栉孔扇贝对急性病毒性坏死症病毒的生理和免疫应答
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
栉孔扇贝(Chlamys farreri)是我国北方重要养殖扇贝种类,在海湾扇贝和虾夷扇贝引进以前,其年产量占我国扇贝总产量的80%。但自1997年以来,我国北方大部分养殖区连续发生养殖栉孔扇贝大批死亡事件,严重影响和损害了栉孔扇贝养殖业的发展。我国栉孔扇贝大规模死亡是多种因素综合作用的结果。大致可分为生物因素与非生物因素:非生物的因素有夏季水温过高、养殖密度过高、养殖环境退化等。生物因素有流行性病原生物的侵害和扇贝种质的退化等。其中,急性病毒性坏死症(Acute Viral Necrobiotic Disease, AVND)病毒造成栉孔扇贝大规模死亡现象的研究已经开展。本研究通过生理学、免疫学技术和手段研究栉孔扇贝对急性病毒性坏死症病毒的生理和免疫应答,以期更好的了解栉孔扇贝对这一病毒的防御机制,为扇贝病害防治提供资料。
     本研究对不同温度下栉孔扇贝感染AVND病毒后的耗氧率和排氨率进行了测定。结果显示,在17℃下,病毒组和注射生理盐水组栉孔扇贝的耗氧率逐渐升高,但两者无显著差异;方差分析显示,各组间排氨率的变化无显著差异。在25℃下,栉孔扇贝闭壳肌注射AVND病毒和注射生理盐水组栉孔扇贝的耗氧率逐渐升高,在12小时取得最大值,对照组则变化不大。方差分析显示,注射病毒组与注射生理盐水组和对照组之间有显著差异(P<0.05)。同时,对栉孔扇贝感染AVND病毒的致病剂量进行了研究,在25℃水温下,栉孔扇贝肌肉注射感染AVND病毒后,只有150μl组表现出明显患病症状并在第三天开始出现死亡现象,注射50、100μl组则无明显症状;17℃下栉孔扇贝感染AVND病毒后无明显患病症状,表明AVND病毒对栉孔扇贝的感染致病具有剂量和温度依赖性。
     对于25℃水温下栉孔扇贝感染AVND病毒后血清中相关免疫酶类活力变化进行了测定。栉孔扇贝感染AVND病毒后血清中SOD的活性逐渐升高,在48小时达到最大值,方差分析显示不同时间点之间的SOD活性有显著差异(P<0.05),在48小时,病毒组和生理盐水组间的SOD活性有显著差异(P<0.05),在其它时间点无显著差异。酸性磷酸酶(ACP)的活力在感染病毒2小时后升高,在12小时下降,然后又升高,在48小时达到最大值。方差分析显示不同时间点之间的ACP活性有显著差异(P<0.05),在2小时和48小时,病毒组和生理盐水组间的ACP活性有显著差异(P<0.05)。碱性磷酸酶(AKP)的活力变化趋势与ACP相同,在24小时达到最大值。方差分析显示不同时间点之间的AKP活性有显著差异(P<0.05)。在2小时、12小时、24小时病毒组和生理盐水组间有显著差异(P<0.05)。栉孔扇贝酚氧化酶的活性最大值在48小时,但与生理盐水对照组之间无显著差异。溶菌酶(Lysozyme)活性在病毒组和生理盐水对照组间无显著差异,病毒组最大值在2小时取得,对照组在24小时取得。结果表明栉孔扇贝通过升高或调节自身免疫相关蛋白酶类合成应对AVND病毒侵染。
     采用荧光实时定量PCR技术,对栉孔扇贝感染AVND病毒后免疫相关基因的时空表达规律进行了研究。水温17℃下,栉孔扇贝肌肉注射感染AVND病毒后超氧化物歧化酶(SOD)基因mRNA的表达量逐渐上升,在注射后24小时达到最大值,约为空白对照组的1.8倍,方差分析显示,病毒组SOD的表达量不同时间点之间有显著变化(P<0.05);但与生理盐水对照组相比较,病毒组SOD表达量无显著差异。在水温25℃下SOD基因mRNA的表达量逐渐上升,在注射后6小时达到最大值,约为对照组的1.5倍,空白对照组的2.2倍。病毒组SOD的表达量不同时间点之间有显著差异(P<0.05);在感染后2、6、12、24小时病毒组SOD表达量比对照组有显著升高(P<0.05)。溶菌酶基因在肝胰脏中的表达升高,在6小时达到最大值,约为生理盐水对照组的1.5倍,空白对照组的2.7倍,在48小时取得最小值(低于空白对照组)。病毒感染后不同时间之间溶菌酶基因表达有显著差异(P<0.05),感染后6、24和48小时病毒组溶菌酶基因表达比对照组有显著升高(P<0.05)。在AVND病毒感染后6小时,在肝胰脏、性腺、肌肉、鳃中溶菌酶mRNA量急剧增加,分别达到了空白对照组的4.7倍、3.8倍、13.43倍和25.15倍。方差分析显示在不同组织部位的表达有显著差异(P<0.05)。表明AVND病毒感染后栉孔扇贝免疫相关基因的表达具有时序性和组织部位特异性。
The Zhikong scallop (Chlamys farreri) is the important farming scallop specie in northern China. Before the bay scallop (Argopecten irradians) and Japanese scallop (Patinopecten yessoensis) were introduced into China, Zhikong scallop accounted for 80% of annual scallop output. However, Successive heavy mortalities in most farming areas in northern China since 1997 have seriously affected and damaged the aquaculture development of C. farreri. The massive mortality of C. farreri is caused by a variety of combined factors, including non-biological factors and biological factors. The non-biological factors include too high summer temperature, high stocking density, environmental degradation, and so on. Biological factors includes the pandemic biological pathogens and scallop germplasm degradation. The studies about C. farreri massive mortality caused by Acute Viral Necrobiotic Disease (AVND) virus have been carried out. This research studied the physiological and immune response of C. farreri to AVND virus by physiological and immunological technologies and means, try to help better understand the defensive mechanism of C. scallop to AVND virus and provide information for disease prevention and treatment.
     The oxygen consumption rate and ammonia excretion rate of Zhikong scallop (C. farreri) infected by AVND virus under different temperatures were measured. The results showed that at 17℃the oxygen consumption rate and ammonia excretion rate of the groups of C. farreri with virus and saline injection gradually increased, but there was no significant difference between both groups. The control group had no significant change; variance analysis showed that there was no significant difference among three groups. At 25℃, the oxygen consumption rate of C. farreri with virus and saline injection gradually increased, and acquired maximum at 12 hours after injection. The control group had no significant change. Variance analysis showed that there was significant difference among the virus injection group, saline injection group and control (P <0.05). The results showed that the infection of AVND virus on C. farreri is dose-and temperature-dependant.
     The effects of AVND virus on the activity of immune-related enzymes in the serum of Zhikong scallop (C. farreri) under 25℃were studied. The SOD activity in serum of C. farreri rose gradually in serum and reached the maximum at 48 hours after injection of AVND virus. The results of analysis of variance showed that there were significant differences among the time points (P<0.05). At 48 hours after infection, there is significant difference between the virus group and saline control group (P<0.05) and no significant difference at other time points. Acid phosphatase (ACP) activity rises in 2 hours after injection and declined in 12 hours, then rose and reached the maximum in 48 hours. The analysis of variance showed that there were significant differences among different time points. The virus group and saline control group has significant difference in 2 hours and 48hours (P<0.05). The change of alkaline phosphatase (AKP) had same trend with ACP. In 24 hours after infection, the AKP activity reached maximum, and there were significant differences among time points. The analysis of variance showed that there were significant differences between virus group and saline control group in 2, 12 and 48 hours (P<0.05). The phenoloxidase activity reached maximum in 48 hours after infection and there was no significant difference with saline control group. There was no significant difference of lysozyme activity between virus group and saline control group. The virus group scallop reached maximum in 2 hours and saline control group in 24 hours.The results indicated that C. farreri could increase or regulate protein synthesis immune-related enzymes to deal with the AVND virus infection.
