胶粉/废砂/水泥混凝土材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
废橡胶、铸造废砂的产生量在逐年增加,目前为止,对其处理的主要方式是露天堆放或填埋,这给环境造成严重的污染。现有的资源化利用由于生产规模小、耗资大、成本高、工艺复杂,而未能得到推广应用。
     论文以废橡胶制成的胶粉、废砂为主要研究原料,配合水泥、天然集料制备了胶粉/废砂/水泥混凝土材料。所制备的复合材料性能较优,在冲击韧性、抗渗性能、耐磨性能和防滑性能等方面超越了未掺入胶粉和废砂的基准试件(普通混凝土材料)的性能。
     论文从三大部分,即胶粉/水泥混凝土材料性能研究、废砂/水泥混凝土材料性能研究和胶粉/废砂/水泥混凝土材料性能研究,展开胶粉对混凝土复合材料性能的影响、废砂对混凝土复合材料的性能影响以及胶粉和废砂协同对混凝土复合材料性能的影响的研究。
     胶粉作为弹性体掺入到混凝土中,能够抑制微裂缝的产生和发展,并吸收震动能,改善混凝土的抗冲击性能,提高混凝土的抗震性能、延伸性能和抗渗性能,还可以提高混凝土的防滑性能等;同时由于胶粉自身的特性,即弹性好、刚性低,会导致混凝土复合材料的抗压强度和抗折强度的降低。论文中,对胶粉的改性处理方法为分别采用NaOH饱和溶液和不同浓度的硅烷偶联剂溶液对胶粉进行浸泡,研究了胶粉改性前后对胶粉/水泥混凝土材料性能的影响。研究结果表明,当胶粉掺量为6%左右时,(论文中选择最佳掺量为4%~8%)、硅烷偶联剂的浓度为0.10时,胶粉/水泥混凝土材料的抗冲击性能、延伸性能、抗渗性能和防滑性能最好。较未掺入胶粉的基准混凝土相比,分别提高了41.7%、230%、44.1%和7.8%;较掺入未改性胶粉的混凝土复合材料相比,分别提高了33.5%、150%、38.1%和1.9%;比掺入NaOH改性胶粉的混凝土复合材料也提高了很多,同时该掺量的胶粉对混凝土复合材料的强度影响也不大。此外,论文从微观方面阐述了胶粉对胶粉/水泥混凝土材料性能的影响机理。
     废砂作为增强体,取代部分天然细集料,可以提高废砂/水泥混凝土材料的抗压强度和抗折强度;同时一定程度上对混凝土复合材料的耐磨性能和冲击韧性的提高也有一定的贡献。试验中,对废砂的改性方法为采用不同添加量、不同模数的水玻璃溶液浸泡废砂,研究了废砂改性前后对混凝土复合材料性能的影响。试验结果表明,当废砂取代率在40%~60%、水玻璃的添加量为2.5%、模数为2.4时,废砂/水泥混凝土材料的综合性能最好,较未加入废砂的基准混凝土,抗压强度和抗折强度相比,分别提高了20.1%和17.8%;较加入未改性废砂的混凝土复合材料相比,抗压和抗折强度分别提高了11.1%和10.2%。此外,论文从废砂表面残留的高模数水玻璃的溶解以及该溶解物与水泥水化生成物—氢氧化钙晶体之间的作用,阐述了废砂对混凝土复合材料性能提高的作用机理。
     论文中,对胶粉和废砂协同对胶粉/废砂/水泥混凝土材料性能的影响进行了分析,胶粉和废砂的改性工艺及优化参数分别参考前面相应两方面的研究结果。分析结果表明,当胶粉的掺量为6%,废砂取代率为60%时,二者的协同效果最好,即对胶粉/废砂/水泥混凝土材料性能的提高贡献最大,较基准混凝土、胶粉/水泥混凝土材料和废砂/水泥混凝土材料的综合性能更优。
     此外,论文中对胶粉掺量和胶粉/废砂/水泥混凝土材料弹性模量、抗压强度之间的关系进行了分析,并利用复合材料的复合规律建立了相关模型,为以后的相关研究提供一定的见解。
     最后,论文对胶粉/废砂/水泥混凝土材料在路面上的应用进行了模拟研究。
The object of this topic research is the cement-base composite material what is composed of rubber powder, discarded foundry water glass sand, and cement. Compared with normal concrete this composite material has high impact ductility, impermeability, abrasive resistance etc. This topic mainly carry out an analysis various function of this kind of compound material.
     When we mix rubber powder as elastic into concrete (called rubber concrete),rubber powder can suppress creation and development of micro-crack, absorb vibrating energy, improve impact ductility, extensibility, impermeability and non-skid property. Impact ductility of rubber concrete is higher when rubber powder is treated by KH550 (called JFK) than it is not(called JFW).
     Mixed with JFW rubber concrete we call JFW-C, the other we call JFK-C, we compared performance of them in topic research.
     JFK's influence on elastic modulus of rubber concrete is lower than JFW. When J/C raised from 0% to 40%, elastic modulus of rubber concrete decreased from 2.1×10~4MPa to 0.7×10~4MPa. But Poisson ratio's trend is on the contrary, it is setupping, when J/C is 40%, Poisson ratio reaches 0.4. Mixed rubber powder into concrete , the stress strain curve's sloping portion becomes very obvious, moreover the sloping portion gets longer as long as the amount of JFK mixed into concrete raises, that is to say concrete's extensibility becomes better and better. When J/C's vatiation range is 8%-10%, concrete's extensibility is best.
     Mixed JFW into concrete , only when J/C is 8% impact ductility of JFW-C can be raised a little bit .when J/C becomes greater than 8%, impact ductility of concrete begin to decrease. Mixed JFK into concrete, when J/C is between 2%-10%, impact ductility of JFK-C is higher than normal concrete, along with the increase of J/C , impact ductility is stepupping.
     JFK-C's Cl~(-1) diffusion coefficient is less than JFK-C's .When J/C is 6% , JFW-C's impermeability is best. Along with increase of J/C, JFK-C's D_c begins to decrease, when J/C becomes 8%, JFK-C's D_c is at the lowest notch, JFK-C's impermeability is best.
     JFW-C's non-skid property is much the same as JFK-C's. Along with the amount of rubber powder mixed into concrete increasing, non-skid property becomes better. when J/C is 20%, non-skid property is best, then BPN trends gently, non-skid property stops to raise.
     In addition, mixed rubber powder into concrete would make concrete's compressive strength, flexutal strength decrease , restrict the applied situation of rubber concrete. This topic studied to suitable compounding chemicals what is used to improve the strength of interface combine between rubber powder and concrete's basal body , prevent concrete's compressive strength, flexutal strength from decreasing. In this topic, we researched and compared compressive strength, flexutal strength of three kind of rubber concrete, what is mixed untreated rubber powder(called JFW), NaOH treated rubber powder(called JFN), KH550 resin acceptor treated rubber powder(called JFK).
     Compressive strength, flexutal strength of rubber concrete decreased a big drop, when concrete mixed with JFW whose grain diameter is 40 or 60 mu. Along with the amount of JFW mixed into concrete increasing, compressive strength (3d, 7d, 28d) of rubber concrete descended. There is a similar discipline that is compressive strength decreases slightly when J/C is between 0%-10%, decreases badly when J/C is between 10%-20%,and decreases slightly when J/C is between 20%-50% when mixed rubber powder's grain diameter is 40 and 60 mu.
     Take grain diameter as an example, two kinds of JFW whose grain diameter is 40 or 60 mu influence compressive strength of concrete likely, only JFW whose grain diameter is 60 mu would influence strength remarkably than 40 mu.
