微波等离子推力器谐振腔的数值模拟与小推力测量实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波等离子推力器(Microwave Plasma Thruster—MPT)是一种新型的在研电热推进装置。在航天飞行器上有广阔的应用前景。本论文对MPT微波等离子体耦合流场进行了机理分析和数值模拟,建立了MPT的小推力测量系统,协同进行了MPT真空环境实验研究。主要工作如下:
     1.分析了MPT谐振腔内微波能量的转换过程,揭示了其内等离子体的形成是由MPT启动初期的强电场电离形成放电区过渡到稳定工作期的热电离形成稳态等离子体区这一物理本质;研究了影响MPT稳定工作的主要因素,指出微波有效功率与谐振腔内气体压强的匹配是维持等离子体稳定、避免等离子体消失、放电区熄灭的关键因素。
     2.采用时域有限差分(FDTD)法数值求解Maxwell方程,分析了MPT无加载谐振腔内的电磁场特性。对TM_(011)模,分析了隔板对谐振腔内电磁场分布及谐振频率的影响;对TEM模,分析了内导体形状、位置对谐振腔内电磁场分布的影响;以及它们对启动和稳定工作的影响。
     3.采用FDTD法求解Maxwell方程、有限体积法求解N-S方程、单温度局域热平衡模型求解等离子体参数,首次用全数值方法对MPT谐振腔进行了微波等离子体耦合流场的数值模拟,分别分析了TM_(011)和TEM两种模式各自的参数匹配关系及其对微波等离子体流场的影响;应用于小型化MPT时,指出了小型化设计参数的合理选取,即:小型化后的MPT,喉径小、工质流量小,消耗的微波功率也小。
     4.采用无护套的金属软波导管作为微波传输系统的弹性连件、天平式电磁反馈自动补偿的小推力测量装置,成功地实现了MPT自重与其产生的推力分离、解决了微波传输电缆对MPT小推力测量干扰的关键问题,在实现MPT小推力测量的实际应用中提高了测量精度和稳定性。
     5.在国内首次进行了MPT真空环境启动、稳定工作特性和性能实验,测取了MPT的性能参数曲线,研究了微波功率、工质气体流量等参数对MPT性能的影响。
Microwave Plasma Thruster (MPT) is a new studying type electro-thermal propulsive device. It has prospective application in spacecraft. In this thesis, the mechanism analysis and numerical simulation on the coupling flow field of microwave plasma within resonant cavity of MPT was discussed and the subsystem of small thrust measurement as well as the vacuum experimental study of MPT were completed. The main works as follows:
    1. The conversion process of microwave energy within resonant cavity of MPT was analyzed. The physical characteristic of forming plasma within resonant cavity was revealed, i.e. the forming mechanism is a switching process from the ionization caused by strong electric field at the initial stage of MPT's start to another ionization caused by Joule's heat at the stage of MPT's steady work. The main influencing factors of MPT's steady work were studied. Anther pointed out the matching between pressure in resonant cavity and microwave power is the determinant factor to the plasma whether stabilization or extinguishing.
    2. With the Finite-Difference Time-Domain (FDTD) method, the characteristic of electromagnetic field within the vacant resonant cavity was analyzed. For TMon model in cylindrical resonant cavity, the influence of the position, material and thickness of the clapboard on electromagnetic field and resonant frequency was studied. For TEM model in coaxial resonant cavity, the influence of shape and position of inner conductor on electromagnetic field, start-up and steady work was studied.
    3. With the FDTD method to solve the Maxwell equations, with the finite-volume method to solve the N-S equations and with the single temperature local thermal equilibrium to solve plasma, first time to adopt the method of all numerical simulation, the coupling flow field of microwave plasma within resonant cavity of MPT was analyzed. For TM011 model and TEM model, the matching relation between various parameters and its influence on the coupling flow field of microwave plasma within resonant cavity of MPT was studied separately. The reasonable selection of miniaturization design parameters was pointed out in the numerical simulation to be used in MPT miniaturization, i.e. throat, gas flux and microwave power should be smaller suitable after miniaturization.