     The expression of immune-related genes of Zhikong scallop (C. farreri) infected AVND virus was studied using fluorescent real-time PCR technology. The mRNA expression of SOD gene in serum of C. farreri gradually increased after injection of AVND virus at 17℃and reached maximum in 24 hours after injection, about 1.8 times of blank control. There were significant differences among different time points (P<0.05), but no between the virus group and saline control group. The mRNA expression of SOD gene rose gradually in 25℃water temperature and reached maximum in 6 hours after infection, about 1.5 times of blank control and 2.2 times of saline control group. There were significant differences among the time points and between the virus group and saline control group in 2, 6, 12, 24 hours after infection (P<0.05). After AVND virus infection, the Lysozyme gene expression in hepatopancreas of C. farreri increased, and reached maximum in 6 hours, about 1.5 times of saline control and 2.7 times of blank control group, and acquired minimum value in 48 hours after infection (lower than blank control group). There were significant differences of lysozyme gene expression among the times points after infection (P<0.05). The gene expression significantly increased in 6, 24, 48 hours after infection compared with saline control group (P<0.05). In 6 hours after AVND virus infection, the mRNA expression of lysozyme gene in hepatopancreas, gonad, muscle and gill sharply increased, and reached 4.7 times, 3.8 times, 13.43 times and 25.15 times of blank control group respectively. The analysis of variance showed that there were significant differences among different tissues of C. farreri (P<0.05). The results indicated that immune-related gene expression of C. farreri after AVND virus infection has time course dependence and tissue specificity.
引文
艾海新,王崇明,王秀华,李贇. 海洋贝类病毒病研究进展. 海洋水产研究. 2004,(2): 77-82.
    蔡完其. 罗氏沼虾莫格球拟酵母病的病理研究. 水产学报,1995,20(1): 13-17.
    常亚青,王子臣. 贝类生物能量学研究进展。海洋科学,1999,4:25-30.
    常亚青,王子臣. 魁蚶耗氧率的初步研究. 水产科学, 1992, 11(12): 1-6.
    陈竞春,石安静. 贝类免疫生物学研究概况. 水生生物学报,1996,20(1): 74—78.
    邓碧玉,袁勤生,李文杰. 改良的连苯三酚自氧化测定超氧化物歧化酶活性的方法. 生物化学与生物物理进展,1992,18(2): 59-63.
    丁秀云等. 皱纹盘鲍经诱导后血淋巴中一些因子变化的研究. 海洋与湖沼,1996,27(4): 362-367.
    樊甄姣,杨爱国,刘志鸿. Cu2+对栉孔扇贝体内几种免疫因子的影响. 中国水产科学,2004,11(6): 576-579.
    付崇罗, 宋微波, 李赟, 张永忠, 闫华超. 栉孔扇贝感染急性病毒坏死症病毒的组织病理学与免疫荧光检测. 微生物学报, 2004, 44(6): 741-744.
    高风英,叶星,白俊杰等. 罗氏沼虾 18S rRNA 基因生物素标记探针的制备及应用. 水产学报,2005,29(1): 124-127.
    高维锡,孙虎山,王宜艳. 微量元素铬对栉孔扇贝免疫力的影响. 潍坊学院学报,2005,5(6): 92-94.
    贺桂珍, 李赟,王崇明,黄剑宇,王秀华,宋微波. 栉孔扇贝和海湾扇贝病原体感染与疾病发生关系探讨. 高技术通讯,2003,3: 75-79.
    贺桂珍. 养殖扇贝类立克次氏体和病毒性病源研究. 中国海洋大学硕士研究生学位论文,2003,9.
    胡一鸿,牛健康. 超氧化物歧化酶研究进展. 生物学教学,2005,30(1): 2-4.
    黄剑宇,王崇明,李贇等. 栉孔扇贝病毒核酸及其提取方法的研究. 中国海洋大学学报,2002,32(123): 262-266.
    贾向志,李元,马文煜. 溶菌酶的研究进展. 生物技术通讯,2002,13(5): 374-376.
    蒋增杰. 桑沟湾栉孔扇贝大规模死亡原因分析. 齐鲁渔业, 2004, 21(8): 10-11.
    李国荣,张士璀,李红岩,王昌留. 酚氧化酶研究概况Ⅰ—特性、功能、分布和在胚胎发育中的变化. 海洋科学,2003a,27(4): 4-8.
    李国荣,张士璀,李红岩,王昌留. 酚氧化酶研究概况Ⅱ—基因结构及其系统演化. 海洋科学,2003b,27(5): 8-10.
    梁玉波,王仁波. 辽宁黄海沿岸水域增养殖贝类病害发生机理和防治对策. 海洋环境科学, 2000, 19(1): 5-10.
    刘东武,孙虎山. 亮氨酸脑啡肽对栉孔扇贝血细胞吞噬作用的影响. 湖北农业科学,2007,46(2): 281-282.
    刘恒,李光友. 免疫多糖对养殖南美白对虾作用的研究. 海洋与湖沼,1998,29(2): 113-118.
    刘军权,周忠海. 介绍一种 NBT 实验改进法. 陕西医学检验,2002,17(l): 54.
    刘世良,麦康森.贝类免疫系统和机理的研究进展. 海洋学报,2003, 25(2): 95—105.
    刘学剑. 低聚糖在生产中的应用效果. 饲料博览,2000,3: 42.
    刘岩,江晓路. 聚甘露糖醛酸对中国对虾免疫相关酶活性的溶菌溶血活性的影响.水产学报,2000,24(6): 549-553.
    刘英杰,王崇明,朱明壮等. 栉孔扇贝类立克次氏体自然感染调查及人工感染试验. 中国水产科学,2002,9(4): 346-352.
    刘志鸿,牟海津,王清印. 软体动物免疫相关酶研究进展. 海洋水产研究, 2003, 24(3): 86-90.
    刘志鸿,王清印等. 栉孔扇贝三倍体与二倍体的排泄研究. 中国水产科学,2000,7(4): 10-13.
    柳中传,吴建芹,金福江. 栉孔扇贝死亡原因及预防措施. 海洋科学,1992,16(5): 9-10.
    马洪明,麦康森. 贝类血细胞的吞噬作用和非我识别. 海洋科学,2003,27(2): 16-18.
    马健民,王奇,李霞. 皱纹盘鲍脓毒败血症病原菌的发现及初步研究. 水产学报,1996,20(4): 332-336.
    牟海津,江晓路. 免疫多糖对栉孔扇贝酸性磷酸酶,碱性磷酸酶和超氧化物歧化酶活性的影响. 青岛海洋大学学报,1999a,自然科学版(3): 463-468.
    牟海津,江晓路. 双壳贝类血清中凝集素凝集性能初步研究. 青岛海洋大学学报,1999b,自然科学版(2): 249-254.
    荣晓花,石沛学. 溶菌酶的研究进展. 中国生化药物杂志,1999,20(6): 319-320.
    邵雁群,李赟,秦铭俐. 海湾扇贝血细胞形态学比较研究. 中国海洋大学学报,2005,(3): 404-406.
    石安静,张予,吴宗文. 三角帆蚌珍珠囊形成的研究. 水产学报,1985 ,9(3): 247-254.
