城市生活垃圾催化气化制取燃气的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的发展和城市化进程的加快,城市生活垃圾的增长速度及其数量也在不断的加快。传统的生活垃圾处理技术主要包括填埋、堆肥、焚烧等,但这些方法都存在一定的弊端和二次污染问题。而垃圾气化处理技术,由于具有污染物排放低、显著的减量减容性以及产生可燃气体等优点,被认为是焚烧处理最具有潜力的替代技术,逐渐成为新的研究热点。
     本文采用均匀沉淀法制备镍铁氧体复合晶体,探讨了反应物配比、反应温度和时间、煅烧温度等因素对制备工艺的影响,确定复合晶体制备的最佳工艺条件;采用XRD、FTIR、SEM等表征手段对复合晶体进行分析表征。分析结果表明,所得产品为NiFe_2O_4、NiO复合纳米晶体,结晶完整,粒度均匀,属立方晶系尖晶石结构,平均粒径约为52nm。同时,探讨了沉淀和煅烧反应过程中各因素对产品产率及平均粒径的影响,实验得出制备复合晶体的最佳工艺条件为:反应物镍铁盐比例n(Ni)/n(Fe)为3:1,沉淀反应温度和时间分别为110℃和2.0h,煅烧温度600℃。
     采用沉积沉淀法制备Ni-Fe/γ-Al_2O_3,Ni-Co/γ-Al_2O_3,Ni-Ce/γ-Al_2O_3等3种镍基催化剂,采用XRD、FTIR、SEM等表征手段对催化剂进行分析表征,并将催化剂用于城市生活垃圾催化气化产品气中焦油的裂解和重整,对催化剂的催化性能进行测试和比较。
     在固定床反应装置上,采用自制的镍基催化剂,对城市生活垃圾裂解气化进行研究,探讨了催化剂、气化炉温度、水蒸气物料比(S/M)、原料粒径等因素对产气特性的影响,对生成气体的产率和成分进行分析,确定催化气化的最佳工艺条件。实验结果表明,生活垃圾催化气化所得产品气的主要成分为H_2、CO、CH_4和CO_2等,镍基催化剂能有效促进焦油的裂解、改善气体的品质,自制的3种镍基催化剂的催化效果为:Ni-Fe/γ-Al_2O_3﹥Ni-Ce/γ-Al_2O_3﹥Ni-Co/γ-Al_2O_3,其中Ni-Fe/γ-Al_2O_3催化剂在800℃时焦油的去除率达到99%,H_2产率最高可达到56%;温度是影响气体产率和品质的重要因素,温度越高,H_2含量和气体产率越高;水蒸气的引入能提高气体品质和产率,但是过多的水蒸气会降低气化温度,从而降低气体的品质,实验条件下水蒸气物料比(S/M)最佳比值是1.33;原料粒径同样是影响气体产率和组分的重要因素,粒径越小,产品气的品质和H_2含量越高。同时,对城市生活垃圾催化裂解和气化、水蒸气重整制取富氢燃气的反应机理进行了初步分析和研究。
As the social and economic development and urbanization process acceleration, the generation rate and the production of municipal solid waste (MSW) increased rapidly. Traditional disposal processing of municipal solid waste, including landfill, composting, incineration, have drawbacks and secondary pollution. The gasification technology, because of its low emissions, a significant reduction of the capacity and the production of combustible gases, is considered to be the most potential alternative technologies for incineration, and gradually become a new hotspot.
     Nickel ferrite nanocomposites were prepared by a homogeneous precipitation method and the influences of various processing parameters in preparation process on the yield and mean size of the product were also investigated. Meanwhile, XRD, FTIR and SEM were used to characterize the nanoparticles and precursors. The results indicated that the production prepared at the optimum conditions were NiFe2O4 and NiO nanocomposites, they were uniform in particle size and had a fine crystal phase of cubic spinel structure with a mean size of 52 nm. The optimum conditions for preparing nanocrystalline were as follows: the molar ratio of nickel chloride hexahydrate to iron nitrate nonahydrate was 3:1, the temperature of precipitation reaction was 110℃, the reaction time was 2.0 h, and the calcination temperature was 600℃.