     Along with increasing of the amount of input JZW, compressive strength of rubber concrete descends. When J/C is between 0%-10%, flexutal strength of rubber concrete decreases slowly; When J/C is between 10%-20%, flexutal strength of rubber concrete decreases badly; When J/C is between 0%-10%, flexutal strength of rubber concrete decreases slowly again.
     3d, 7d and 28d compressive strength, flexutal strength of JFN-C are higher than JFW-C. When J/C is greater than 8%, compressive strength, flexutal strength of JFN-C decreases badly.
     When J/C is between 0%-10%, JFK has little influence on compressive strength, flexutal strength of rubber concrete; When J/C is between 10%-20%, compressive strength, flexutal strength of JFK-C decreased badly; When J/C is greater than 20%, compressive strength, flexutal strength of JFK-C decreased slowly. As stated above, JFK, JFW, JFN have similar influence on rubber concrete performance.
     JFK-10's influence on compressive strength, flexutal strength of rubber concrete is less than JFK-05, JFK-15.JFK-10 is treated by KH550 resin acceptor solution whose thickness is 10%.
     Furthermore, this topic also mix waste foundry glass sand into concrete substituting natural fine sand in concrete. Waste foundry glass sand can raise 28d compressive strength proved by experiment.
     When the amount of waste foundry glass sand mixed into concrete is between 0%-60%, compressive strength of concrete raises gently; When the amount of waste foundry glass sand mixed into concrete is 60%, compressive strength of concrete raises highest; When the amount of waste foundry glass sand mixed into concrete is greater than 80%, compressive strength of concrete is less than normal concrete. At the same time, compressive strength of concrete mixed treated waste foundry glass sand is higher than didn't treat.
     When waste foundry glass sand has been treated, compressive strength of concrete raised obviously. When ZSW/XS is 60%, compressive strength of concrete raised 54.2MPa, it's highest. When ZSC/XS is 60%, compressive strength of concrete raised 57.1 MPa.
     Waste foundry glass sand's influence on flexutal strength of concrete is similar with influence on compressive strength of concrete. When waste foundry glass sand hasn't been treated, along with increasing input waste foundry glass sand, flexutal strength of concrete raises slowly. When waste foundry glass sand has been treated, along with increasing input waste foundry glass sand, flexutal strength of concrete raises obviously. When ZSC/XS is between 40%-60%, flexutal strength of concrete raises highest, then begins to decrease.
     In addition, when waste foundry glass sand has been treated, it also can raise abrasive resistance of concrete obvious. Along with increasing the amount of waste foundry glass sand mixed into concrete, elastic modulus of concrete raised firstly and then decreased, this tendency is similar with impact ductility, and when ZS/XS is about 40%, elastic modulus of concrete raised highest, when ZS/XS is about 60%, impact ductility of concrete raised highest.
     After analyzing rubber powder and used sand's influence on this composite material, this topic carried on a comprehensive experiment analysis. Experiment proved that when rubber powder had been treated by KH550 resin acceptor-KH550, it can raise strength of combine between rubber and basal body in concrete and strength of concrete significantly. At the same time, mix waste foundry glass sand into concrete also can raise strength of concrete, because the solution what is formed by water glass colloid and compounding chemicals can produce reaction with Ca(0H)2 generates calcium silicate colloid. So mix waste foundry glass sand into concrete can grow down the downside influence on strength of concrete which caused by rubber powder, simultaneously also reuse waste foundry glass sand.
     Finally, this topic investigates the composite material's feasibility in practical application. the composite material substitutes road material will raise wear-resisting property, impact ductility, impermeability, thus increases of service life of road material.
引文
[1]何永峰,刘玉强编 著.胶粉生产及其应用—废旧橡胶资源化新技术[M].北京:中国石化出版社出版,2001.
    [2]Adhikari B,De D,Maiti S.Reclamation and recycling of waste rubber[J].Prog Polym Sci,2005,25(11):909-948.
    [3]黄相国,文武,邵春岩.废弃高分子材料的综合处理[J].合成树脂及塑料,2001,18(2):58-61.
    [4]李岩,张勇.废橡胶的国内外利用研究现状[J].合成橡胶工业,2003,26(1):59-61.
    [5]范仁德.废橡胶综合利用的现状及发展方向[J].橡胶工业,1989,36(1):49-53.
    [6]范仁德.废橡胶的回收利用[J].中国橡胶,1995(15):5-6.
    [7]程时捷.废橡胶的回收利用[J].湖北化工,1995(4)43-45.
    [8]B.Adhikari,S.Maiti.Reclamation and recycling of waste rubber[J].Progress in Polymer Science,2000(25):909-948
    [9]J.H.Pieter,B.van,M.A.Janssen.Trade and recycling of used tyres in Western and Eastern Europe[J].Resources Conservation and Recycling,2001(33):235-265
    [10]V.K.Sharma,F.Fortuna,M.Mincarini.Disposal of waste tyres for energy recovery and safe environment[J].Applied Energy,2000(65):381-394
    [11]Hans Schrama,Michael Blumcnthal,Edwad C Weatherhead.A survey of burning technology for cement industry[R].IEEE Cement Industry Technical Conference,1995.283-306
    [12]Parviz Soroushian,Siavosh Ravanbakhsh.Control of plastic shrinkage cracking with specialty cellulose fibers[J].ACI Materials Journal,1998(4):429-435
    [13]Myhre M.J.etal.Utilizition of Crumb Rubber to Enhance Physical Properties of Recycled Rrubber Products[J].Rubber World,1996,214(2):42-46.
    [14]Rajalingam P,Baker W E.The Role of Functional Polymers in Ground Rub(?)r Tire-Polyethylene Compsite[J].Rubber World,1995,177(2):24.
    [15]P.T.Williams,S.Bcsler,D.T.Taylor.The pyrolysis of scrap automotive tyres[J].Fuel,199069(12):1474-1482.
    [16]N.N.Eldin,J.A.Piekarski.Scrap tires:management and economics[J].Environ. Eng.1993119(6):1217-1232.
    [17]N.N.Eldin,A.B.Senouci.Use of scrap tires in road construction[J].Constr,Eng,Manag.1992118(3):561-576.
    [18]H.Sinn,W.Kaminsky,J.Janning.Processing of plastic wastic waste and scrap tires into chemical raw materials,especially by pyrolysis[J].Angew,Chem,Int.Ed.197615(11):660-672.
    [19]M.Farcasiu.Another use for old tires[J].Chemtech,1993,23(1):22-24.
    [20]A.Atal,Y.A.Levendis.Comparison of the combustion behaviour of pulverized waste tyres and coal[J].Fuel,1995,74(11):1570-1581.
    [21]邱清华,贾德民.废胶粉利用研究进展[J].橡胶工业,1997,44(11):45-48.
    [22]董丽杰 熊传溪.高分子材料科学与工程[M],2003.
    [23]复旦大学高分子系高分子教研室编著.高分子化学[M].复旦大学出版社,2001.
    [24]郭景纯,郭思福.铸造旧砂再生利用及污染治理[M].广州:中山大学出版社,2001.
    [25]郭景纯.旧砂的再生和综合利用[J].铸造设备研究,1997(1):52-54.
    [26]朱纯熙,卢晨等.水玻璃砂的化学再生[J].热加工工艺.1998(2):28-30.
    [27]刘仲礼,陈秋玲,吴勇生.铸造旧砂的综合利用综述[J].中国资源综合利用,2003(7):36-37.