    宋微波,王崇明,王秀华等. 栉孔扇贝大规模死亡的病原研究新进展. 海洋科学,2001,25(2):23-26.
    孙虎山,李光友. 免疫多糖对栉孔扇贝血淋巴中氧化酶活力的影响. 高技术通讯,2001b,5: 10-12.
    孙虎山,李光友. 双壳贝类参与免疫防御的体液因子. 海洋科学,2001a,25(4): 34-36.
    孙虎山,李光友. 硒多糖和酵母聚糖对栉孔扇贝血淋巴二种抗氧化酶活力的影响.中国海洋药物,2000a(5): 20-23.
    孙虎山,李光友. 硒化卡拉胶和酵母葡聚糖对栉孔扇贝血淋巴中两种水解酶活力的影响. 海洋与湖沼,2002,33(3): 245-249.
    孙虎山,李光友. 脂多糖对栉孔扇贝血清和血细胞中 7 种酶活力的影响. 海洋科学,1999d,4: 54-59.
    孙虎山,李光友. 栉孔扇贝血淋巴中 ACP 和 AKP 活性及其电镜细胞化学研究,1999c,6(4): 6-9.
    孙虎山,李光友. 栉孔扇贝血淋巴中超氧化物歧化酶和过氧化氢酶活性及其性质的研究. 海洋与湖沼,2000b,37(3): 259-265.
    孙虎山,李光友. 栉孔扇贝血细胞的吞噬作用及其扫描电镜研究. 高技术通讯,2001c,11(4): 16-19.
    孙虎山,王海娜,王宜艳. 栉孔扇贝血淋巴中谷胱甘肽还原酶的活性研究. 海洋通报,2007,6: 108-112.
    孙虎山,王宜艳. 甲硫氨酸脑啡肽对栉孔扇贝血淋巴中 2 种自由基的影响. 海洋通报,2006,25(5): 29-35.
    孙虎山等. 大肠杆菌感染后栉孔扇贝血淋巴中 7 种酶活力的变化. 海洋科学,1999a,5: 40-44.
    孙虎山等. 栉孔扇贝血淋巴中酚氧化酶和髓过氧化物酶活性. 中国水产科学, 1999b,6(2): 9-13.
    王爱民,马春. 氧自由基对基因表达的作用. 生命的化学,1998,18(4): 25-26.
    王斌,李霞,高船舟. 皱纹盘鲍一种球形病毒的感染及发生. 中国病毒学,1997,12(4): 360-363.
    王崇明,刘英杰,王秀华,李赟. 栉孔扇贝急性病毒性坏死症(AVND)病理学观察与分析. 海洋水产研究, 2007, 28: 1-8.
    王崇明,宋微波等. 栉孔扇贝一种球形病毒的分离纯化及其超微结构观察. 水产学报, 2002, 26(2): 180-184.
    王崇明,王秀华,艾海新,李赟,贺桂珍,黄剑宇,宋微波. 栉孔扇贝大规模死亡致病病原的研究. 水产学报, 2004, 28(5): 547-553.
    王芳,王昭萍,董双林等. 盐度对二倍体和三倍体长牡蝠呼吸和排泄的影响. 海洋科学. 2003,27(6): 73-76.
    王江勇,陈毕生,冯娟等.杂色鲍裂壳病球形病毒的初步观察. 热带海洋,2000,19(4): 82-87.
    王金星,赵小凡. 无脊椎动物先天免疫模式识别受体研究进展. 生物化学与生物物理进展,2004,31: 112-117.
    王如才,王昭萍,张建中. 海水贝类养殖学. 青岛海洋大学出版社,1998:163-170.
    王文兴,罗挽诗,薛清刚等. 海湾扇贝消化盲囊衣原体样生物的病理学研究. 海洋科学,1998,(3): 23-25.
    王秀华,贺桂珍,李赟,王崇明,宋微波. 栉孔扇贝的急性病毒性坏死症(AVND)病毒多克隆抗体的制备及 ELISA 分析. 高技术通讯, 2003, 13(9): 84-88.
    王秀华,李赟,王崇明,艾海新,宋微波,贺桂珍. 急性病毒性坏死症病毒在栉孔扇贝不同器官的感染状况. 高技术通讯, 2003: 13(7): 93-96.
    王秀华,王崇明,李药,王祥红,郑桂丽,胡晓钟,龚俊,宋微波. 胶洲湾栉孔扇贝大规模死亡的流行病学调查. 水产学报,2002,26(2): 149-155.
    王宜艳, 孙虎山. 人工养殖栉孔扇贝和海湾扇贝血淋巴中部分免疫因子的比较研究. 水产科学,2005,24(12): 14-17.
    王宜艳,孙虎山,刘玉坤. 硒化壳聚糖对栉孔扇贝血细胞中部分免疫因子的影响. 海洋通报,2007,26(2): 117-120.
    王运涛,相建海. 栉孔扇贝大规模死亡的原因探讨. 海洋与湖沼,1999,30(6): 770-774.
    魏炜,张洪渊. 育珠蚌酸性磷酸酶活力与免疫反应关系的研究. 水生生物学报,2001,25(4): 413-415.
    吴信忠,潘金培,江静波.贝类病害学研究进展.贝类微生物病学研究.海洋通报, 1995,(14): 82-91.
    吴信忠,潘金培. 热带海洋珍珠贝类立克次氏体病研究大珠母贝病原类立克次氏体包涵体的组织学及超微结构研究. 海洋与湖沼,1999,(30): 73-79.
    吴信忠,宋微波. 海水养殖动物的免疫细胞培养和病害研究.第一版.山东科学技术出版社, 2001, 6-14,
    吴信忠. 海洋养殖贝类病害的流行状况及其控制对策. 南海资源开发研究,广州:广东经济出版社,1998,670-679.
    肖洁. 山东沿海养殖栉孔扇贝大批死亡原因的初步研究. 中国科学院研究生院硕士学位论文. 2002: 56.
    邢婧,战文斌,周丽. 栉孔扇贝(Chlamys farreri)血细胞类型及抗菌力的研究.青岛海洋大学学报,2005,自然科学版(1): 41-46.
    徐钢春,顾若波,闻海波,华丹,聂川. 环境胁迫对河蚬溶菌酶和超氧化物歧化酶活性的影响. 安徽农业大学学报,2007,34(1): 74-78.
    许秀芹,王宜艳, 孙虎山. 病毒感染对栉孔扇贝血细胞类型和功能的影响. 上海水产大学学报, 2007,16(3): 242-247.
    薛清刚, 张学雷, 王雷, 张志峰. 虾、贝类免疫反应基础及作用. 相建海主编: 海水养殖生物病害发生与控制. 2001, 海洋出版社: 74-84.
    杨晓岩,李天宝.王远隆等. 山东沿海栉孔扇贝大量死亡原因初探. 齐鲁渔业,1998,15(6): 17-19.
    姚翠鸾,王维娜,王安利. 水生动物体内超氧化物歧化酶的研究进展. 海洋科学,2003,27(10): 18-21.
    殷震,刘景华. 动物病毒学. 北京: 科学出版杜,1997,309-318.
    于平. 超氧化物歧化酶研究进展. 生物学通报,2006,41(1): 4-6.
    于瑞海,王如才,田传远,等. 栉孔扇贝太面积死亡的原因分析及预防探讨海洋湖沼通报,1998,(3): 69-72.
    余燕萍,石安静. 贝类血细胞研究进展. 动物学杂志,1998,33(5): 40-44.
    袁有宪,曲克明,陈聚法,等. 栉孔扇贝对环境变化适应性研究—温度对存活、呼吸、摄食及消化的影响. 中国水产科学, 2000, 7(3): 24-27.