     The nickel-based catalysts such as Ni-Fe/γ-Al_2O_3, Ni-Co/γ-Al_2O_3, Ni-Ce/γ-Al_2O_3 were prepared by deposition-precipitation (DP) method, and XRD, FTIR and SEM were used to characterize the catalysts. For the purpose of testing and comparing the performance of the catalysts, the catalysts were used to pyrolyze and reforming tar in the product gas which is produced from catalytic gasification of municipal solid waste.
     The catalytic cracking and gasification experiments were carried out in a fixed bed reactor with municipal solid waste as raw material and using self-made nickel-based catalyst. The effects of catalyst, reactor temperature, steam to municipal solid waste ratio (S/M), particle size of municipal solid waste that influence the characteristics of gas production were discussed, and the yield and composition of the product gas were analyzed to determine the best catalytic gasification process conditions. The experimental results showed that the main component of product gas from MSW gasification were H_2, CO, CH_4 and CO_2, and the nickel-based catalyst could effectively promote tar cracking, improve the gas quality. The catalytic properties of the three kinds of nickel-based catalysts were: Ni-Fe/γ-Al_2O_3 > Ni-Ce/γ-Al_2O_3 > Ni-Co/γ-Al_2O_3, of which Ni-Fe/γ-Al_2O_3 catalyst could reach 99% tar removal rate at 800℃, and the maximum yield of H_2 56%. The parametric tests indicated that temperature was the most important factor in this process, and higher temperature favored hydrogen production and gas yield. This experimental test has also confirmed that the introduction of steam to MSW gasification was favorable for improving gas quality and hydrogen yield. However, excessive steam would lower gasification temperature and so degrade product gas quality. Focusing on gas yield and quality as well as energy aspects, the optimal value of S/M was found to be 1.33 under the present operating condition. MSW particle size also had influence on gas composition and gas yield; the smaller particles were more favorable for gas quality and H2 yield. Meanwhile, catalytic cracking and gasification of MSW, steam reforming of hydrocarbons were discussed preliminarily, to explore the reaction mechanism of catalytic gasification of municipal solid waste to produce hydrogen-rich gas.
引文
[1]张于峰,邓娜,李新禹,等.城市生活垃圾的处理方法及效益评价[J].自然科学进展, 2004, 14(8): 863-869.
    [2]孙艳,陈秋玲,刘伟.城市生活垃圾的处理方法[J].中国资源综合利用, 2003, (10): 27-29.
    [3]解强.城市固体废弃物能源化利用技术[M].北京:化学工业出版社, 2004: 1.
    [4]李定龙.城市生活垃圾处理处置工程及应用[M].北京:中国石化出版社, 2009: 4-5.
    [5]温俊明.城市生活垃圾热解特性试验研究及预测模型[D].杭州:浙江大学, 2006: 2.
    [6]国家统计局.中国统计年鉴(2003年),北京:中国统计出版社,2003.
    [7]王绍文,梁富智,王纪曾.固体废弃物资源化技术与应用[M].北京:冶金工业出版社, 2003: 9-10.
    [8]张加权.典型城市生活垃圾组分流化床热解气化特性及反应机理研究[D].杭州:浙江大学, 2005: 4-5.
    [9]沈伯雄,朱坦.城市生活垃圾治理过程的能源化技术[J].城市环境与城市生态, 2003, 16(6): 166-168.
    [10]张宪生,沈吉敏,厉伟,等.城市生活垃圾处理处置现状分析[J].安全与环境学报, 2003, 3(4): 60-64.
    [11]安恩科.城市垃圾的处理与利用技术[M].北京:化学工业出版社,2006: 67, 91-92.
    [12]徐嘉,严建华,肖刚,等.城市生活垃圾气化处理技术[J].科技通报, 2004, 20(6): 560-564.
    [13]韦杰.生物质气化气中焦油的催化裂解研究[D].北京:华北电力大学, 2007: 9-10.
    [14]吕鹏梅,常杰,王铁军,等.生物质气化过程催化剂应用研究进展[J].环境污染治理技术与设备, 2005, 6(5): 1-6.
    [15] Sutton D.,Kelleher B.,Ross J.R.H.Review of literature on catalysts for biomass gasification[J]. Fuel Processing Technology, 2001,73(3): 155-173.
    [16] Wu Chunfei , Williams P.T . Hydrogen production by steam gasification of polypropylene with various nickel catalysts[J]. Applied Catalysis B: Environmental, 2009, 87(3-4):152-161.