    [28]朱纯熙 等.湿型砂、水玻璃砂和树脂砂无公害化可依循的途径[J].铸造工程·造型材料,2002(2).
    [29]张召述,杨月红,普庆贵.铸造废砂资源化研究分析[J].铸造,1999,42-44.
    [30]孙可伟等,用模拟方法研究铸造废砂的脱膜机理[J].昆明工学院学报,1990(3):35-38.
    [31]HamRK,BoyleWC,Engro.EC,Fero RL.Organic compounds in ferrous foundry process waste leachates[J].Envir.Eng,1993(13):19:34.
    [32]L.N.Reddi,G.P.Rieck,A.P.Schwab,S.T.Chou,L.T.Fan.Stabilization of phenolics in foundry waste using cementitious materials[J].Hazard.Mater,1996(45):89-106.
    [33]Partridge BK,Alleman JE,Huber BW.Perspectives on liability for constructive reuse of high volume waste streams[M].Transpor-tation Research Record,1997.
    [34]Boyle WC,Ham RK.Assessment of leaching potential from foundry process solid wastes[J].Proc.Purdue Ind.Waste Conf,2001,(129):34-42.
    [35]Ham RK,Boyle WC,Kunes TP.Leachability of foundry process solid wastes[J].Environ.Eng.Div,1981(10):107:155.
    [36]曹兴金 编译.美国旧砂用作水泥原料和建筑填料[J].铸造设备研究,1995:52-52.
    [37]M.C.Zanetti,S.Fiore.Foundry processes:the recovery of green moulding sands for core operations[J].Resour,Conserv,Recycl,2003(38):243-254.
    [38]P.Tikalsky,M.Gaffney,R.Regan.Properties of controlled low-strength material containing foundry sand[J].ACI Mater,2000(97):698-702.
    [39]B.K.Partridge,J.E.Alleman,P.J.Fox,D.G.Mast.Performance evaluation of highway embankment constructed with waste foundry sand[J].Transp,Res,Rec,1998(23):55-63.
    [40]D.E.Spiller.Environmental applications of mineral processing technologies[J].Miner.Eng,1992(5):1433-1437.
    [41]郭景纯,郭思福.铸造旧砂再生利用及其污染治理[M].广州:中山大学出版社,2001.
    [42]Menashi D Cohen,Zhou Yixia,William L Dolch.Non air-entrained High-strength concrete——is it frost resistant[J].ACI Materials Journal,1992,89(4):406-415
    [43]Christiane Foy,Michel Pigeon,Nemkumar Banthia.Freeze-Thraw Durability and Deicer Sail Scaling Resistance of a 0.25 Water-Cement Ratio Concrete[J].CCR,1988,18(4):604-614
    [44]A.Hillerborg,M.Modeer,P-E.Petersson.Analysis of crack formation and crack growth in concrete by means of fracture mechanics and.nite elements[J].Cement Concrete Res,1976(6):773-82.
    [45]GI.Barenblatt.The mathematical theory of equilibrium of cracks in brittle fracture[J].Adv Appl Mech,1962(7):55-129.
    [46]JGM.Van Mier,E.Schlangen,A.Vervuurt.Tensile cracking in concrete and sandstone,Part 2:E.ect of boundary rotations[J].Mater Struct,1996(29):87-96.
    [47]MRA.Van Vliet,JGM.Van Mier.Effect of strain gradients on the size effect of concrete in uniaxial tension[J].Int J Fract,2000(95):195-219.
    [48]ZP.Ba ant,BH.Oh.Crack band theory for fracture of concrete[J].Mater Struct,1983(16):155-77.
    [49]JGM.Van Mier,MB.Nooru-Mohamed.Geometrical and structural aspects of concrete fracture[J].Engng Fract Mech,1990,35(4-5):617-28.
    [50]JGM.Van Mier.Mode I fracture of concrete:Discontinuous crack growth and crack interface grain bridging[J].Cement ConcreteRes,1991,21(1):1-15.
    [51]JGM.Van Mier,MRA.Van Vliet.Experimentation,numerical simulation and the role of engineering judgement in the fracture mechanics of concrete and concrete structures[J].Constr Build Mater,1999(13):3-14.
    [52]高速公路丛书编委会.高速公路路面设计与施工[M].北京:人民交通出版社,2001.
    [53]E.Schlangen,Van Mier JGM.Experimental and numerical analysis of the micro-mechanisms of fracture of cement-based composites[J].Cement Concrete Compos,1992,14(2):105-18.
    [54]杨成忠,莫振龙,杨平.水泥混凝土路面早期裂缝分析[J].混凝土,2004,175(5):30-31.
    [55]HJ.Herrmann,H.Hansen,S.Roux.Fracture of disordered elastic lattices in two dimensions[J].Phys Rev B,1989(39):637-48.
    [56]Lilliu G,Van Mier JGM.3D lattice type fracture model for concrete[J].Engng Fract Mech,2003,70(7-8):927-42.
    [57]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999.
    [58]李红燕,橡胶改性水泥基材性能研究[M].硕士论文
    [59]P.Kroai.Proposed test to determined the cracking potential due to drying shrinkage of concrete[J].Concrete Construction,1985,30(9):775
    [60]Bloom R,Bentur A.Free and restrained shrinkage of normal and high-strength concrete[J].ACI Materials Journal,1995,92(3):211
    [61]Richard W Burron.The visible and invisible cracking of concrete[M].1998.
    [62]Dugdale DS.Yielding of sheets containing slits[J].J Mech Phys Solids 1960(8):100-8.
    [63]Barenblatt GI.The mathematical theory of equilibrium of cracks in brittle fracture [J].Adv Appl Mech,1962(7):55-129.
    [64]Van Mier JGM,Schlangen E,Vervuurt A.Tensile cracking in concrete and sandstone[J].Part 2:E.ect of boundary rotations.MaterStruct(RILEM),1996 (29):87-96.
    [65] Van Vliet MRA, Van Mier JGM. E.ect of strain gradients on the size e.ect of concrete in uniaxial tension[J]. Fract, 2000(95): 195-219.
    [66] Bazant ZP, Oh BH. Crack band theory for fracture of concrete[J]. Mater Struct (RILEM) ,1983(16):155-77.
    [67] Mindess S. Fracture process zone detection. In: Shah SP, Carpinteri A, editors. Fracture mechanics test methods for concrete[J].London/New York: E&FN Spon; 1991(2):231-61.
    [68] Van Mier JGM, Nooru-Mohamed MB. Geometrical and structural aspects of concrete fracture[J]. Engng Fract Mech ,1990,35(4-5):617-28.
    [69] Van Mier JGM. Mode I fracture of concrete: Discontinuous crack growth and crack interface grain bridging[J]. Cement Concrete Res ,1991,21(1):1-15.
    [70] 陈瑜,张大千.水泥混凝土路面磨损机理及其耐磨性[J].混凝土与水泥制品,2004(2):16-19.
    
    [71] HillerborgA, Modeer M, Petersson P-E. Analysis of crack formation and crack growth in concrete by means of fracturemechanics and .nite elements[J]. Cement Concrete Res ,1976(6):773-82.
    
    [72] Raiss ME, Dougill JW, Newman JB. Observation of the development of fracture process zones in concrete. In: Shah SP, Swartz SE, Barr B, editors. Fracture of concrete and rock-recent developments[J]. London/New York: Elsevier Applied Science; 1989(8):243-53.
    
    [73] Van Mier JGM. Crack face bridging in normal, high strength and Lytag concrete. In: Van Mier JGM, Rots JG, Bakker A, editors. Fracture processes in concrete, rock and ceramics[J]. London/New York: Chapman and Hall/E&FN Spon; 1991 (10):27-40.