    张福绥,杨红生. 山东沿岸夏季栉孔扇贝大规模死亡原因分析. 海洋科学,1999a: 44-47.
    张福绥,杨红生. 栉孔扇贝大规模死亡问题的对策与应急措施. 海洋科学,1999b: 38-42.
    张国范,李霞. 我国贝类大规模死亡的现状.中国水产, 1999(9): 34-39.
    张维翥,吴信忠,汪明. 海湾扇贝血细胞的表面结构及超微结构. 动物学报,2005,(3): 486-494.
    张玺,齐钟彦. 贝类学纲要. 科学出版社,1961,240.
    张治国. 三角帆蚌瘟病的研究,一种新的病毒病. 微生物学报,1986,26(4): 308-312.
    赵建民. 扇贝大防御素和G型溶菌酶的基因克隆与重组表达. 中国科学院研究生院博士学位论文,2006,104.
    郑国兴,李何,黄宁宇等. 文蛤病原菌(溶藻弧菌)的分离与性状及病文蛤组织的电镜观察. 水产学报,1991,15(2): 85-95.
    周永灿,潘金培. 贝类细胞和体液的防御机制研究进展. 水产学报,1997,21(4): 449-454.
    朱传华,王雨. 大珠母贝幼贝大批量死亡病原菌的分离鉴定. 南悔水产研究,1995,(10): 55-60.
    Adema CM, Van der Knaap WPW, Sminia J. Molluscan hemocyte-mediated cytotoxicity: the role of reactive oxygen intermediates. Aquatic Sciences, 1991, 4: 201-223.
    Anderson R.S. Hemocyte-derived reactive oxygen intermediate production in four bivalve mollusks. Dev. Comp. Immunol. 1994, 18(2): 89-96.
    Anderson R.S. Inducible hemolytic activity in Mercenaria mercenaria hemolymph. Dev. Comp. Immunol. 1981, 5(4): 575-85.
    Anderson R.S., Oliver L.M., Jacobs D. Immunotoxicity of cadmium for the eastern oyster (Crassostrea virginica). 1992, J Shellfish Res. 11: 31-35.
    Ashida M., et a1. Purification and characterization of prepheonoloxidase from hemolymph of the silkworm Bombyx morL. Arch. Biochem. Biophy. 1971,144: 749-762.
    Auffret M., Mujdzic N., Corporeau C., Moraga D. Xenobiotic-induced immunomodulation in the European flat oyster, Ostrea edulis. Mar. Environ. Res. 2002, 54(3-5): 585-9.
    Azevedo C., Villaba A. Excellular giant riekettsiae associated with bacteria in the gill of Crassostrea gigas (Mollusca.Bivaivia). Journal of Invertebrate Pathology, 1991,58:75-81.
    Bachali S., Bailly X., Jollès J., Jollès P., Deutsch J.S. The lysozyme of the starfish Asterias rubens. A paradygmatic type i lysozyme. Eur. J. Biochem., 2004, 271: 237–242.
    Bachali S., Jager M., Hassanin A., Schoentgen F., Jollès P., Fiala-Medioni A., Deutsch J.S. Phylogenetic analysis of invertebrate lysozymes and the evolution of lysozyme function. J Mol. Evol., 2002, 54: 652–664.
    Bachere E., Hervio D., Mialhe E. Luminol-dependent chemiluminescence by hemocytes of two marine bivalves, Ostrea edulis and Crassostrea gigas. Dis. Aquat. Organ. 1991, 11: 173-180.
    Bayne B.L., Hawkins A.J.S., Navarro E. Feeding and digestion by the mussel Mytilus edulis L. (Bivalvia: Mollusca) in mixture of silt and algal cells at low concentration. J. Exp. Mar. Biol.Ecol. 1987, 111: 1-22.
    Bayne B.L., Newell R.C. Physiological energetics of marine mollusks. The Mollusca, 1983, 4(1): 407-515.
    Bayne C. J. The Mollusca. Academic Press,1983,5: 407-500.
    Bayne C.J. Phagocytosis and non-self recognition in invertebrates. Phagocytosis appears to be an ancient line of defence. Bioscience 1990, 40: 723-31.
    Bayne C.J., Moore M.N. Hemolymph function in Mytilus californianus: the cytochemistry of hemocytes and their responses to foreign implants and hemolymph factors in phagocyosis. J Invertebr. Pathol. 1979, 34: 1-20.
    Beintema J.J., Terwisscha van Scheltinga A.C. Plant lysozymes. In: Jollès P. (Ed.), Lysozymes: Model Enzymes in Biochemistry and Biology, 1996. Vol.75. Birkh Verlag, Basel, Switzerland, pp.75–86.
    Beiras R., Perez Camacho A., Albentosa M., Short-term and long-term alternations in the energy budget of young oyster Ostrea edulis L. in response to temperature change. J. Exp. Mar. Biol. Ecol., 1995, 186: 221-236.
    Biggaar W.D., Sturgess J.M. Role of lyszoyme in the microbicidal activity of rat alveolar macrophages. Infect. Inununol., 1977, 16: 974-982.
    Blake C., Koening D. Structure of hen egg white lysozyme. Nature, 1965, 206: 757-758.
    Boman H.G., Faye I. Gudmundsson G.H. Cell-free immunity in ceropia. A model system for antibacterial proteins. Eur. J Biochem., 1991, 20(1): 23-31.
    Bravard A., Sabatier L., Hoffschir F., Ricoul M., Luccioni C., Dutrillaux B. SOD2: a new type of tumor-suppressor gene? Int. J Cancer., 1992, 51(3): 476-480.
    Brookman J.L.,RATCLIFFE N.A., ROWLEY A.F. Studies on the activation of the prophenoloxidase system of insects by bacterial cell wall components. Insect biochemistry, 1989, 19: 47-57.
    Brulle F., Mitta G., Cocquerelle C., Vieau D., Lemiere S., Lepretre A., Vandenbulcke F. Cloning and real-time PCR testing of 14 potential biomarkers in Eisenia fetida following cadmium exposure. Environ. Sci. Technol., 2006, 40(8): 2844-2850.
    Bulet P., Hetru C., Dimarcq J.L., Hoffmann D. Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol., 1999, 23: 329-344.
    Cake E. W. Larval cestode parasites of edible mollusks of the north-eastern gulf of Mexico. Gulf Res. Rep. 1997, 6: 1-8.
    Carfoot TH. Animal energetics. New York :Academic Press, 1987, 89-172.
    Canesi L, Betti M, Ciacci C, Lorusso LC, Pruzzo C, Gallo G. Cell signalling in the immune response of mussel hemocytes. ISJ 2006(3): 40-49.
    Cerenius L., S?derh?ll K. The prophenoloxidase-activating system in invertebrates. Immunological Reviews, 2004, 198 (1): 116-126.
    Charlet M., Chernysh S., Philippe H., Hetru C., Hoffmann J.A., Bulet P. Innate immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. J Biol. Chem. 1996, 271(36): 21808-21813.
    Chenery D.P. A summery of invertebrate leucocyte morphology with emphasis on blood elements of the manila clam Tapes semidecussarta. Biol. Bull. 1971, 140(3): 353-368.
    Cheng T C. Selective induction of release of hydrolases from Crassostrea virginica hemocytes by certain bacteria. J Ivertebr. Pathol., 1992, 59: 197-200.
    Cheng T. C., et al. Acid phosphatase in the granulocytic capsules formed in strains of Biomphalaria glabrata totally and partially resistant to Schistosoma mansoni. Int. J Parasitol. 1977, 7: 467-472.