    4. Two key problems were solved: 1) to cancel the disturb of microwave cable rigidity on small thrust measurement of MPT adopting soft wave-guide without jacket as elastic linker, 2) to successfully realized separation of self-weight and thrust of MPT adopting small thrust measurement device of balance type, electromagnetic feedback and automatically compensation. So, the measurement precision
    
    
    and stability were greatly raised in actually application of small thrust measurement device.
    5. Experimental study on start-up, steady work and performance of MPT were completed first time in China. The performance curves of MPT were obtained and the influence of parameters such as microwave power, gas flux, etc. on performance was studied.
引文
[1] 中国航天工业总公司《世界导弹与航天发动机大全》编辑委员会.世界导弹与航天发动机大全.军事科学出版社,1999.
    [2] 陈熙.高温电离气体的传热与流动.科学出版社,1993.
    [3] 陶文铨.数值传热学.西安交通大学出版社,1988.
    [4] 陈汉平.计算流体力学.水利电力出版社,1995.
    [5] 苏铭德,黄素逸.计算流体力学基础.清华大学出版社.
    [6] S.V.Patanker著,郭宽良译.传热与流体流动的数值计算.安徽科学技术出版社,1984.
    [7] 方丁酉.两相流动力学.国防科技大学出版社,1988.
    [8] 马铁忧.计算流体力学.北京航空学院出版社,1988.
    [9] 吴其芬,陈伟芳.高温稀薄气体热化学非平衡流动的DSMC方法.国防科技大学出版社,1999.
    [10] 应嘉年,顾茂章,张克潜.微波与光导波技术.国防工业出版社,1996.
    [11] 贺瑞霞,陈振国,伊书明,王守平.微波技术基础.人民邮电出版社,1988.
    [12] 陈振国.微波技术基础与应用.北京邮电大学出版社,1996.
    [13] 陈国瑞,华荣喜,李春晖.工程电磁场与电磁波.西北工业大学出版社,1990.
    [14] 罗惠萍,马冰然等.电磁场与微波技术(上、下册).华南理工大学出版社,1991.
    [15] Bhag Singh Guru著,周克定等译.电磁场与电磁波.机械工业出版社,2000.
    [16] 陈孟尧主编.电磁场与微波技术.高等教育出版社,1989.
    [17] 吴明英,毛秀华.微波技术.西北电讯工程学院出版社,1985.
    [18] [日] 小沼光晴著,张光华编译.等离子体与成膜基础.国防工业出版社,1994.
    [19] 金佑民,樊友三.低温等离子体物理基础.清华大学出版社,1983.
    [20] [美] N.A.克拉尔,A.W.特里维尔皮斯.等离子体物理学原理.原子能出版社,1983.
    [21] 国家自然科学基金委员会.等离子体物理学.科学出版社,1994.
    [22] [美]J.R.罗思.工业等离子体工程,第Ⅰ卷,基本原理.科学出版社,1998.
    [23] 徐学基,诸定昌.气体放电物理.复旦大学出版社,1996.
    [24] 杨津基.气体放电.科学出版社.1983.
    [25] 毛根旺,何洪庆,杨涓.微波等离子推进系统(MPT)可行性论证.研究报告,1998.
    [26] 孙再庸.微波电热推进器的数值模拟.西北工业大学博士学位论文,1997.
    [27] 马鸿雅.MET中等离子体流动的分析与计算.西北工业大学硕士学位论文,1997.
    [28] 韩先伟.微波等离子推力器(MPT)地面实验系统建设和(尾)羽流流动计算.西北工业大学硕士学位论文,2000.
    [29] 杨涓.微波等离子推力器地面原理实验系统研制.西北工业大学博士学位论文,2001.