    [17] S′wierczyn′ski D., Libs S., Courson C., et al. Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound[J] . Applied Catalysis B: Environmental, 2007, 74(3-4): 211-222.
    [18] Khalili N.R. , Jain H. , Arastoopour H. , et al . Synthesis and characterization of catalysts produced from paper mill sludge I. Determination of NOx removal capability[J]. Journal of Hazardous Materials B, 2000, 80(1-3): 207-221.
    [19] Juutilainen S.J., Simell P.A., Krause A.O.I. Zirconia: Selective oxidation catalyst for removal of tar and ammonia from biomass gasification gas[J]. Applied Catalysis B: Environmental , 2006 ,62(1-2): 86-92.
    [20] Rapagna S.,Provendier H.,Petit C.,et al.Development of catalysts suitable for hydrogen or syn-gas production from biomass gasification[J]. Biomass and Bioenergy, 2002, 22(5): 377-388.
    [21] Sugiura K. , Minami K. , Yamauchi M. , et al . Gasification characteristics of organic waste by molten salt[J]. Journal of Power Sources, 2007, 171(1): 228-236.
    [22] Pinto F., Lopes H., Andre′R.N., et al. Effect of catalysts in the quality of syngas and by-products obtained by co-gasification of coaland wastes. 1. Tars and nitrogen compounds abatement[J]. Fuel,2007, 86(14): 2052-2063.
    [23] Pinto F., Lopes H., Andre′R.N., et al. Effect of catalysts in the quality of syngas and by-products obtained by co-gasification of coal and wastes. 2: Heavy metals , sulphur and halogen compounds abatement[J]. Fuel, 2008, 87(7): 1050-1062.
    [24] Sharma A., Nakagawa H., Miura K., et al. A novel nickel/carbon catalyst for CH4 and H2 production from organic compounds dissolved in wastewater by catalytic hydrothermal gasification[J]. Fuel, 2006, 85(2): 179-184.
    [25] Sato K., Fujimoto K. Development of new nickel based catalyst for tar reforming with superior resistance to sulfur poisoning and coking in biomass gasification[J].Catalysis Communications,2007,8(11):1697-1701.
    [26] Yamamura T. , Mori T. , Park K.C. , et al . Ruthenium(IV) dioxide-catalyzed reductive gasification of intractable biomass including cellulose , heterocyclic compounds , and sludge in supercritical water[J].J. of Supercritical Fluids,2009,51 (1):43-49.
    [27] Zhu X.,Song B.,Kim D.,et al.Kinetic study on catalytic gasification of a modified sludge fuel[J]. Particuology, 2008, 6(4): 258-264.
    [28] Tomishige K., Asadullah M., Kunimori K. Syngas production by biomass gasification using Rh/CeO2/SiO2 catalysts and ?uidized bed reactor[J]. Catalysis Today, 2004, 89(4): 389-403.
    [29]王铁军,常杰,吴创之,等.生物质气化焦油催化裂解特性[J].太阳能学报, 2003, 24(3): 376-379.
    [30]蒋剑春,应浩,戴伟娣,等.生物质流态化催化气化技术工程化研究[J].太阳能学报, 2004, 25(5): 678-684.
    [31]吕鹏梅,熊祖鸿,常杰,等.生物质催化气化制取富氢燃气的研究[J].环境污染治理技术与设备, 2003, 11(4): 31-34.
    [32]徐鑫,陈雷,张晓东,等.生物质焦油模型化合物催化转化实验研究[J].燃料化学学报, 2009, 37(2): 248-251.
    [33]周劲松,王铁柱,骆仲泱,等.生物质焦油的催化裂解研究[J].燃料化学学报, 2003, 31(2): 144-148.
    [34]张晓东,周劲松,骆仲泱,等.催化裂化生物质焦油构成变化[J].燃料化学学报, 2005, 33(5): 582-585.
    [35]骆仲泱,张晓东,周劲松,等.生物质热解焦油的热裂解与催化裂解[J].高校化学工程学报, 2004, 18(2): 162-167.
    [36]侯斌,吕子安,李晓辉,等.生物质热解产物中焦油的催化裂解[J].燃料化学学报, 2001, 29(1): 70-75.