    Cheng T. C., et al. An electron microscope study of the fate of bacteria phagocytized by granulocyte of Crassostrea virg nica. Contemp. Top Immunobiol. 1974, 4 : 25-35.
    Cheng T.C. Aspects of substrate utilization and energy requirement during molluscan phagocytosis. J. Invert. Pathol, 1976, 27: 263-268.
    Cheng T.C. Beta-glucuronidase in the serum and hemolymph cells of Mercenaria mercenaria and Crassostrea virginica (Mollusca:Pelecypoda). J Invertebr. Pathol., 1976, 27(1): 125-128.
    Cheng T.C. In vitro effects of heavy metals on cellular defense mechanisms of Crassostrea virginica: phagocytic and endocytic indices. J Invertebr. Pathol. 1988, 51: 215-220.
    Cheng T.C. The role of lysosomal hydrolases in molluscan cellular responses to immunologic challenge. Comp. Pathobiol. 1978, 4: 59-71.
    Cheng T.C. The role of lysosomes in molluscan inflammation. Am. Zool., 1983, 23: 129-144.
    Cheng T.C., Downs J.C. Intracellular acid phosphatase and lysozyme levels in subpopulations of oyster, Crassostrea virginica, hemocytes. J Invertebr. Pathol., 1988, 52(1):163-167.
    Cheng T.C., Rodrick G.E. Lysosomal and other enzymes in the hemolymph of Crassostrea virginica and Mercenaria mercenaria. Comp. Biochem. Physiol. B, 1975, 52(3): 443-447.
    Chou H.Y., Li H.J., Lo C.F. Pathogenicity of a birnavius to hard clam (Meretrix lusoria) and effect of temperature stress on its virulence. Fish Pathology, 1994, 29: 171-175.
    Christophides G.K., Zdobnov E., Barillas-Mury C., Birney E., Blandin S., Blass C., Brey P.T., Collins F.H., Danielli A., Dimopoulos G., Hetru C., Hoa,N.T., Hoffmann J.A., Kanzok S.M., Letunic I., Levashina E.A., Loukeris T.G., Lycett G., Meister S., Michel K., Moita L.F., Muller H.M., Osta M.A., Chu,F.L. Humoral defense factors in marine bivalves. Am. Fish Soc. Spec. Public 1988, 18: 178-188.
    Clark B.C. Feeding by oyster larvae: the functional response, energy budget and a cimparison with musssel larvae. J. Exp. Mar. Biol. Ecol. 1990, 137: 63-77.
    Coles J.A., Pipe R.K. Phenoloxidase activity in the haemolymph and haemocytes of the marine mussel Mytilus edulis. Fish Shellfish Immunol. 1994, 4: 337-352.
    ComPs M Epizootic disease of oysters associated with viral infections. In Disease Processes in Marine Bivalve Molluscs, ed. Fisher, W.S. Bethesda Maryland: American Fisheries Society Publication, 1988, 18: 23-27.
    Comps M., Cochennec N. A herpes like virus from the European oyster Ostera edulis J. lnvertebr. Pathol. 1993, 62(2): 201-203.
    Crisp D.J. Methods for the study of marine benthos. Blackwell Oxford. 1971, 197-279.
    Diguiseppi J.L., Fridovich I. Induction of superoxide dismutases in Escheriehia coli by manganese and iron. J Bacteriol. 1984, 160: 137-142.
    Downs C.A., Fauth J.E., Woodley C.M. Assessing the health of grass shrimp (Palaeomonetes pugio) exposed to natural and anthropogenic stressors: a molecular biomarker system. Mar. Biotechnol., 2001, 3(4): 380-397.
    Elston R A,Wilkinson M T.Pathology,management and diagnosis of oyster velar virus disease(OVVD). Aquaculture, 1985, 48: 189- 210.
    Elston R. Virus-like particles associated with lesions in larval pacific oyster (Crassostrea gigas). J. Inverter. Pahol. 1979, 33: 71-74.
    Farley C.A., Banfield W.G., Kasnic G., Foster W. S.Oyster herpes-type virus. Scienee, 1972, 178: 759-760.
    Feng S.Y. Cellular defense mechanism of oysters and mussels. Am. Fish Soc. Spec. Public 1988, 18: 153-168.
    Ford S.E. Range extension by the oyster parasite Perkinsus marinus into the northeastern united states: Response to climate change? Shellfish Research, 1996, 151: 45-56.
    Ford S.E., Alcox K.A., Kanaley S.A. Comparative cytometric and microscopic analyses of oyster hemocytes. J Invertebr. Pathol., 1994, 64: 114-122.
    Fryer S.E., Bayne C.J. Opsonization of yeast by the plasma of Biomphalaria glabrata(Gastropoda): a strain-specific,time-dependent process. Parasite Immunol., 1989a, 11(3): 269-278.
    Fryer S.E., Hull C.J., Bayne C.J. Phagocytosis of yeast by Biomphalaria glabrata: carbohydrate specificity of hemocyte receptors and a plasma opsonin. Dev. Comp. Immunol., 1989b, 13(1): 9-16.
    Fujimoto S., Toshimori-Tsuda T., Kishimoto K. Protein purification, cDNA cloning and gene expression of lysozyme from eri-silworm, Samia Cynthia ricini. Comp. Biochem. and Physio. B, 2001, 128: 709-718.
    Gao F.Y.,Ye X.,Bai J.J. cDNA cloning and expression characterization of lysozyme gene in two freshwater prawn. Acta Hydrobiologica Sinica, 2005, 29(6): 615-620.
    Gomori G. Microscopic histochemistry. Principles and prectice. Chicago : Chicago University Press, 1952, 189.
    Griffiths C.L., Griffiths R.J. Bivalvia in: T.L. Pandian and E.J. Vernberg(Editors), Animal energetics, Vol2, Academic press, New York, 1987, pp: 1-88.
    Grinde B, Jollès J, Jollès P. Purification and characterization of two lysozymes from rainbow trout (Salmo gairdneri). Eur. J Biochem., 1988, 173: 169-273.
    Grundy M.M., Moore M.N., Howell S.M., Ratcliffe N.A. Phagocytic reduction and effects on lysosomal membranes by polycyclic aromatic hydrocarbons, in haemocytes of Mytilus edulis. Aquat. Toxicol., 1996, 34: 273-290.
    Gulka G, Chang P.W., Marti K.A. Prokaryotic infection associated with a mass mortality of the sea scallop, Placopecten magellanicus. Journal of Fish Disease. 1983,6: 355-364.
    Hacker H., Mischak H., Miethke T., Liptay S., Schmid R., Sparwasser T., Heeg K, Lipford G.B., Wagner H. CpG-DNA-specific activation o antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. Embo. J. 1998, 17(21): 6230-6240.
    Harvell C.D., Kim K., Burkholder J.M., Colwell R.R., Epstein P.R., Grimes D. J., Hofmann E.E., Lipp E.K., Osterhaus A.D., Overstreet R.M., Porter J.W., Smith G.W., Vasta G.R. Emerging marine diseases-climate links and anthropogenic factors. Science, 1999, 285(5433): 1505-1510.
    Hégaret H., Wikfors G.H., Soudant P. Flow cytometric analysis of haemocytes from eastern oysters, Crassostrea virginica, subjected to a sudden temperature elevation: II. Haemocyte functions: aggregation, viability, phagocytosis, and respiratory burst. J Exp. Mar. Biol. Ecol., 2003, 293(2):249-265.
    Hellio C., Bado-Nilles A., Gagnaire B., Renault T., Thomas-Guyon H. Demonstration of a true phenoloxidase activity and activation of a ProPO cascade in Pacific oyster, Crassostrea gigas (Thunberg) in vitro. Fish & Shellfish Immunology, 2007, 22: 433-440.