    
    
    [30] 黄晓砥.微波等离子推力器的启动与稳定工作探索研究.西北工业大学硕士学位论文,2001.
    [31] 毛根旺,何洪庆.空间电推进研究MPT原理性样机研制与性能估算.GF报告,2001.
    [32] 何洪庆.特种火箭发动机发展现状与趋势.宇航学会第四届液体火箭推进专业委员会学术研讨论文集,2000.7.南京.
    [33] 何洪庆.几种重要电推力器的发展和应用.空间推进技术现状与发展会议论文集.2000.10.宁波.
    [34] G.Saccoccia. Overview European Electric Propulsion Activities. AIAA 2001-3228.
    [35] R.Joseph Cassady. Overview of Major U.S. Industrial Program in Electric Propulsion. AIAA 2001-3226.
    [36] J.Dunning. NASA's Electric Propulsion Program: Technology Investments for the New Millenium. AIAA-2001-3224.
    [37] O.A.Gorshkov, A.S.Koroteev and B.A.Arkhipov, etc. Overview of Russian Activities in Electric Propulsion. AIAA-2001-3229.
    [38] 汪兆凌,汪南豪.稳态等离子体电推进技术的发展和应用.宇航学会第四届液体火箭推进专业委员会学术研讨论文集,2000.7.南京.
    [39] 汤海滨,刘宇,张振鹏.小功率电弧等离子体发动机实验系统研究概述.宇航学会第四届液体火箭推进专业委员会学术研讨论文集,2000.7.南京.
    [40] 吴建军,张传胜.电推进发动机及其实验室研究.空间推进技术现状与发展会议论文集.2000.10.宁波.
    [41] 康小录.稳态等离子推力器低功率工作模式的实验研究.空间推进技术现状与发展会议论文集.2000.10.宁波.
    [42] 吴建军,张传胜.离子发动机工作原理及其关键技术.空间推进技术现状与发展会议论文集.2000.10.宁波.
    [43] Melvin A. Herlin and Sanborn C. Brown. Microwave Breakdown of a Gas in a Cylindrical Cavity of Arbitrary Length. Physical Review, Vol.74, No. 11, December, 1,1948.
    [44] Sanborn C. Brown and A. D. MacDonald. Limits for the Diffusion Theory of High Frequency Gas Discharge Breakdown. Physical Review, Vol.76, December, 1,1949.
    [45] D.A.Schwer, S.Venkateswaran and C.L.Merkle. Analysis of Microwave-Heated Rocket Engines for Space Propulsion. AIAA 93-2105.
    [46] 宁兆元,任兆杏.电子回旋共振(ECR)等离子体的研究和应用.物理学进展.1992,12(1).
    [47] J.Kugelberg, A.Jordung, S.Persson, P.Rathsman, L.Granholm. Accommodating Electric Propulsion on a Small Spacecraft. IAF-00.S.4.09.
    [48] A.D.Macdonald and Sanborn C.Brown. High Frequency Gas Dischange Breakdown in Helium.
    
    Physical Review, Vol.75, February, 1,1949.
    [49] Melvin A.Herlin and Sanborn C.Brown. Breakdown of a Gas at Microwave Frequencies. Physical Review, Vol.74, August, 1,1948.
    [50] 胡希伟.气体放电击穿过程的物理和数值研究.核聚变与等离子体物理,Vol.14,No.1,1994.
    [51] 叶超等.轴向二极场MWECR-CVD系统等离子体特性的实验研究.核聚变与等离子体物理,Vol.15,No.4,1995.
    [52] A.D.Macdonald and Sanborn C.Brown. High Frequency Gas Dischange Breakdown in Hydrogen. Physical Review, Vol.76, No. 11, December, 1,1949.
    [53] Melvin A.Herlin and Sanborn C.Brown. Electrical Breakdown of a Gas Between Coaxial Cylinders at Microwave Frequencies. Physical Review, Vol.74, No.8, October, 15,1948.
