金属氧化物及其复合物的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NiO、SnO_2在电池、催化剂和传感器等领域是被广泛应用的一类金属氧化物功能材料。本论文利用水热法制备了NiO、SnO_2纳米粉体。研究了在不同反应条件下水热法制备NiO前驱体对经热处理得到的NiO电极材料的电化学性能的影响,根据测试结果,选择了CuO掺杂改性以期得到电化学性能更优异的复合氧化物。为扩展NiO、SnO_2的应用,合成了NiO/PPY复合材料,测试了复合材料在电化学和光催化等方面的性能;制备并测试了SnO_2/PANI复合材料的导电性和光催化吸附性能。研究内容包括以下几个方面:
     (1)由水热法制备前驱体,经400℃煅烧得到网孔状结构的NiO,通过XRD、SEM和恒流充放电分析测试样品的相结构、微观形貌和电容特性。探讨了镍源、表面活性剂、物料比、水热反应时间、水热反应温度及煅烧温度对NiO电极材料的电化学性能影响。结果表明,制备的NiO为网孔状结构,在20mA·cm~(-2)下放电比电容为939F/g,显示出良好电容特性。
     (2)采用浸渍-水热沉淀法合成CuO掺杂Ni(OH)_2前驱体,经煅烧得NiO-CuO复合氧化物。分析了复合前后粒子结构和形貌的变化,采用电化学工作站对NiO-CuO电极材料进行了循环伏安和恒流充放电等电化学性能测试。结果表明,CuO掺杂后复合材料呈孔隙分布均匀的菜花状结构,减少了粒子间的团聚,提高了材料的稳定性,增大了材料的比表面积,在5mA/cm~2的电流密度下放电比电容为822F/g,180次循环后衰减率仅为4.5%,循环可逆性能好。
     (3)经水热法制备了NiO纳米颗粒,再通过原位化学氧化聚合得到NiO/PPy复合材料,研究了复合材料的电化学性能和对偶氮类有机染料甲基橙的光催化降解性能。结果表明,聚吡咯包覆在NiO粒子表面,提高了分散性,体现出良好的协同效应。当NiO含量为30%时,在电位窗口为0-0.5V下,单电极比电容达250F/g,相比PPy提高了72F/g。在光照条件下,对甲基橙溶液的降解率达87.5%。
     (4)采用水热合成法制备了球状二氧化锡,并将聚苯胺原位生长在二氧化锡表面获得兼具导电性和光催化与吸附性能的PANI/SnO_2纳米复合材料。考察了反应物配比对复合材料导电性及其光催化与吸附性能的影响。结果表明,掺杂30%SnO_2纳米粒子时,复合材料的电导率为3.57S/cm,相比于掺杂态聚苯胺提高了将近十倍,对萘酚绿B的吸附降解率达98%,且循环使用率较高(80%±6%)。
NiO and SnO2as a functional material, has been widely applied in the scopes of battery, catalysts and magnetic device et al. In this paper, the preparation of NiO and SnO2with Hydrothermal synthesis, and we studies the NiO electrode materials that get from calcining body precursor by the different raction conditions in the water hot influence of the electrochemical performance. According to the test results, it expects to get a more excellent electrochemical properties of the composite oxide by doping modified the CuO. For extending the application of NiO and SnO2, we synthesized the NiO/PPy composite materials and tested the electrochemical and optical catalytic properties, and studied the photocatalytic and adsorption performance of SnO2/PANI conductive composite materials. The main research content by following respects:
     (1) Nets hole shape structure of NiO electrode was obtained by thermal decomposition of precursor at400℃. The samples of phase structure, micro-cosmic morphology and electrochemical properties were characterized by XRD, SEM and constant-current charge-discharge testing techniques. The precursor of NiO electrode materials was obtained by the method of thermal decomposition, the electrochemical performance impact was discussed by the reaction conditions of Nickel source, surfactants, molar ratio, supercritical water time and temperature, calcining temperature. The results show that the specific capacitance of the NiO obtained after calcination as a single electrode was up to939F·g-1to20mA·cm-2discharge.