    
    [74] Duda H. Grain model for the determination of the stress-crack-width relation. In: Elfgren L, Shah SP, editors. Analysis of concrete structures by fracture mechanics [J]. London: Chapman and Hall, 1991(12):88-96.
    [75] Duan K, Van Mier JGM. Crack growth in four concretes under monotonic or cyclic splitting load. In: Azizinamini A, Darwin D,French C, editors. Engineering Foundation International Conference on High Strength Concrete [J]. Reston: ASCE, 1999(15): 444-56.
    [76] Schlangen E. Experimental and numerical analysis of fracture processes in concrete[M]. PhD thesis. Delft: Technische UniversiteitDelft, 1993.
    [77] WissingB. Acoustic emission of concrete[M]. MSc thesis. Delft: Technische Universiteit Delft, 1988.
    [78] Van Mier JGM, Van Vliet MRA. Experimentation, numerical simulation and the role of engineering judgement in the fracture mechanics of concrete and concrete structures[J]. Constr Build Mater ,1999(13):3-14.
    [79] Schlangen E, Van Mier JGM. Experimental and numerical analysis of the micro-mechanisms of fracture of cement-basedcomposites[J]. Cement Concrete Compos ,1992,14(2):105-18.
    
    [80] Van Mier JGM, Schlangen E, Vervuurt A. Lattice type fracture models for concrete. In:M uhlhaus HB, editor. Continuum models for materials with microstructure[J]. Chichester: Wiley; 1995(20):341-77 .
    [81] Herrmann HJ, Hansen H, Roux S. Fracture of disordered elastic lattices in two dimensions[J]. Phys Rev ,1989(39):637-48.
    
    [82] 马飞,孙家瑛,张逸君,等.界面改性对混凝土路用性能的影响[J].建筑材料学报,[J]2001,4(4):351-355.
    [83] Lilliu G, Van Mier JGM. Analysis of 3D crack propagation in random lattice structures with particle overlay. In: Karihaloo BL, editor. IUTAM symposium on analytical and computational fracture mechanics of non-homogeneous materials [C]. Dordrecht: Kluwer Academic Publishers; 2002.
    [84] Lingen EJ. Design of an object oriented .nite element package for parallel computers. PhD thesis [J]. Delft: Delft University of Technology, 2000.
    [85] Lilliu G, Van Mier JGM. 3D lattice type fracture model for concrete[J]. Engng Fract Mech ,2003,70(7-8):927-42.
    [86] Roelfstra PE, Sadouki H, Wittmann FH. Le B-eton num-erique[J]. Mater Struct (RILEM), 1985(26):327-35.
    [87] Cundall PA. A computer model for simulating progressive large scale movements in blocky rock systems[M]. In: Proceedings of theInternational Society of Rock Mechanics, Nancy, France, 1971.
    [88] Stankowski T. Numerical simulation of progressive failure in particle composites. PhD thesis[M]. Boulder: University of Colorado,1990.
    [89]Vonk RA.Softeningof concrete loaded in compression.PhD thesis[M].Eindhoven,The Netherlands:Eindhoven University of Technology,1992.
    [90]WangJ.Development and application of a micromechanics-based numerical approach for the study of crack propagation in concrete[J].PhD thesis.Switzer -land:EPFL Lausanne,1994.
    [91]Ba_zant ZP,Tabarra MR,Kazemi MT,Pijaudier-Cabot G.Random particle model for fracture of aggregate of.ber composites[J].ASCE J Engng Mech 1990(116):1686-705.
    [92]Beranek WJ,Hobbelman GJ.2D and 3D modellingof concrete as an assemblage of spheres.Revaluation of the failure criterion.In:Wittmann FH[M],editor.Proceed -ings FraMCoS-2.Freiburg:Aedi.catio;1995(17):965-74.
    [93]Addetta GA,Kun F,Ramm E,Hermann HJ.From solids to granulates—discrete element simulations of fracture andfragmentation processes in geomaterials.In:Vermeer PA,Diebels S,Ehlers W,Herrmann HJ,Luding S,Ramm E,editors.Continuous and discontinuous modelling of cohesive frictional materials[J].Berlin:Springer-Verlag;2001(8):231-58.
    [94]Krajcinovic D,Vujosevic M.Strain localisation—short to longcorrelation length transition[J].Int J Solids Struct 1998;35(31-33):4147-66.
    [95]姜福田编著.碾压混凝土[M].北京:中国铁道出版社,1991.287
    [96]Schlangen E,Garboczi EJ.Fracture simulations of concrete using lattice models:computational aspects[J].Engng Fract Mech,1997,57(2-3):319-32.
    [97]Mindess S.Tests to determine the mechanical properties of the interracial zone [M].In:Maso JC,editor.Interracial transition zone inconcrete.London:E&FN Spon;1996.
    [98]孙家瑛.传统方法制备市政工程用高性能混凝土利弊谈.第2届高性能混凝土学术研讨会论文集[C].北京:清华大学出版社,1999.49.
    [99]沈洋,许仲梓,唐明述.处理刚玉集料对砂浆界面结构的改进[J].硅酸盐学报,1993,21(2):101.
    [100]Vervuurt AHJM.Interface fracture in concrete[J].PhD thesis.Delft:Technische Universiteit Delft,1997.1806 E.P.Prado,J.G.M.van Mier/Engineering Fracture Mechanics,2003(70):1793-1807.
    [101]Van Vliet MRA.Size e.ect in tensile fracture of concrete and rock[J].PhD thesis. Delft:Technische Universiteit Delft,2000.
    [102]van Mier JGM,Meda A,Lilliu G,Shi C.Meso-level fracture mechanisms in cementitious composites with varying aggregateconten[J].In:Pyrz R,SchjThomsen A,Rauhe JC,Thomsen J,Jensen LR,editors.Proceedings of the 4th InternationalConference-New Challenges in Mesomechanics,2002(10):241-8.
    [103]符芳主,刘撰伯主审.建筑材料[M].南京:东南大学出版,2001.
    [104]邵萍,胡新刚,宋春涛.关于减少混凝土的收缩裂缝问题的浅析[J].黑龙江交通科技,2002(4):1-4.
    [105]Van Mier JGM,Van Vliet MRA,WangTK.Fracture mechanisms in particle composites:Statistical aspects in lattice typeanalysis[J].Mech Mater 2002,34(11):705-24.
    [106]Amparano FE,Xi Y,Roh Y-S.Experimental study on the e.ect of aggregate content on the fracture behavior of concrete[J].EngngFract Mech,2000(67):65-84.
    [107]FengNQ,Ji XH,Zhuang QF,DingJT.E.ect of concrete materials on fracture performance[J].In:Wittmann FH,editor.Fracturemechanics of concrete structures-FRAMCOS 2.Freiburg:Aedi.catio,1995(12):119-24.
    [108]俞茂宏,著.混凝土强度理论及其应用[M].北京:高等教育出版社,2002.
    [109]Tandon S,Faber KT.E.ects of loadingrate on the fracture of cementitious materials[J].Cement Concrete Res,1999(29):397-406.
    [110]Shah SP,Swartz SE,OuyangC.Fracture mechanics of concrete:Applications of fracture mechanics to concrete,rock and otherquasi-brittle materials[C].New York:Wiley-Interscience;1995.
    [111]崔京浩,主编;张新天,罗晓辉,编著.道路工程[M].北京:中国水利水电出版社.2001.