    [37]贺茂云,肖波,胡智泉,等.镍基催化剂的制备及其对垃圾气化产氢的催化活性[J].中国环境科学, 2009, 29(4): 391-396.
    [38]贺茂云,胡智泉,肖波,等.城市生活垃圾催化气化制取富氢气体的研究[J].环境工程, 2009, 27(2): 97-101.
    [39]罗思义,肖波,郭献军,等.城市生活垃圾水蒸气催化热解的实验研究[J].环境科学与技术, 2009, 32(8): 43-52.
    [40]谢玉荣,沈来宏,肖军.生物质催化气化重整制取富氢气体的实验研究[J].西安交通大学学报, 2008, 42(5): 634-638.
    [41]杨宇,马建新.镍负载量对乙醇水蒸气重整制氢催化性能和催化剂的影响[J].燃料化学学报, 2006, 34(3): 337-341.
    [42]闫秋会,郭烈锦,梁兴,等.煤与生物质共超临界水催化气化制氢的实验研究[J].西安交通大学学报, 2005, 39(5): 454-457.
    [43]张长森,张瑞芹.生物质燃气中焦油的催化转化脱除研究[J].安徽农业科学, 2010, 38(2): 874-876.
    [44] Yang Xiaoqin, Xu Shaoping, Xu Hailong, et al. Nickel supported on modified olivine catalysts for steam reforming of biomass gasification tar[J]. Catalysis Communications,2010,11(5):383-386.
    [45] Liu Haibo,Chen Tianhu,Zhang Xianlong,et al.Effect of Additives on Catalytic Cracking of Biomass Gasification Tar over a Nickel-Based Catalyst[J]. Chin. J. Catal., 2010, 31(4): 409-414.
    [46]颜涌捷,任铮伟,李桂贞,等.生物质能源开发V.泥炭的催化气化[J].华东理工大学学报, 1995, 21(2): 144-149.
    [47]郭建维,宋晓锐,崔英德.流化床反应器中生物质的催化裂解气化研究[J].燃料化学学报, 2001, 29(4): 319-322.
    [48]李增喜,陈霄榕,王日杰.生物质热裂解气中模型化合物萘的催化转化研究[J].燃料化学学报, 2003, 31(1): 53-57.
    [49] Yu Fei, Yue Baohua, Wang Xueguang, et al. Hydrocracking of Tar Components from Hot Coke Oven Gas over a Ni/Ce-ZrO2/γ-Al2O3 Catalyst at Atmospheric Pressure[J]. Chin J Catal, 2009, 30(7):690-696.
    [50]辛美静,赵宇,董益名,等.城市生活垃圾中有机质产气及焦化特性研究[J].水泥工程, 2010, (3): 13-16.
    [51]孙海权,张晓东,陈雷,等.生物质焦油模型化合物的催化转化[J].农业工程学报, 2009, 25(7): 201-203.
    [52]王明峰,许细微,李伯松,等. Fe2O3/γ-Al2O3催化裂解生物质制氢研究[J].可再生能源, 2010, 28(4): 49-53.
    [53]陈雷,张晓东,赵保峰,等.生物质焦油模化物蒸汽重整实验研究[J].山东科学, 2009, 22(5): 111-114.
    [54] Li Jianfen,Yin Yanfang,Zhang Xuanming,et al.Hydrogen-rich gas production by steam gasification of palm oil wastes over supported tri-metallic catalyst[J]. International Journal of Hydrogen Energy,2009, 34(22): 9108-9115.
    [55]杜丽娟,李建芬,肖波,等.生物质催化裂解制合成气的研究[J].化学工程师, 2008, (6): 3-5.
    [56]许小荣.新型镍基催化剂的开发及在生物质催化气化中的应用研究[D].武汉:武汉工业学院, 2009: 64-65.
    [57]张伯军,华杰,刘梅,等.纳米复合材料Co0.5Ni0.5Fe2O4-SiO2的显微结构和磁性[J].硅酸盐学报, 2008, 36(3): 292-300.
    [58]刘兰香,黄玉安,黄润生,等.纳米镍-铁合金/膨胀石墨复合材料的制备、表征及其电磁屏蔽性能[J].无机化学学报,2007,23(9):1667-1670.