     (2) Nickel hydroxide doped with Copper Oxide were synthesized by dipping at hydrothermal process. They were annealed in air to obtain composite oxide. The samples of phase structure, micro-cosmic morphology and electrochemical properties were characterized by constant-current charge-discharge testing techniques. The results indicated that the porosity distribution uniform cauliflower shape structure of the composite material by CuO doped that has reduced the reunion of particles, and improved the stability of the material, and increased the surface area of the material. The NiO-CuO obtained after calcination as a single electrode was up to822F·g-1 to5mA·cm-2discharge. Then the attenuation rate was only4.5%after180cycle.
     (3) NiO powder prepared by hydrothermal method was gone through situ polymerization and then the composite materials NiO/PPy was obtained. The feasibility of Azo kind of organic dye methyl orange using NiO/PPy was studied and the influence of some factors such as light. The analysis showed that pyrrole which coated the surface of NiO nanoparticles improve the dispersion. The composite improved the properties of materials and reflected a good synergy effect. When NiO content was thirty percent, its single electrode specific capacitance was up to250F/g at the potential Window of0-0.5V. Then NiO/PPy had a very good degradation effect, with the degradation rate of Methyl orange solution up to87.5%in the lighting conditions.
     (4) SnO2nanoparticles with similar globular were prepared by hydrothermal method. PANI/SnO2composite material was prepared by in-situ polymerization. The influences of reactants'ratio of conductivity and photocatalytic adsorption performance of resulting composites were investigated. The results showed that, doping SnO2nanoparticles for30%, composite materials of electrical conductivity with highest for3.57S/cm, compared with the doped polyaniline improved modal nearly10times and alpha-naphthol green B photocatalytic degradation and adsorption rate reaches98%, circular utilization rate higher (80%+6%).
引文
[1]Conway B E. Transition from"supercapacitor"to"battery" behavior in Electrochemical energy storage[J]. J Electrochem Soc,1991,138(6):1539-1548.
    [2]Conway B E, Mozota J. Monolayer stage and transition to reversible multilayer oxide film behavior [J].J Electrochim Acta,1983,28(1):1-8.
    [3]Conway B E.Electrochemical Supercapacitors Scientific Fundamentals and Technological Applications[M].NewYork:Plenum Press,1999.
    [4]Bao S J, He B L, Liang Y Y, et al. Synthesis and electrochemical Characterization of amorphous MnO2for electrochemical capacitor[J]. Mater. Sci. Eng.A,2005,93970:305-309.
    [5]Wu N L, Nanocrystalline oxide supercapacitors, Mater. Chem.phys.2002,75:6-11.
    [6]Wang Y G, Zhang X G, Preparation and electrochemical capacitance of RuO2/TiO2namotubes composites[J]. Electrochim. Acta,2004,(49):1957-1962.
    [7]Hu C C, Tsou T W, Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition[J]. Electrochim. Acra,2002,(47):3523-3532.
    [8]Kalakodimi R P, Norio M. Electrochemically synthesizedMnO2-based Mixed oxides for high performance redox supercapacitors[J]. Electrochem. Commun.,2004,(6):1004-1008.
    [9]Winter M, Brodd J. What Are Batteries, Fuel Cells, and Supercapacitors[J]. Chem.Rev.,2004,104(10):4245-4269
    [10]Burke A. Ultracapacitors:why, how, and where is the technology. J. Power Sources,2000,91:37-50.
    [11]An K H, Kim W S, Park Y S, etal. Supercapacitors Using Single-Walled Carbon Nanotube Electrodes. Adv. Mater.,2001,13(7):497-500.
    [12]江奇,瞿美臻,张伯兰,等.电化学超级电容器电极材料的研究进展.无机材料学报,2002,17(4):649-656.
    [13]Lewandowski A.,Galinski M..Carbon-ionic liquid double-layer capacitors[J]. Journal of Physics and Chemistry of Solids.2004, 65:281-286.
    [14]Yoon B.J., Jeong S.H., Lee K.H., et al. Electrical properties of electrical double-layer capacitors with integrated carbon nanotube electrodes[J]. Chemical Physics Letters.2004,388:170-174.
    [15]田艳红,付旭涛,吴伯荣.超级电容器用多孔碳材料的研究进展[J].电源技术,2002,26(6):466-450.