    [112]黄国兴,惠荣炎编著.混凝土的收缩[M].北京:中国铁路出版.1990.
    [113]Van Mier JGM,Van Vliet MRA.In.uence of microstructure of concrete on size/scale e.ects in tensile fracture[J].Engng FractMech,in press.
    [114]Shi C,Van Mier JGM.Mode I fracture in concrete specimens with o.-centred notches[M].In:Sih GC,editor.Meso-mechanics 2000.Beijing:Tsinghua University Press;2000.
    [115]Van Mier JGM.Fracture processes of concrete—assessment of material parameters for fracture models[J]. Boca Raton: CRC Press;1997.E.P. Prado, J.G.M. van Mier / Engineering Fracture Mechanics ,2003 (70) : 1793-1807 .
    [116] Z.P. Bazant, J. Planas, Fracture and Size Effect in Concrete and other Quasibrittle Materials[J], CRC Press, 1998.
    [117] G.V. Guinea, J. Planas, M. Elices, Measurement of the fracture energy using three-point bend tests: Part 1 - Influence of experimental procedures[J].Mater. Struct. 1992 (27) :99-105.
    [118] J. Planas, M. Elices, G.V. Guinea, Measurement of the fracture energy using three-point bend tests: Part 2 -Influence of the bulk energy dissipation[J], Mater. Struct. 1992 (25) :305-312.
    
    [119] 孙家瑛,高先芳,朱武达.混凝土复合材料研制及物理力学性能研究[J].混凝土,2001(10) :30-32.
    [120] M. Elices, G.V. Guinea, J. Planas, Measurement of the fracture energy using three-point bend tests: Part 3 -Influence of cutting the P-d tail[J], Mater. Struct. 1992 (25): 327-334.
    [121] M. Elices, G.V. Guinea, J. Planas, On the measurement of concrete fracture energy using three-point bend tests[J], Mater. Struct. 1997 (30): 375-376.
    [122] B. Cotterell, Y.W. Mai, Fracture Mechanics of Cementitious Materials[M], Blackie Academic and Professional, 1996.
    
    [123] J.G.M. van Mier, Fracture Processes of Concrete[M], CRC Press, 1997.
    [124] Z.P. Bazant, Q. Yu, G. Zi, Choice of standard fracture test for concrete and its statistical evaluation[J], Int. J. Fract. 2002 (118): 303-337.
    [125] P.E. Roelfstra, H. Sadouki, F.H. Wittman, Le beton numerique[J], Mater. Struct. 1985 (18) :327-335.
    [126] A. Carpinteri, M. Aliabadi (Eds.), Computational Fracture Mechanics in Cocrete Technology[M], WIT Press, 1999.
    [127] G. Lilliu, J.G.M. van Mier, 3D lattice type fracture model for concrete[J], Eng. Fract. Mech. 2003 (70): 927-941.
    
    [128] J.Y. Pastor, C.G. Rocco, A. Jones, private communication.
    [129] A. Hillerborg, M. Modeer, P.E. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J], Cem. Concr. Res. 1976 (6): 773-782.
    [130]P.Maturana,J.Planas,M.Elices,Evolution of fracture behaviour of saturated concrete in the low temperature range[M],Int.Conf.Fracture and Damage of Concrete and Rock.Vienna,1988.
    [131]布赖恩·哈里斯,著;陈祥宝,张宝艳,译.工程复合材料(原著第二版)[M].北京:化学工业出版社,2004.
    [132]J.Planas,M.Elices,Conceptual and experimental problems in the determination of the fracture energy of concrete,in:H.Mihashi,H.Takahashi,F.H.Wittman (Eds.)[J],Fracture Toughness and Fracture Energy,Balkema,1989(12):165-181.
    [133]J.Planas,P.Maturana,G.V.Guinea,M.Elites,Fracture energy of water saturat -ed and partially dry concrete at room temperature and at cryogenic temperatures,7th.Int[M].Congress Fracture ICF7.Houston,1989.
    [134]P.Maturana,J.Planas,M.Elites,Evolution of fracture behaviour of saturated concrete in the low temperature range,Eng.Fract.Mech.1990(35):827-834.
    [135]X.Z.Hu,Fracture Process Zone and Strain Softening in Cementitious Materials,ETH Building Materials Reports No.1.ETH Switzerland[J].AEDIFICATIO Pub,1990.
    [136]X.Z.Hu,F.H.Wittman,Fracture energy and fracture process zone[J],Mater.Struct.1992(25):319-326.
    [137]K.Duan,X.Z.Hu,F.H.Wittman,Boundary effect on concrete fracture induced by non-constant fracture energy distribution[J],Frac-ture Mechanics of Concrete Structures,2001(10):49-55.
    [138]M.Arrea,A.R.Ingra.ea,Mixed-mode crack propagation in mortar and concrete,Report No.81-13,Department of Structural Engineering[J],Cornell University,Ithaca,New York,1982.
    [139]Z.Bazant,Mechanics of distributed cracking,Appl.Mech.Rev[J],ASME,19864(5):675-705.
    [140]Z.Bazant,M.Tabbara,M.Kazemi,G.Cabot,Random particle model for the fracture of aggregate or.ber composites[J].Engrg.Mech.,ASCE 1990,116(8):1686-1705.
    [141]C.Dowding,T.Belystschko,H.Yen,A coupled.nite element-rigid block meth -od for transient analysis of rock caverns[J].Numer.Anal.Methods Geome -ch. 1983(7):117-127.
    [142]J.Ghaboussi,Fully deformable discrete element analysis using a.nite element approach[J],Comput.Geotech.1988(5):175-195.
    [143]Itasca Consulting Group,Inc.1993,UDEC(Universal Distinct Element Code),Version 2.0,Minneapolis,USA.
    [144]Itasca Consulting Group,Inc.1995a,PFC2D(Particle Flow Code in 2 Dimen -sions),Version 1.1,Minneapolis,Minnesota:ICG.
    [145]J.V.Lemos,Discrete element analysis of dam foundations[J],in:V.M.Sharma,K.R.Saxena,R.D.Woods(Eds.),Distinct Element Modelling in Geomechanics,Balkema,Rotterdam,1999(12):89-115.
    [146]H.Masuya,Y.Kajikawa,Y.Nakata,Application of the distinct element method to the analysis of the concrete members under impact[J],Nucl.Engrg.Des,1994(150):367-377.
    [147]王昌衡,李珍玉,李志丰.水泥混凝土不同强度之间的关系[J].中南公路工程,2005,30(2):37-44.
    [148]过镇海,著.混凝土的强度和本构关系[M].北京:中国建材工业出版社,2002.
    [149]N.Monteiro Azevedo,A rigid particle discrete element model for the fracture analysis of plain and reinforced concrete[M],thesis,Heriot-Watt University,Scotland,2003.
    [150]A.Munjiza,D.Owen,N.Bicanic,A combined.nite-discrete element method in transient dynamics of fracturing solids[J],Engrg.Comput.1995(12):145-174.
    [151]钟世云,袁华,著.聚合物在混凝土中的应用[M].北京:化学工业出版社,2003.
    [152]Paul,J.,1985.Encyclopedia of Polymer Science and Engineering 2002(14):787-802.
    [153]Pierce,C.E.,Blackwell,M.C.,2003.Potential of scrap tire rubber as lightweight aggregate in flowable fill[J].Waste Management,1998,23(3):197-208.
    [154]Raghvan,D.,Huynh,H.,Ferraris,C.F.,1998.Workability,mechanical proper -ties and chemical stability of a recycled tire rubber-filled cementitious composi -te[J].Journal of Materials Science,2000,33(7):1745-1752.