    [59] Aziz A., Sadrnezhaad S.K. Synthesis of Fe-Ni nano-particles by low-temperature hydrogen reduction of mechanically alloyed Ni-ferrite[J]. Journal of Alloys and Compounds, 2009, 485(1-2):484-487.
    [60] Bahgat M. , Paek M.K. , Pak J.J . Comparative synthesize of nanocrystalline Fe-Ni and Fe-Ni-Co alloys during hydrogen reduction of NixCo1-xFe2O4[J]. Journal of Alloys and Compounds,2008, 466(1-2): 59-66.
    [61] Chicinas I., Geoffroy O., Isnard O., et al.AC magnetic properties of the soft magnetic composites based on nanocrystalline Ni–Fe powders obtained by mechanical alloying[J]. Journal of Magnetism and Magnetic Materials, 2007, 310(2): 2474-2476.
    [62] Specht E.D., Rack P.D., Rar A., et al.Metastable phase evolution and grain growth in annealed nanocrystalline Cr–Fe–Ni films[J]. Thin Solid Films, 2005, 493(1-2): 307-312.
    [63]阎鑫,胡小玲,岳红,等.纳米级尖晶石型铁氧体制备进展[J].材料导报, 2002, 16(8): 42-44.
    [64]刘辉,魏雨.纳米级铁酸盐晶体材料合成的进展[J].功能材料,2000, 31(2): 24-126.
    [65]李建芬,肖波,晏蓉,等.均匀沉淀法制备纳米氧化镍及其工艺优化[J].化学工程, 2007, 35(8): 53-56.
    [66]张明月,廖列文.均匀沉淀法制备纳米氧化物研究进展[J].化工装备技术, 2002, 23(4): 18-20.
    [67]郭广生,郑东华,王志华,等.均匀沉淀法制备纳米氧化镍[J].北京化工大学学报, 2004, 31(3): 74-76.
    [68] Li J.F., Xiao B.,Du L.J.,et al.Preparation of Nanocrystalline NiO and Process Analysis[J]. Journal of Synthetic Crystals, 2007,36(5): 1045-1051.
    [69] Liu X.M., Zhang X.G., Fu S.Y.. Preparation of Urchin like NiO Nanostructures and Their Electrochemical Capacitive Behaviors[J]. Materials Research Bulletin, 2006, 41(3): 620-627.
    [70]许小荣,李建芬,肖波,等. La2O3纳米晶体的制备及表征[J].人工晶体学报, 2009, 38(3): 652-656.
    [71] Srivastava M. , Chaubey S. , K.Ojha A . Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol–gel and hydrothermal methods[J] . Materials Chemistry and Physics , 2009 , 118(1) :174-180.
    [72]吴文广,罗永浩,陈韩.生物质焦油净化方法研究进展[J].工业加热, 2008, 37(2): 1-5.
    [73]孙云娟,蒋剑春.生物质气化过程中焦油的去除方法综述[J].生物质化学工程, 2006, 40(2): 31-35.
    [74]杨修春,韦亚南,李伟捷.焦油裂解用催化剂的研究进展[J].化工进展, 2007, 26(3): 326-330.
    [75] Devi L., Ptasinski K. J., Janssen F. J.. A review of the primary measures for tar elimination in biomass gasification processes[J]. Biomass and Bioenergy, 2003, 24(2): 125-140.
    [76] Xu C.(Charles), Donald J., Byambajav E., et al. Recent advances in catalysts for hot-gas removal of tar and NH3 from biomass gasification[J]. Fuel, 2010, 89(8): 1784-1795.
    [77] Han J., Kim H.. The reduction and control technology of tar during biomass gasification/pyrolysis: An overview[J] . Renewable and Sustainable Energy Reviews, 2008, 12(2): 397-416.
    [78]杨海平,米铁,陈汉平,等.生物质气化中焦油的转化方法[J].煤气与热力, 2004, 24(3): 122-126.
    [79]郭秀兰,黄鹤,周强,等.生物质焦油裂解催化剂研究进展[J].可再生能源, 2004, (1): 9-13.
    [80]陈冠益,高文学,马文超.生物质制氢技术的研究现状与展望[J].太阳能学报, 2006, 27(12): 1276-1283.
    [81]胡冠.生物质气化制氢催化剂研究[D].大连:大连理工大学,2005:6.