    [16]Emmenegger C, Mauron P., Sudan P., et al. Investigation of electrochemical double-layer(ECDL)capacitors electrodes based on carbon nanotubes and activated carbon materials[J]. Journal of Power Sources.2003,124:321-329.
    [17]Fuertes A. B., Pico F., Rojo J. M.. Influence of pore structure on electric double-layer capacitance of template mesoporous carbons[J]. Journal of Power Sources.2004,133:329-336.
    [18]刑宝林,谌伦建,张传祥,等.超级电容器用活性炭电极材料的研究进展[J].材料导报,2010,24(15):22-25.
    [19]曲保雪,朱立红,芦春莲,等.活性炭的起源、发展及应用[J].河北林果研究.2002,17(1):88-90.
    [20]魏娜,赵乃勤,贾威.活性炭的制备及应用新进展[J].材料科学与工程学学报.2003,21(5):777-780.
    [21]孟庆函,刘玲,宋怀河.特定孔径分布活性炭的制备及电容性能研究[J].功能材料,2005,36(2):228-230.
    [22]Anon. High power2300F double-layer capacitor based on AC/C composite electrode technology. Electrochemical Society, Extended abstracts of188th fall meeting Chicago,1995:313-317.
    [23]李晶,黄可龙,刘业翔.超级电容器用活性炭的制备与电化学表征[J].材料科学与工艺,2009,17(1):1-4.
    [24]张晶,孔令斌,蔡建军,等.电化学混合电容器用新型聚吡咯/介孔碳纳米复合电极[J].物理化学学报,2010,26(6):1515-1520.
    [25]杨蓉,康二维,崔斌,等.超级电容器聚苯胺电极材料的研究进展[J].工程塑料应用,2010,38(5):85-88.
    [26]王鹏,贾丽新,陈学思,等.聚噻吩(PT)、聚-3-甲基-噻吩(PMT)和聚-3,4-亚乙二氧基-噻吩(PEDT)作为超级电容器电极材料的研究[J].渤海大学学报(自然科学版),2006,27(2):101-105.
    [27]王存国,肖红杰,袁涛,等.锂离子电池硫化聚并苯电极材料的结构 与性能[J].功能材料,2009,40(1):89-96.
    [28]袁国辉.电化学电容器[M].北京:化学工业出版社,2006.
    [29]A. Rudge, J. Davey, I. Raistrick, et al.. Conducting polymers as active materials in electrochemical capacitors. Journal of Power Sources,1994,47(1-2):89-107.
    [30]A.D. Fabio, A. Giorgi, M. Mastragostino. Carbon-Poly (3-methylthiophene) Hybrid Supercapacitors. Journal of The Electrochemical Society,2001,148(8):845-850.
    [31]张爱勤,张林森,王力臻,等.盐酸掺杂聚苯胺的电容性能研究[J].化工新型材料,2009,37(7):61-63.
    [32]朱日龙,李国希,林斌,等PPy/PANI复合型导电高分子超级电容器的研究[J].湖南大学学报(自然科学版),2008,39(3):59-61.
    [33]张菲,胡会利,高鹏.超级电容器用过渡金属氧化物的研究进展[J].电池,2009,39(5):291-293.
    [34]Wang D W, Li F, Cheng H M. Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor[J].J Power Sources,2008,185(2):1563-1568.
    [35]Kandalkar S G, Gunjakar J L, Lokhande C D. Preparation of cobalt oxide thin films and its use in supercapacitor application[J]. Appl Surf Sci,2008,254(17):5540-5544.
    [36]Lin C K, Chuang K H, Lin C Y, et al. Manganese oxide films prepared by sol-gel process for supercapacitor application [J].Surf Coat Technol,2007,202(4-7):1272-1276.
    [37]Zheng J. P., Cygan P.J., Jow T.R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors[J]. Journal of Electrochemical Society.1995,142(8):2699-2703.
    [38]Zheng J.P., Huang J., Jow T.R. The limitations of energy density of electrochemical capacitors[J].Journal of Electrochemical Society.1997,144(6):2026-2031.
    [39]Zheng J.P., Jow T.R. High energy and high power density electrochemical capacitors[J]. Journal of Power Sources.1996,62(1):155-159.