    [155]宋少民,刘娟红,金树新.橡胶粉改性的高韧性混凝土研究[J].混凝土和水泥制品,1997(1):10-11转53.
    [156] M. Murat, M. Anholt, H.D. Wagner, Fracture behaviour of short-ber reinforced materials[J]. Mater. Res. 7 (11) (1992) 3121-3131.
    [157] P. Petersson, Crack growth and development of fracture zones in plain concrete and similar materials[M], Report No. TVBM-1006, Division of BuildingMaterials, University of Lund, ASCE, Sweden, 1981.
    
    [158] 吴人洁,著.高聚物的表面与界面[M].科学出版社,1998.
    
    [159] N. Petrinic, Aspects of discrete element modelling involving facet-to-facet cont -act detection and interaction[M]. thesis, University of Wales, Swansea, 1996.
    [160] A. Potapov, C. Campbell, A hybrid .nite-element simulation of solid fracture[J]. Mod. Phys, 19967 (2): 155-180.
    [161] D.O. Potyondi, P.A. Cundall, A bonded-particle model for rock[J]. Rock Mech. Mining Sci. 2004 (41): 1329-1364.
    [162] K. Rokugo, Testing method to determine tensile softening curve and fracture energy of concrete[J], Fracture toughness and fracture energy, Balkema(1989): 153 -163.
    [163] J. Rots, P. Nauta, G. Kusters, J. Blaauwendraad, Smeared crack approach and fracture localization in concrete[J], Heron,1985 ,30 (1):1-48.
    [164] E. Schlangen, Experimental and numerical analysis of fracture processes in concrete[J], Heron,1993 ,38 (2) :1-117.
    [165] P. Underwood, Dynamic relaxation, in: T. Belytschko, T. Hughes (Eds.), Comput -ational Methods for Transient Analysis[J], North-Holland, NewYork, 1983(14): 246-265.
    [166] Rostami, H., Lepore, J., Silverstraim, T., Zundi, I., 1993. Use of recycled rubber tires in concrete[J], In: Dhir, R.K. (Ed.), Proceedings of the International Confe -rence on Concrete 2000, University of Dundee, Scotland,2000(12):391-399.
    [167] Savas, B.Z., Ahmad, S., Fedroff, D., 1996. Freeze-thaw durability of concrete with ground waste tire rubber[J]. Transportation Research Record No. 1574, Tran -sportation Research Board, Washington,1999(8):80-88.
    [168] Segre, N., Joekes, I., 2000. Use of tire rubber particles as addition to cement paste[J]. Cement and Concrete Research ,1999,30 (9):1421-1425.
    [169] Singh, S.S., 1993. Innovative applications of scrap-tires[J]. Wisconsin Professional Engineer, 14-17.
    [170]Topcu,I.B.,1995.The properties of rubberized concrete[J].Cement and Concrete Research,2000,25(2),304-310.
    [171]Topcu,I.B.,Avcular,N.,1997a.Analysis of rubberized concrete as a composite material[J].Cement and Concrete Research,2000,27(8),1135-1139.
    [172]Topcu,I.B.,Avcular,N.,1997b.Collision behaviors of rubberized concrete[J].Cement and Concrete Research,2201,27(12),1893-1898.
    [173]陈明珠 罗清华等.国内外废橡胶的利用方法[J],科技园:8-11.
    [174]吴人洁,著.高聚物的表面与界面[M].科学出版社,1998.
    [175]孙玉海 益国胜等.我国废橡胶资源化利用的现状和发展趋势[J].橡胶工业,2003,760-763)
    [176]普鲁特曼EP著.硅烷和钛酸酯偶联剂[M].梁发思,谢世杰译.上海:上海科技出版社,1987,35,
    [177]毋伟,陈建峰,屈一新.硅烷偶联剂的种类与结构对二氧化硅表面聚合物接枝改性的影响[J].硅酸盐学报,2004,32(5):570-575.
    [178]杜禧,浅谈有机硅过氧化物偶联剂,特种橡胶制品[J],1998,19(6):16-19.
    [179]Arkel B.Taikocing Surfaces with ailanes[J].Chem Tech.1997(7):766.
    [180]甄以元.WD-在石质文物表面封护中的应用[J],化工新型材料。2001,29(9):48.
    [181]I.B.Topcu,N.Avcular.Collision Bebaviours of Rubberized Concrete[J].Cement and Concrete Research,1997,27(12):1893-1898.
    [182]H.Huynh,D.Raghavan.Durability of Simulated Shredded Rubber Tire in Highly Alkaline Environments[J].Advanced Cement Based Materials,1997(6):138-143.
    [183]I.B.Topcu.Assessment of the brittleness index of rubberized concretes[J].Cement and Concrete Research,1997,127(2):177-183.
    [184]H.Rostami,J.Lepore,T.Silverstraim.Use of recycled rubber tires in concrete[C].In Proc.Int.Conf.Concrete,1993:391-399
    [185]I.B.Topcu.The Properties of Rubberized Concretes[J].Cement and Concrete Research,1995,125(2):304-310
    [186]N.N.Eldin,A.B.Senouci.Rubber tire particles as concrete aggregate[J].ASCE J Mater.Civ.Erg.1993(5):478-496
    [187]H.A.Toutanji.The Use of Rubber Tire Particles in Concrete to Replace Mineral Aggregates[J]. Cenent & Concrete Composites, 1996, 18: 135-139.
    [188] F. Hernandez-Olivares, G. Barluenga, M. Bollati, B. Witoszek. Static and dynamic behavior of recycled tyre rubber - filled concrete[J]. Cement and Concrete Research, 2002, 32 (10) :1587 - 1596.
    [189] A. Benazzouk, K. Mezreb, G. Doyen, A. Goullieux, M. Oueneudec. Effect of rubber aggregates on the physico-mechanical behaviour of cement-rubber composites-influence of the alveolar texture of rubber aggregates[J]. Cement & Concrete Composites, 2003(25):711-720.
    [190] Ilker Bekir Topcu. The Properties of Rubberized Concretes[J]. Cement and Concrete Research, 1995, 25 (2):304-310.
    [191] N. Segre, I. Joees. Use of Tire Rubber Particles as Addition to Cement Paste[J]. Cement and Concrete Research, 2000 (30): 1421-1425.
    [192] N.N. Eldin, A.B.Sinouci. Rubber-Tire Particles as Concrete Aggregate[J]. Journal of Materials in Civil Engineering, 1993,5(4):478-497.
    [193] Eldin N, Senouci AB. Rubber-tire particles as concrete aggregate[J]. ASCE: Mater Civil Eng,1993, (4):478-96.
    [194] Fattuhi N, Clark L. Cement-based materials containing shredded scrap truck tyre rubber[J]. Constr Build Mater, 1996,10(4):229-36.
    [195] Eldin N, Senouci A. Measurement and prediction of the strength of rubberized concrete[J]. Cement Concrete Comp, 1994(19):287-98.
    [196] Topcu I. The properties of rubberized concrete[J]. Cement Concrete Res, 1995 (25):304-10.
    [197] I.B. Topcu. Analysis of rubberized concrete as a composite material[J]. Cem. Concr. Res, 1997,27 (8):177- 183.
    [198] D. Raghavan, H. Huynh, C.F. Ferraris. Workability, mechanical properties and chemical stability of a recycled tyre rubber-filled cementitious composite[J]. Mater. Sci. 1998, (33): 1475-1752.
    [199] I.B. Topcu. Assessment of the brittleness index of rubberized concrete[J]. Cem. Concr. Res, 1997, 27 (2): 1135- 1139.