    [82] Carlos M.C., Jose R.U., Antonio L.P., et al. Gasification reaction of a lignite char catalysed by Cr,Mn,Fe,Co,Ni,Cu and Zn in dry and wet air[J]. Fuel, 1985, 64(9): 1220-1223.
    [83] Alenazey F., Cooper C.G., Dave C.B., et al. Coke removal from deactivated Co-Ni steam reforming catalyst using different gasifying agents: An analysis of the gas-solid reaction kinetics[J]. Catalysis Communications, 2009, 10(4): 406-411.
    [84] Tomishige K., Kimura T., Nishikawa J., et al. Promoting effect of the interaction between Ni and CeO2 on steam gasification of biomass[J]. Catalysis Communications, 2007, 8(7): 1074-1079.
    [85] Li Jianfen, Yan Rong, Xiao Bo, et al. Preparation of Nano-NiO Particles and Evaluation of Their Catalytic Activity in Pyrolyzing Biomass Components[J]. Energy & Fuels, 2008, 22(1): 16-23.
    [86] Zhou Guilin, Jiang Yi, Qiu Fali. A new Co-Ni/AC catalyst for selective oxidation of carbon monoxide in excess hydrogen[J]. Chinese Journal of Catalysis, 2005, 26(2): 93-95.
    [87]贺茂云.纳米镍基催化剂的制备及其对城市生活垃圾裂解气化制氢的催化性能研究[D].武汉:华中科技大学, 2009: 98.
    [88]林玉佳,陈科全,韩立亭.GB/T 212-91煤的工业分析方法,中华人民共和国国家质量监督检验检疫总局, 2002.
    [89] Li Jianfen , Yan Rong , Xiao Bo , et al . Development of Nano-NiO/Al2O3 Catalyst to be Used for Tar Removal in Biomass Gasification[J].Environ. Sci. Technol.,2008,42(16):6224-6229.
    [90] He Maoyun, Xiao Bo, Liu Shiming, et al. Syngas production from pyrolysis of municipal solid waste (MSW) with dolomite as downstream catalysts[J]. J. Anal. Appl. Pyrolysis, 2010, 87(2):181-187.
    [91] Li Jianfen,Xiao Bo,Yan Rong,et al.Development of a supported tri-metallic catalyst and evaluation of the catalytic activity in biomass steam gasification[J] . Bioresource Technology , 2009 ,100(21): 5295-5300.
    [92]王光信,刘澄凡,张积树,编著.物理化学(第二版)[M ].北京:化学工业出版社, 2001: 88.
    [93] Turn S.,Kinoshita C.,Zhang Z.,et al.An experimental investigation of hydrogen production from biomass gasification[J]. International Journal of Hydrogen Energy, 1998, 23(8): 641-648.
    [94] Li Jianfen, Liu Jianjun, Liao Shiyan, et al. Hydrogen-rich gas production by air-steam gasification of rice husk using supported nano-NiO/γ-Al2O3 catalyst [J]. International Journal of Hydrogen Energy, 2010, 35(14): 7399-7404.
    [95] Blasi C.D. Kinetic and Heat Transfer Control in the Slow and Flash Pyrolysis of Solids[J] . Industrial & Engineering Chemistry Research, 1996, 35(1): 37-46.
    [96] Lv P.M., Xiong Z.H., Chang J., et al. An experimental study on biomass air-steam gasification in a fluidized bed[J]. BioresourceTechnology, 2004, 95(1): 95-101.
    [97]吕鹏梅,常杰,付严,等.生物质流化床催化气化制取富氢燃气[J].太阳能学报, 2004, 25(6): 769-775.
    [98]许庆利,张素平,王复,等.生物质催化气化实验研究[J].化工进展, 2009, 28(4): 622-628.
    [99] Lu Youjun, Li Sha, Guo Liejin, et al. Hydrogen production by biomass gasification in supercritical water over Ni/γAl2O3 and Ni/CeO2-γAl2O3 catalysts[J] . International Journal of Hydrogen Energy, 2010, 35(13): 7161-7168.
    [100] Corujo A.,Yerma′n L.,Arizaga B.,et al.Improved yield parameters in catalytic steam gasification of forestry residue : optimizing biomass feed rate and catalyst type[J]. Biomass and Bioenergy,2010, 34(12): 1695-1702.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700