    Hew C.L., Fletcher G.L. The role of aquatic biotechnology in aquaculture. Aquaculture, 2001(197): 191-204.
    Hikima J., Hirono I., Aoki T. Characterization and expression of c-type lysozyme cDNA from Japanese flounder (Paralichthys olivaceus). Mol. Mar. Biol. Biotechnol., 1997, 6(4): 339-344.
    Hikima J.,Minagawa S.,Hirono I., Aoki T. Molecular cloning,expression and evolution of the Japanese flounder goose-type lysozyme gene,and the lytic activity of its recombinant protein. Biochimica et Biophysica Acta, 2001, 1520(1): 35-44.
    Hikima S., Hikima J., Rojtinnakorn J., Hirono I., Aoki T. Characterization and function of kuruma shrimp lysozyme possessing lytic activity against Vibrio species. Gene 2003, 316: 187-195.
    Hine P.M., Wesney B, Hay B.E. Herpesvirus assoeiated with mortalities among hatchery-reared Pacific oysters, Crassostrea gigas. Dis. Aquat. Org., 1992, 20: 135-142.
    Hoffmann J.A., Kafatos F.C., Janeway C.A., Ezekowitz R.A. Phylogenetic perspectives in innate immunity. Science, 1999, 284(5418): 1313-1318.
    Howland K.H., Cheng T.C. Identification of bacterial chemoattractants for oyster (Crassostrea virginica) hemocytes. J Invertebr. Pathol., 1982, 39: 123-132.
    Hultmark D. Drosophila immunity: paths and patterns. Curr. Opin. Immunol., 2003, 15(1): 12-19.
    Hultmark D. Insect lysozymes. In:Jollès P. (Ed.), Lysozymes: Model enzyme in biochemistry and biology, 1996, Vol.75. Birkh Verlag, Basel, Switzerland, pp.87–102.
    Ito Y., Yoshikawa A., Hotani T., Fukuda S., Sugimura K., Imoto T. Amino acid sequences of lysozymes newly purified from invertebrates imply wide distribution of a novel class in the lysozyme family. Eur. J. Biochem., 1999, 259: 456–461.
    Iwanaga S. and Lee B.L. Recent Advances in the Innate Immunity of Invertebrate Animals. Journal of Biochemistry and Molecular Biology, 2005, 38(2): 128-150.
    Janeway C.A., Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol., 2002, 20: 197-216.
    Jiang H., Kanost M.R. The clip-domain family of serine proteinases in arthropods. Insect Biochem. Mol. Biol., 2000, 30(2):95-105.
    Johnson R.J., Couser W.G., Chi E.Y., Adler S., KlebanoffNew S.J. Mechanism for glomerular injury. Myeloperoxidase-hydrogen peroxide-halide system. J Clin. Invest., 1987, 79(5): 1379–1387.
    Jollès J., Fiala-Medioni A., Jollès P. The ruminant digestion model using bacteria already employed early in evolution by symbiotic molluscs. J Mol. Evol., 1996, 43(5): 523-527.
    Jollès J., Jollès P. The lysozyme from Asterias rubens. Eur. J. Biochem., 1975, 54: 19–23.
    Jollès P. From the discovery of lysozyme to the characterization of several lysozyme families. Experiential. Suppl., 1996, 75: 3–5.
    Jollès P., Jollès J. What’s new in lysozyme research? Mol. Cell. Biochem., 1984, 63: 165–189.
    Jyothirmayi G.N., P Venkateswara Rao. Possible origin of hemolymph phosphatases in trematode infected and in noninfected snails. J Invertebr. Pathol., 1988, 52: 373-379.
    Klebanoff S.J. Myeloperoxidase-Halide-Hydrogen Peroxide Antibacterial System. J Bacteriol., 1968, 95(6): 2131–2138.
    La Peyre J.F., Chu F.E., Myers J.M. Haemocytic and humoral activities of eastern and Pacific oysters following challenge by the protozoan Perkinsus marinus. Fish Shellfish Immun. 1995, 5: 179-190.
    Lackie A M. Invertebrate immunity. Parasitology, 1980, 80: 393 – 412.
    Larson K.G., Roberson B.S., Hetrick F.M. Effect of environmental pollutants on the chemiluminescence of hemocytes from the American oyster Crassostrea virginica. Dis. Aquat. Org., 1989, 6: 131-136.
    Le Deuff R., Renault T., et a1. 1996.Effects of temperature on herpes-like virus detection among hatchery-reared larval Pacific oyster Crassostrea gigas. Dis. Aquat. Org. ,24(2): 149-157.
    Le Gall G., Bachere E., Mialhe E. Chemiluminescence analysis of the activity of Pectin maximus hemocytes stimulated with zymosan and host-specific Rickettsiales-like organisms. Dis. Aquat. Organ 1991, 11: 181-186.
    Lee W.J., Brey P.T. Isolation and characterization of the lysozyme-encoding gene from the silkworm Bombyx mori. Gene, 1995, 161: 199-203.
    Leibovitz L. Shellfish disease. Mar. Fish. Rev. 1978, 40: 61-64.
    Lemaitre B., Reichhart J.M., Hoffmann J.A. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl. Acad. Sci. U S A 1997, 94(26): 14614-14619.
    LeMosy E.K., Hong C.C., Hashimoto C. Signal transduction by a protease cascade. Trends Cell. Biol., 1999, 9(3): 102-107.
    Liu M., Zhang S., Liu Z., Li H., Xu A. Characterization, organization and expression of AmphiLysC, an acidic c-type lysozyme gene in amphioxus Branchiostoma belcheri tsingtauense. Gene, 2006, 367: 110–117.
    Liu S.L., Jiang X.L., Hu X.K., Gong J., Hwang H., Mai K.S. Effects of temperature on non-specific immune parameters in two scallop species: Argopecten irradians (Lamarck 1819) and Chlamys farreri (Jones&Preston 1904). Aquat. Res., 2004, 35: 678-682.
    Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4): 402-408.
    Livingstone D., Lips F., Martnez P., Pipe R. Antioxidant enzymes in the digestive gland of the common mussel (Mytilus edulis L.). Mar. Biol., 1992, 112: 265- 276.
    Lopez C., Villalba A., Bachere E. Absence of generation of active oxygen radicals coupled with phagoc ytosis by the hemocytes of the clara, Ruditapes decussatus (Mollusca:Bivalvia). J Invertebr. Pathol. 1994, 64: 188-192.
    Lupiani B., Hetrick F.M., Samal S.K. Genetic analysis of Aquareoviruses using RNA-RNA hybridization. Virology, 1993, 197: 475-479.
    Manduzio H., Monsinjon T., Rocher B., Leboulenger F., Galap C. Characterization of an inducible isoform of the Cu/Zn superoxide dismutase in the blue mussel Mytilus edulis. Aquat. Toxicol., 2003, 64: 73-83, 2003.
    Manduzio H., Rocher B., Durand F., Galap C., Leboulenger F. The point about oxidative stress in mollusks. Invertebrate Survival Journal, 2005, 2(2): 91-104.
    Marta Monaria, Valerio Matozzoa, Jurgen Foschia, Maria Gabriella Marinb, and Otello Cattania. Exposure to anoxia of the clam, Chamelea gallina II: Modulation of superoxide dismutase activity and expression in haemocytes. J Exp. Mar. Biol. Ecol. 2005 325(2): 175-188.
    Medzhitov R., Janeway C.A. Innate immunity: the virtues of a nonclonal system of recognition. 1997b, Cell 91(3): 295-298.