    [200] I.B. Topcu. Collision behaviours of rubberized concrete[J]. Cem, Concr, Res, 1997,27 (12) :1893- 1898.
    [201] Dessouki A, Taher H, El-Nahas H. Preparation of composites of natural rubber Latex-Portland cement for moulds[J]. Polym Int, 1998,45(4):339-46.
    [202] Topcu I. The properties of rubberized concretes[J]. Cem Concr Res, 1995,25 (2):304-10.
    [203] Chung K, Hong Y. Introductory behavior of Rubber Concrete[J]. Appl Polym Sci, 1999, 72(1):35-40.
    [204] Segre N, Joekes I. Use for tire rubber particles as addition to cement paste[J]. Cem Concr Res 2000, 30(9):1421-5.
    [205] Rossignolo J, Agnesini M. Mechanical properties of polymer modfied lightweight aggregate concrete[J]. Cem Concr Res, 2002(32):329-34.
    [206] N.N. Eldin, A.B. Senouci. Rubber tire particles as concrete aggregate[J]. Mater.Civ.Eng.ASCE, 1993,5(4):478-496.
    [207] Y. Wang, A.H.Zureick, B.S. Cho. Properties of fibre reinforced concrete using recycled fibers from carpet industrial waste[J]. Mater. Sci, 1994,29(16) :4191-4199.
    [208] K.S. Rebeiz, S. Yang, D.W. Fowler. Polymer mortar composites made with recycled plastics[J]. ACI Mater, 199491(3):313-319.
    [209] K.S. Rebeiz, S. Serhal, D.W. Fowler. Shear behavior of steel reinforced polymer concrete using recycled plastic[J]. ACI Struct, 1993,90(6):675-682.
    [210] K.S. Rebeiz, D.W. Fowler, D.R. Paul. Polymer concrete and polymer mertar using resins based on recycled polyethylene terephthalate[J]. Appl.Polym.Sci. 1992,44(9) :1649-1655.
    [211] H.C. Wu, Y.M. Lim, V.C. Li. Application of recycled tyre cord in concrete for shrinkage crack control[J]. Mater, Sci, Lett, 1996 (15):1828-1831.
    [212] N. Segre, I. Jockes. Use of tire rubber particles and addition to cement paste[J]. Cem, Concr, Res, 2000 (30):1421-1425.
    [213] P. Soroushian, J. Plasencia, S. Ravanbakhsh. Assessment of reinforcing effects of recycled plastic and paper in conrete[J]. ACI Mater, 2003,100(3) 203-207.
    [214] F.H. Olivares, G. Barluenga, M. Bollati, B. Witoszek. Static and dynamic behavior of recycled tyre rubber filled concrete [J]. Cem, Coner, Res, 32 (2002)1587-1596.
    
    [215] Z.K. Khatip, F.M. Bayomy. Rubberized Portland cement concrete[J]. Mater, Civ, Eng, ASCE 11(3) (1999)206-213.
    [216] I.B. Topcu. The properties of rubberized concretes [J]. Cem, Concr, Res, 25(2) (1995)304-310.
    [217] I.B. Topcu, N. Avcular. Collosion behaviours of rubberized concrete [J]. Cem, Concr, Res, 27(12) (1997)1893-1898.
    [218] I.B.Topcu. Assessment of the brittleness index of rubbcrized concrete [J]. Cem. Concr.Res, 27(2) (1997)177-183.
    [219] B.I. Lee, L. Burnett, T. Miller, Postage, J.Cuneo. Tyre rubber cement matrix composites [J]. Mater, Sci. Lett, 12(13) (1993)967-968.
    [220] N.N. Eldin, A.B.Senouci. Observations on rubberized concrete behavior [J]. Cem, Concr, Aggregates, 15(1) (1993)74-84.
    [221] H.A. Toutanji. The use rubber tire particles in concrete to replace mineral aggregates [J]. Cem. Coner. Compos, 18(1996)135-139.
    [222] D. Raghavan, H. Huynh, C.F. Ferraris. Workability, mechanical properties, and chemical stability of a recycled tyre rubber filled cementitious composite[J]. Mater. Sci, 33(1998)1745-1752.
    [223] Z.Li, F. Li, L. Li. Properties of concrete incorporating rubber tyre particles[J]. Mag. Coner. Res, 50(4) (1998)297-304.
    [224] N.N. Eldin, A.B.Senouci. Measurement and prediction of the strength of rubberized concrete[J]. Cem, Coner, Compos, 16(1994)287-298.
    [225] P.K. Mehta, O.E. Gjorv. Properties of Portland cement concrete containing fly ash and condensed silica fume[J]. Cem.Concr.Res, 12(5) 1982)587-595.
    [226] P. Sukontanukkul, C. Chaikaew. Properties of concrete pedestrian block mixed with crumb rubber[J]. Construction and Building Materials, 2006 (20) 450-457.
    [227] N. Eldin, AB. Senouci. Rubber-tire particles as concrete aggregate[J]. ASCE: Mater Civil Eng, 1993, 5(4):78-96.
    [228] N. Fattuhi, L. Clark. Cement-based materials containing shredded scrap truck tiyre rubber[J]. Constr Build Mater, 1996, 10(4):229-36.
    [229] N. Eldin, A. Senouci. Measurement and prediction of the strength of rubberized concrete[J]. Cement Concrete Comp, 1994(19):287-98.
    [230] I. Topgu. The properties of rubberized concrete[J]. Cement Concrete Res, 1995 (25):304-10.
    [232]刘春生,朱涵 等.橡胶细集料水泥砂浆基本性能研究[J].混凝土,2005(7):38-42.
    [233]董炎明.高分子材料实用剖析技术[M].中国石化出版社,1997.
    [234]刘凤歧,汤心颐.高分子物理.高等教育出版社,1995.
    [235]何芝梅.水玻璃物理特性分析及在旧砂回用研究中的应用[J].铸造,2002,51(3):173-176.
    [236]马春梅.铸造废砂资源化研究分析[J].煤炭技术,2003,22(6).
    [237]普鲁特曼EP等。硅烷和钛酸脂联剂,上海科学技术文献出版社。1987。
    [238]史保川、孙培培等,γ-环已胺丙基硅烷偶联剂的合成[J],南京师大学报,1999,22(1):64-67.
    [239]Fan L H,Moon T S.Electronic Components and Technology Conference[M],2002.
    [240]王澜,主编.水泥混凝土组成性能应用[M],中国建材工业出版社,2005.
    [241]水泥标准汇编编写组编.建筑材料标准汇编[M].北京:中国标准出版社,2003.
    [242]中华人民共和国建设部,国家质量监督检验检疫中心 联合发布.普通混凝土力学性能试验方法标准.北京:中国建筑工业出版社,2003.
    [243]王昌义.快速检测混凝土抗氯离子渗透性能的实验方法[M].南京:水利电力出版社,2000.
    [244]李翠玲,路新瀛,张海霞.确定氯离子在水泥基材料中扩散系数的快速试验方法[J].工业建筑,1998,28(6):41-43
    [245]朱蓓蓉,杨全兵,吴学礼,等.掺加SJ-2新型引气剂引气混凝土性能研究[J].建筑材料学报,1998,1(2):192-196.
    [246]朱蓓蓉,杨全兵,吴学礼.SJ-2新型引气剂及其引气混凝土性能[J].混凝土.2001(138):21-24.