    [54] 毛根旺,韩先伟,杨涓等.微波电热推力器启动与稳定过程的实验观测.宇航学报.Vol.21增刊2000.11.
    [55] 杨涓,何洪庆,毛根旺,万伟.微波电热推力器谐振腔内电磁场数值仿真.宇航学报Vol.21增刊 Nov.2000
    [56] 高本庆.时域有限差分法FDTD Method.北京:国防工业出版社,1995.3
    [57] 王长清 祝西里.电磁场计算中的时域有限差分法.北京:北京大学出版社,1994.
    [58] 倪光正,钱秀英等.电磁场数值计算.高等教育出版社,1996.
    [59] 毛根旺,何洪庆,杨涓,史韶莉.微波等离子推力器(MPT)的应用探索研究.推进技术,1998.3.
    [60] 毛根旺.GSO卫星先进推进系统的现状与发展.推进技术,1999,1.
    [61] 杨涓,何洪庆,毛根旺,史韶莉.微波等离子推力器性能预示的工程算法.推进技术,1998.6.
    [62] 杨涓,何洪庆,毛根旺,史韶莉.微波等离子推力器微波模式的合理选择.推进技术,1999.1.
    [63] V.P.Chiravalle, R.B.Miles and E.Y.Choueiri. Numerical Simulation of Microwave Sustained Superonic Plasmas for Application to Space Propulsion. AIAA-2001-0962.
    [64] K.Sankaran, L.Martinelli and E.Y.Choueiri. A Flux-Limited Numerical Methed for the MHD Equations to Simulate Propulsive Plasma Flows. AIAA-2000-2350.
    [65] K.Sankaran, E.Y.Choueiri and S.C.Jardin. Application of a New Numerical Solver to the Simulation of MPD Flows. AIAA-2000-3537.
    [66] K.Sankaran and E.Y.Choueiri. An Accurate Character of MHD Equations. IEPC-99-208.
    [67] D.Nordling, F.Souliez, M.M.Micci. Low-Power Microwave Arcjet Testing. AIAA 98-3499.
    [68] F.J.Souliez, S.G.Chianese, G.H.Dizac and M.M.Micci. Low-Power Microwave Arcjet Testing: Plasma and Plume Diagnostics and Performance Evaluation. AIAA 99-2717.
    [69] D.Nordling and M.M.Micci. Low-Power Microwave Arcjet Performance Testing. IEPC 97-089.
    [70] 魏延明,姜睿.电推进技术的发展研究.航天工业总公司第502研究所,研究报告,1999.
    
    
    [71] Linda Voss. New Thrust for U.S. satellites. Aerospace America, February 2000.
    [72] 陈熙.高频热等离子体发生器数值模拟最近进展.力学进展,Vol.21,No.3,1991.
    [73] 刘明海,胡希伟.ECR等离子体源中基本参数的数值模拟.核聚变与等离子体物理,Vol.18,No.2,1998.
    [74] 孙再庸,何洪庆.微波电热推力器钝头体方案的性能计算.推进技术,2000.6.
    [75] S.Whitehair and J.Asmussen. Microwave Electrothermal Thruster Performance in Helium Gas. Journal of Propulsion and Power, 3:136~144, 1985.
    [76] P.Balaam and M.M.Micci. Investigation of Stabilized Resonant Cavity Microwave Plasmas for Propulsion. Journal of Propulsion and Power, 11:1021~1027, 1995.
    [77] S.Venkateswaran and C.L.Merkle. Numerical Investigation of Bluff-Body Stabilized Microwave Plasams. Journal of Propulsion and Power, 11:357~364, 1995.
    [78] J.M.G.Chanty, etc. Two-dimensional Numerical Simulation of MPD Flows. AIAA-87-1090, 1987.