    Medzhitov R., Janeway C.A. Innate immunity:impact on the adaptive immune response. Curr. Opin. Immunol., 1997a, 9(1): 4-9.
    Meyers T.R. A reo-like virus isolated from juvenile American oyster (Crassostrea virginica). J. Gen. Virol. 1979, 43: 203-212.
    Moore M.N., Lowe D.M. The cytology and cytochemistry of the hemocytes of Mytilus edulis and their responses to experimentally injected carbon particles. J Invertebr. Pathol., 1977, 29(1): 18-30.
    Mori K., Nakanishi T., Suzuki T. Defense mechanisms in invertebrates and fish. Tanpakushitsu Kakusan Koso, 1989, 34(3): 214-223.
    Morishima I., Yamada K., Ueno T. Bacterial peptidoglycan as elicitor of antibacterial protein synthesis in larvae of the silkworm, Bombyx mori. Insect Biochem. Mol. Biol., 1992, 22: 363-367.
    Munoz M., Cedeno R., Rodriguez J., Van Der Knaap W.P.W., Mialhe E., Bachere E. Measurement of reactive oxygen intermediate production in haemocytes of the penaeid shrimp, Penaeus vannamei. Aquaculture, 2000, 191(1-3): 89-107.
    Nakamura M., Mori K., Inooka S., Nomura T. In vitro production of hydrogen peroxide by the amoebocytes of the scallop, Patinopecten yessoensis (Jay). Dev. Comp. Immunol., 1985, 9(3): 407-417.
    Navarro E., Iglesias, J.I.P., Ortega M.M. Natural sediment as a food source for the cockle Cerastoderma edule (L.): effect of variable particle concentration on feeding, digestion and the scope for growth. J. Exp. Mar. Biol. Ecol. 1992, 156: 69-87.
    Navarro J.M. The effects of salinity on the physiological ecology of Choromytilus chorus (Molina, 1782) (Bivalvia: Mytilidae) J. Exp. Mar. Biol. Ecol. 1988, 22: 19-33.
    Navarro J.M., Winter J.E., Ingestion rate, assimilation efficiency and energy banlace in Mytilus chilensis in relation to size and different algal concentration. Mar. Biol. 1982, 67: 255-266.
    Newell R.C., Branch G.M. The influence of temperature on the maintenance of metabolic energy balance in marine invertebrates. Adv. Mar. Biol. 1980, 17: 329-396.
    Ni D., Song L., Gao Q., Wu L., Yu Y., Zhao J., Qiu L., Zhang H., Shi F.. The cDNA cloning and mRNA expression of cytoplasmic Cu, Zn superoxide dismutase (SOD) gene in scallop Chlamys farreri. Fish. Shellfish. Immunol., 2007, 23(5): 1032-1042.
    Nieolas J.L.,Comps M.,Cochennec N. Herpes-like virus infecting Pacafic oyster larvae,Crassostrea gigas. Bull. Eur. Ass. Fish Pathol., 1992,12: 11-13.
    Nilsen I.W., Myrnes B. The gene of chlamysin, a marine invertebrate type lysozyme, is organized similar to vertebrate but different from invertebrate chicken-type lysozyme genes. Gene, 2001, 269: 27–32.
    Nilsen I.W., Φverbo K., Sandsdalen E., Sandaker E., Sletten K., Myrnes B. Protein purification and gene isolation of chlamysin, a cold-active lysozyme-like enzyme with antimicrobial activity. FEBS Lett., 1999, 464: 153–158.
    Noel D., Bachere, E., Mialhe E. Phagocytosis associated chemiluminescence of hemocytes in Mytilus edulis (Bivalvia). Dev. Comp. Immunol., 1993, 17(6): 483-493.
    Norton J.H., Shepherd M.A., Prior H.C. Papova-like virus infeetion of thegolden- lipped pearl oyster, Pinctada maxima, from the Torres Strait, Australia. J. Invertebr. Pathol. 1993, 62: 198-200.
    Olsen M., Nilsen I.W., Sletten K., Myrnes B. Multiple invertebrate lysozymes in blue mussel (Mytilus edulis). Comp. Biochem. Physiol., 2003, 136B: 107–115.
    Oprandy J.J., Chang P.W., Pronovost A.D. et al. Isolation of a viral agent causing hematopoietic neoplasia in the soft-shell-clam, Mya arenaria. Journal of Invertebrate Pathology, 1981, 38: 45-51.
    Ottaviani E. Haemocytes of the freshwater snail Viviparus ater (Gastropoda, Prosobranchia). J Molluscan Stud., 1989, 55: 379-382.
    Ottaviani E., Aggazzotti G., Tricoli S. Kinetics of bacterial clearance and selected enzyme activities in serum and haemocytes of the freshwater snail Planorbarius corneus (L.) (Gastropoda, pulmonata) during the primary and secondary response to Staphylococcus aureus. Comp. Biochem. Physiol. A, 1986, 85(1): 91-95.
    Ottaviani E., Caselgrandi E., Petraglia F., Franceschi C. Stress response in the freshwater snail Planorbarius corneus (L.) (Gastropoda, Pulmonata): interaction between CRF, ACTH, and biogenic amines. Gen. Comp. Endocrinol., 1992, 87(3): 354-360.
    Parry H.E., Pipe R.K. Interactive effects of temperature and copper on immunocompetence and disease susceptibility in mussels (Mytilus edulis). Aquat. Toxicol., 2004, 69(4): 311-325.
    Paskewitz S.M., Reichhart J.M., Rzhetsky A., Troxler L., Vernick K.D., Vlachou D., Volz J., Von Mering C., Xu J., Zheng L., Bork P., Kafatos F.C. Immunity-related genes and gene families in Anopheles gambiae. Science, 2002, 298(5591): 159-165.
    Pedro E.S., Lucīa O., Mario M. Effect of temperatrue on oxygen consumption and ammonia excretion in the Calafia mother-of-pearl oyster,Pinctada mazatlanica(Hanley,1856). Aquaculture 2004, 229: 377-387.
    Pil Gue Joa, Yong Ki Choia, Cheol Young Choi. Cloning and mRNA expression of antioxidant enzymes in the Pacific oyster, Crassostrea gigas in response to cadmium exposure. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology., 2008, 147(4): 460-469.
    Pipe R K. Hydrolytic enzymes associated with the granular haemocytes of the marine mussel Mytil us edulis. Histochem. J, 1990, 22: 595-603.
    Pipe R.K., Coles J.A. Environmental contaminants influencing immunefunction in marine bivalve molluscs. Fish&Shellfish Immunology 1995, 5(8): 581-595.
    Pipe R.K.Differential binding of lectins to haemocytes of the mussel Mytilus eduHs. Cell and Tissue Research, 1990, (261): 261- 268.
    Pipe, R.K., Porte, C., Livingstone, D.R. Antioxidant enzymes associated with the blood cells and haemolymph of the mussel Mytilus edulis. Fish and Shellfish Immunology, 1993, 3: 221-233.
    Prager E.M. Adaptive evolution of lysozyme: changes in amino acid sequence, regulation of expression and gene number. In:Jollès P. (Ed.), Lysozymes: Model enzyme in biochemistry and biology. 1996, Vol.75. Birkh Verlag, Basel, Switzerland, pp.323–345.
    Qasba P.K., Kumar S. Molecular divergence of lysozymes and α-lactalbumin. Crit. Rev. Biochem. Mol. Biol., 1997, 32: 255–306.
    Rasmussen L.P.D. Virus associated granulomas in the marine mussel, Mytilus edulis, from three sites in Denmark. J. Invertebr. Pathol., 1986, 48: 117-123.