    [247]Ravindrarajah RS,Tucd AJ.Properties of hardened concrete containing treated expanded polystyrene beads[J].Cement Concrete Compos,1994(16):273-7
    [248]Cook DJ.Expanded polystyrene beads as lightweight aggregate for concrete[J].Precast Concrete,1973(4):691-3.
    [249]Cook DJ.Expanded polystyrene concrete[M].In:Swamy RN,editor.Concrete technology and design.New concrete materials,Vol,1.London:Surrey University Press;1983(6):41-69.
    [250]Perry SH,Bischoff PH,Yamura K.Mix details and material behaviour of polystyrene aggregate concrete[J].Mag Concrete Res,1991(43):71-6
    [251]Bagon C,Frondistou-Yannas S.Marine floating concrete made with polystyrene beads[J].Mag Concrete Res,1976(28):225-9.
    [252]Chen B,Liu J.Properties of lightweight expanded polystyrene concrete reinforced with steel fiber[J].Cement Concrete Res,2004(34):1259-63.
    [253]邓启,席慧,刘爱东 主编,景晓燕 主审.材料化学导论[M].哈尔滨:哈尔滨工业大学出版社,1999.253
    [254]西德尼·明德思,J.弗朗西斯·杨,戴维·达尔文,著;吴科如,张雄,姚武,张东,译.混凝土[M].北京:化学工业出版社,2005.
    [255]孙道胜,黄小明,邓敏等.高性能路面水泥混凝土研究[J].混凝土与水泥制品,2004(2):20-22.
    [256]Al-Akhras,N.M.,Smadi,M.M.,2002.Properties of tire rubber ash mortar.In:Dhir,R.K.et al.(Ed.),Proceedings of the International Conference on Susta -inable Concrete Construction[J],University of Dundee,Scotland,2002(1):805-814.
    [257]Ali,N.A.,Amos,A.D.,Roberts,M.,1993.Use of ground rubber tires in Portland cement concrete[J].In:Dhir,R.K.(Ed.),Proceedings of the International Confe -rence on Concrete 2000,University of Dundee,Scotland,2001(12):379-390.
    [258]Benazzouk,A.,Queneudec,M.,2002.Durability of cement-rubber composites under freeze thaw cycles[J].In:Dhir,R.K.et al.(Ed.),Proceedings of the International Conference on Sustainable Concrete Construction,University of Dundee,Scotland,2000(14):356-362.
    [259]Biel,T.D.,Lee,H.,1996.Magnesium oxychloride cement concrete with recycled tire rubber[J].Transportation Research Record No.1561,Transportation Research Board,Washington,2001(8):6-12.
    [260]Eldin,N.N.,Senouci,A.B.,1993.Rubber-tire particles as concrete aggregates[J].ASCE Journal of Materials in Civil Engineering,1998,5(4),478-496.
    [261]Fattuhi,N.I.,Clark,N.A.,1996.Cement-based materials containing tire rubber [J].Journal of Construction and Building Materials,2000,10(4),229-236.
    [262]Fedroff,D.,Ahmad,S.,Savas,B.Z.,1996.Mechanical properties of concrete with ground waste tire rubber[J].Transportation Research Board,Report No. 1532,Transportation Research Board,Washington,2001:66-72.
    [263]Goulias,D.G.,Ali,A.H.,1997.Non-destructive evaluation of rubbermodified concrete[J].In:Proceedings of a Special Conference,ASCE,New York,1999(111)-120.
    [264]Heitzman,M.,1992.Design and construction of asphalt paving materials with crumb rubber[J].Transportation Research Record No.1339,Transportation Rese -arch Board,Washington,DC.
    [265]Hernandez-Olivares,F.,Barluenga,G.,Bollati,M.,Witoszek,B,2002.Static and dynamic behavior of recycled tire rubber-filled concrete[J].Cement and Concrete Research,2000,32(10),1587-1596.
    [266]Khatib,Z.K.,Bayomy,F.M.,1999.Rubberized portland cement concrete[J].AS -CE Journal of Materials in Civil Engineering,2000,11(3),206-213.
    [267]Khosla,N.P.,Trogdon,J.T.,1990.Use of ground rubber in asphalt paving mix -tures[M].Technical Report,Department of Civil Engineering,North Carolina State University,Raleigh.
    [268]Lee,H.S.,Lee,H.,Moon,J.S.,Jung,H.W.Development of tireadded late concrete[J].ACI Materials Journal 1995(4):356-364.
    [269]Naik,T.R,Singh,S.S.,1991.Utilization of discarded tires as construction mate -rials for transportation facilities[J].Report No.CBU-1991-02,UWM Center for By-products Utilization.University of Wisconsin-Milwaukee,Milwaukee.
    [270]Naik,T.R.,Singh,S.S.,1995.Effects of scrap-tire rubber on properties of hot -mix asphaltic concrete-a laboratory investigation[M].Report No.CBU-1995-02,UWM Center for By-products Utilization,University of Wisconsin Milwauk -ee,Milwaukee
    [271]Paine,K.A.,Dhir,R.K.,Moroney,R.,Kopasakis,K.,2002.Use of crumb rubber to achieve freeze thaw resisting concrete[J].In:Dhir,R.K.et al.(Ed.),Proceed -ings of the International Conference on Concrete for Extreme Conditions,University of Dundee,Scotland,UK,486-498.
    [272]林永达,李甘佐,高平坦编.表面活性剂在水泥和沥青混凝土中的应用[M].北京:中国轻工业出版社,2001.
    [273]史保川、孙培培等.N'-β'-氨乙基氨烃基烷氧基硅烷的研究[J],有机硅材料及应用,1999,(4):5-10.
    [274]Chaallal O,Nollet M-J,Perraton D.Strengthening of reinforced concrete beams with externally bonded fiber-reinforced-plastic plates[J].design guidelines for shear and flexure.Can J Civ Eng 1998:25:692-704.
    [275]Varastehpour H,Hamelin P.Strengthening of concrete beams using fiber-reinforced plastics[J].Mater Struct 1997;30:160-6.
    [276]Triantafillou TC,Pleveris N.Strengthening of RC beams with epoxy bonded fibre composite materials[J].Mater Struct 1992;25(1480:201-11.
    [277]Saadatmanesh H,Ehsani MR.RC beams strengthened with GFRP plates Ⅰ:experimental study[J].Struct Eng 1991;117(11):3417-33.
    [278]Triantafillou TC.Shear strengthening of reinforced concrete beams using epoxy-bonded FRP composites[J].ACI Struct 1998;95(2):107-15.
    [279]Taljsten B.Strengthening of beams by plate bonding[J].Mater Civ Eng 1997;9(4):206-33
    [280]郭荣泰.混凝土抗冻性、抗渗性及混凝土耐久性研究[J].黑龙江交通科技厅.2000:10-14
    [281]Roberts TM.Approximate analysis of shear and normal stress concentrations in the adhesive layer of plated RC beams.The Struct Eng 1989;67(12):229-33.
    [282]Buyukozturk O,Hearing B.Failure behaviour of precracked concrete beams retrofitted with FRP[J].Compos Constr 1998;2(3):138-44.
    [283]欧又成,张寿明.铸造废砂集中处理模式研究[J].中国铸造装备与技术,2004(5):53-55.
    [284]秦俊虎,张召述,贺茂云.铸造废砂和粉煤灰制备CBC复合材料的研究[J].铸造,2005,54(11):1138-1142.
    [285]Ilker Bekir Topcu,Nuri Avcular.Analysis of rubberized concrete as a composite material[J].Cement and Concrete Research,1997,27(8):1135-1139.
    [286]梅长林,范金城,著.数据分析方法[M].北京:高等教育出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700