    [79] H.J.Kaeppeler C.Boie, etc. Application of Adaptive Numerical Schemes for MPD Thruster Simulation. IEPC-97-115, 1997.
    [80] J.Heiermann, etc. Recent Improvements of Numerical Methods for the Simulation of MPD Thruster Flow on Adaptive Meshes. IEPC-99-169, 1999.
    [81] Venkateswaran, S., D.A.Schwer and C.L.Merkle. Numerical Investigation of Waveguide-Heated Microwave Plasmas. Journal of Fluids Engineering, 1993.
    [82] Venkateswaran, S. and C.L.Merkle. Numerical Investigation of Bluff Body Stabilized Microwave Plasmas. AIAA Paper 91-1503.
    [83] M.C.Hawley and T.J.Morimand. Review of Research and Development of Microwave Electrothermal Thruster. AIAA-89-5620.
    [84] 廖宏图,吴铭岚,汪南豪.电弧喷射器流场模拟中电场计算的多重网格法.推进技术,1999,20(5).
    [85] 程雪玲,张平.燃气源开槽导管三维流场的数值模拟.推进技术,1999,20(4).
    [86] 徐旭,张振鹏.用TVD方法模拟喷管内的横流流场.推进技术,1997,18(5).
    [87] 严泽想,陶智.非交错网格求解传热及流体流动.推进技术,1997,18(5).
    [88] 曲东才.虚拟仪器技术及其在航空测试领域中的应用.航空计测技术,Vol.20,2000(6).
    [89] 赵宝瑞,李晶.电火箭微小推力自动测量装置研究.导弹与航天运载技术,2000.2.
    [90] 赵宝瑞,李晶.动态小推力自动测量装置.发明专利,专利号:99121886.8.
    [91] 汤海滨,刘宇,赵宝瑞,李晶.一种电推力器用小推力测量系统.推进技术,2001.4.
    [92] Hang T W, Curran F M. Arcjet starting reliability: a multistart test on hydrogen/nitrogen[R]. AIAA 87-1061.
    [93] Willmes G F, Burton R L. Performance measurements and energy losses in a 100 Watt pulsed arcjet[R].
    
    AIAA 96-2966.
    [94] John L. Power. Microwave Electrothermal Propulsion for Space. IEEE Transactions on Microwave Theory and Techniques. Vol.40, No.6. June, 1992.
    [95] P.Balaam and M.M.Micci. Performance Measurements of a Resonant Cavity Electrothermal Thruster. IEPC-91-031.
    [96] Thomas L.Keiser and Michael M.Micci. Application of Microwave Thrusters for Stationkeeping and Orbit Raising on the INTELSAT Series CommanicationSatellites. IAF-90-228.
    [97] H.Kuninaka, I.Funaki, Y.Shimizu and K.Toki. Status on Endurance Test of Cathode-less Microwave Discharge Ion Thruster. AIAA 98-3647.
    [98] M.J.Wilson, S.S.Bushman and R.L.Burton. A Compact Thrust Stand for Pulsed Plasma Thrusters. IEPC97-122.
    [99] GJ.Yashko, G.B.Giffin, D.E.Hastings. Design Considerations for Ion Microthrusters. IEPC 97-072.
    [100] S.Haraburda and M.Hawley. Investigations of Microwave Plasmas Applications in Electrothermal Thruster Sydtems. AIAA 89-2378.
    [101] K.D.Diamant, J.E.Brandenburg, and R.B.Cohen, et al. Performance Measurements of a Water Fed Microwave Electrothermal Thruster. AIAA 2001-3900.
    [102] T.Morin, R.Chapman, J.Filpus, et al. Measurements of Energy Distribution and Thrust for Microwave Plasma Coupling of Electrical Energy to Hydrogen for Propulsion. AIAA-82-1951.
    [103] 吴汉基,冯学章,等,地球静止卫星南北位置保持控制系统的选择[J],中国空间技术,1994(5) .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700