    Renault T., Le Deuff R., Cochennec N. Herpes like viruses associated with high mortality levels in larvae and spat of Pacific oysters Crassostrea gigas. Vet. Res., 1995, 26: 539-543
    Renault T., Le Deuff R., Cochennec N. et a1. Herpesviruses associated with mortalities among Pacific oyster Crassostrea gigas.J. Invertebr. Pathol., 1994. 64: 160 – 162.
    Renwrantz L., Daniels J., Hansen P.D. Lectin-binding to hemocytes of Mytilus edulis. Dev. Comp. Immunol., 1985, 9(2): 203-210.
    Roch P. Defense mechanisms and disease prevention in farmed marine invertebrates. Aquacultttre, 1999, 172: 125-145.
    Roh J.Y., Lee J., Choi J. Assessment of stress-related gene expression in the heavy metal-exposed nematode Caenorhabditis elegans: a potential biomarker for metal-induced toxicity monitoring and environmental risk assessment. Environ. Toxicol. Chem., 2006, 25(11): 2946-2956.
    Ruddell C.L. The fine structure of oyster agranular amebocytes from regenerating mantle wounds in the Pacific oyster, Crassostrea gigas. J Invertebr. Pathol., 1971a, 18(2): 260-268.
    Ruddell C.L. The fine structure of the granular amebocytes of the Pacific oyster, Crassostrea gigas. J Invertebr. Pathol., 1971b, 18(2): 269-275.
    Sami S., Faisal M., Huggett R.J. Alterations in cytometric characteristics of hemocytes from the American oyster Crassostrea virginica exposed to a polycyclic aromatic hydrocarbon (PAH) contaminated environment. Mar. Biol., 1992, 113: 247-252.
    Schlenk D., Garcia Martinez P., Livingstone D.R. Studies on myeloperoxidase activity in the common mussel, mytilus edulis L. Comparative Biochemistry and Physiology C, 1991, 99: 63-68.
    Sindermann C.J. Pollution-associated diseases and abnormalities of fish and shellfish: a review. Fish Bull., 1979, 76(4): 717-749.
    Solorzano L. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr., 1969, 14: 799-801.
    Song Y.L., Hsieh Y.T. Immunostimulation of tiger shrimp (Penaeus monodon) hemocytes for generation of microbicidal substances: analysis of reactive oxygen species. Dev. Comp. Immunol., 1994, 18(3): 201-209.
    Sotelo-Mundo R. cDNA cloning of the lysozyme of the white shrimp Penaeus vannamei. Fish Shellfish Immunology, 2003, 15: 325-330.
    Sotelo-Mundo R.R., Islas-Osuna M.A., de-la-Re-Vega E., Hernandez-Lopez J., Vargas-Albores F., Yepiz-Plascencia G. cDNA cloning of the lysozyme of the white shrimp Penaeus vannamei. Fish Shellfish Immunol., 2003, 15: 325-331.
    Sparks A.K. Inflammation and wound repair in bivalve mollusks. Am. Fish Soc. Spec. Public, 1988, 18: 139-152.
    Stefano G.B., Cadet P., Dokun A., Scharrer B. A neuroimmunoregulatory-like mechanism responding to stress in the marine bivalve Mytilus edulis. Brain Behav. Immun., 1990, 4(4): 323-329.
    Stickle W.B., Bayne B.L. Effects of temperature and salinity on oxygen consumption and nitrogen excretion in Thais (Nucella)lapillus(L.). J. Exp. Mar. Biol. Ecol. 1982, 58: 1-17.
    Suresh K., Mohandas A. Effect of sublethal concentrations of copper on haemocyte number in bivalves. J Invertebr. Pathol., 1990b, 55: 325-331.
    Suresh K., Mohandas A. Hemolymph acid phosphatase activity pattern in copper-stressed bivalves. J Invertebr. Pathol. 1990a, 55(1): 118-125.
    Suzuki T. Functions of hemocytes during the wound healing process in the pearl oyster. NOAA Technical Report NMFS, 1991, 111: 109-112.
    Takashi Kuda, Noriko Tsuda, Toshihiro Yano. Thermal inactivation characteristics of acid and alkaline phosphatase in fish and shellfish. Food Chemistry 2004(88): 543-548.
    Tamplin M.L., Fisher W.S. Occurrence and characteristics of agglutination of Vibrio cholerae by serum from the eastern oyster, Crassostrea virginica. Appl. Environ. Microbiol., 1989, 55(11): 2882-2887.
    Tunkijjanukij S., Giaever H., Chin C.Q. Sialic acid in hemolymph and affinity purigied lectins from two marine bivalves. Comp. Biochem. Physiol. B 1998, 119: 705-713.
    Vasta G.R., Cheng T.C., Marchalonis J.J. A lectin on the hemocyte membrane of the oyster(Crassostrea virginica). Cell Immunol., 1984, 88(2): 475-488.
    Wen C.M., Kou G.H., Chen S.N. Rickettsiaceae-like microorganism in the gill and Digestive gland of the hard clam, Meretrix lusoria Roading. Joumal of lnvertebrate Pathology, 1994, 64: 138-142.
    Widdows J, Bayne B.L. Temperature acclimation of Mytilus edulis with reference to its energy budget. J .Mar. Biol. Assoc. U.K. 1971, 51: 109-124.
    Wilbur, A.E. and Hilbish, T.J., Physiological energetics of the ribbed mussel Geukensia demissa in response to increased temperature. J. Exp. Mar. Biol. Ecol., 1989, 131(2):161-170.
    Winston G.W., Moore M.N., Kirchin M.A., Soverchia C. Production of reactive oxygen species by hemocytes from the marine mussel, Mytilus edulis: lysosomal localization and effect of xenobiotics. Comp. Biochem. Physiol. C 1996, 113(2): 221-229.
    Wootton E.C., Dyrynda E.A., Pipe R.K., Ratcliffe N.A. Comparisons of PAH-induced immunomodulation in three bivalve molluscs. Aquat. Toxicol. 2003a., 65(1): 13-25.
    Wootton E.C., Dyrynda E.A., Ratcliffe N.A. Bivalve immunity: comparisons between the marine mussel(Mytilus edulis), the edible cockle (Cerastoderma edule) and the razor-shell(Ensis siliqua). Fish Shellfish Immunol., 2003b, 15(3): 195-210.
    Xing J., Zhan W. Comparison of antigenicity among haemocytes of seven bivalve species by monoclonal antibodies against haemocytes of scallop (Chlamys farreri). Fish Shellfish Immunol., 2006, 20(4): 528-535.
    Xing J., Zhan W.B., Zhou L. Endoenzymes associated with haemocyte types in the scallop (Chlamys farreri). Fish Shellfish Immunol., 2002, 13(4): 271-278.
    Yoshino T.P., Cheng T.C. Experimentally induced elevation of aminopeptidase activity in hemolymph cells of the American oyster, Crassostrea virginica. J Invertebr. Pathol., 1976, 27(3): 367-370.
    Yukihira H., Klumpp D.W., Lucas J.S. Comparative effects of microalgal species and food concentration on suspension feeding and energy budgets of the pearl oysters Pinctada margaritifera and P. maxima (Bivalvia: Pteriidae). Mar. Ecol. Prog. Ser. 1998, 171: 71-84.
    Zhao J.M., Song L.S., Li C.H., Zou H.B., Ni D.J., Wang W., Xu W. Molecular cloning of an invertebrate goose-type lysozyme gene from Chlamys farreri, and lytic activity of the recombinant protein. Molecular Immunology, 2007, 44(6): 1198-1208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700