252, 234-237.
    [5]李法兵,蒋利军,郑强,詹锋,机械合金化法制备镁基储氢材料进展,稀有金属,2003, 27(6), 823-826.
    [6] Y. Zhang, L.X. Chen, Y.Q. Lei, Q.D. Wang, The effect of partial substitution of Ti with Zr, Cr or V in the Mg35Ti10Ni55 electrode alloy on its electrochemical performance, Electrochim Acta, 2002, 47, 1739-1746.
    [7] T. Kohno, M. Kanda, Effect of partial substitution on hydrogen-storage properties of Mg2Ni alloy, J Electrochem Soc, 1997, 144, 2384-2387.
    [8]袁华堂,宋赫男,李秋荻,冯艳,李志云,王一菁,Mg1-xTixNi(0 ≤ x ≤ 0.4)系列合金的合成及性能研究,高等学校化学学报,2003, 24, 584-587.
    [9] H.T. Yuan, L.B. Wang, R. Cao, Y.J. Wang, Y.S. Zhang, D.Y. Yan, W.H. Zhang, W.L. Gong, Electrochemical characteristics of Mg2?xAlxNi (0≤x≤0.5) alloys, J Alloys Comp 2000, 309, 208-211.
    [10] L.B. Wang, J.B. Wang, H.T. Yuan, Y.J. Wang, Q.D. Li, An electrochemical investigation of Mg2?xAlxNi (0 ≤ x ≤ 0.6) hydrogen storage alloys, J Alloys Comp 2004, 385, 304-308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700