    [40]Conway B E. The role and utilization of pseudocapacitance for energy storage by supercapacitors[J]. J.Power Sources,1997,66(1):1-14.
    [41]Subramanian V, Hall S C, Smith H, et al. Mesoporous anhydrous RuO2as a supercapacitor electrode material[J]. Solid State Ionics,2004,175:511-515.
    [42]Vol'fkovich Y M, Serdyuk T M. Electrochemical Capacitors. Russ[J]. J. Electrochem.,2002,38(9):935-958.
    [43]王晓峰,高琦,粱吉.纳米氧化钌的制备及其碳纳米管复合电极的电容特性[J].稀有金属材料与工程,2006,35(2):295-298.
    [44]张治安,杨邦朝,邓梅根,等.超级电容器氧化锰电极材料的研究进展[J].无机材料学报,2005,20(3):529-535.
    [45]Xu M W. Kong L B, Zhou W J, et al. Hydrothemal synthesis and pseudocapacitance properties of a-MnO2hollow sphere and hollow urchins[J]. J.Phys. Chem. C.2007,111:19141-19147.
    [46]俞兆晶,徐华蕊,颜东亮.氧化锰的液相合成及其电容性能[J].材料导报,2010,24(8):97-99.
    [47]Palmas S, Ferrara F, Vacca A, et al. Behavior cobalt oxide electrodes during oxidative processes in alkaline medium[J]. Electrochim. Acta.2007,53:400-406.
    [48]王兴磊,何宽新,张校刚.层状Co3O4的制备及其电化学电容行为[J].无机化学学报,2006,22(6):1019-1022.
    [49]曹林,周盈科,陆梅,等.纳米氧化钴的制备及其超电容性能[J].科学通报,2003,48(7):668-670.
    [50]王兴磊,欧阳艳,罗新泽,等.四氧化三钴超级电容器电极材料的制备与研究[J].无机盐工业,2009,41(9):15-17.
    [51]王晓峰,孔祥华,刘庆国,等.氧化镍超级电容器的研究[J].电子元件与材料,2000,19(5):669-673.
    [52]王晓峰,孔祥华.新型氧化镍超级电容器电极材料的研究[J].无机材料学报,2001,16(5):815-820.
    [53]Zheng J.P., Jow T.R. A new charge storage mechanism for electrochemical capacitor[J]. Journal of Electrochemical Society.1995,142(1):6-8.
    [54]王兴磊,何宽新,张校刚,等.溶剂热法合成蜂巢状氧化镍及其电化学电容性能[J].无机化学学报,2007,23(9):1533-1537.
    [55]A. Fujishima, K.Honda. Electroelectrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature,1972,238(5358):37-38.
    [56]J.H.Carey, J.Lawrence, H.M.Tosine. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspension[J]. Bull. Environ. Contam. Toxicol.,1976,16(2):697-701.
    [57]D.Y.Goswami. A review of Engineering Developments of Aqueous Phase Solar Photocatalytic Detoxification and Disinfection Processes[J]. Journal of Solar Energy Engineering,1997,119(2):293-296.
    [58]A.L.Linsebiger, G.Lu, J.T.Yates. Photocatalysis on TiO2Surface: Principles, Mechanism and Selected results[J]. Chen.Rev.,1995,95(3):735-738.
    [59]M.R.Hoffmann, S.T.Martin, et al. Environmental application of semiconductor photocatalysis[J]. Chem.Rev.,1995,93(1):69-96.
    [60]A.Mills, R.H.Davies, D.Worsley. Water purification by semiconductor photocatalysis[J]. Chem.Soc.1993,22(1):417-425.
    [61]俞中平,王智宇.不同形貌氧化锡纳米材料的制备、掺杂与光催化性能[M].浙江大学材料科学与工程系,2010,3.
    [62]Venkar, Srinivasan et al. An electrochemical route for making porous nickel oxide electrochemical capacitiors[J].J. Electrochemical. Soc.,1997,144(8):L210-L213.
    [63]郭炳琨,李新海,杨青松等.电池原理及制造技术[M].长沙:中南大学出版社,2003,p261.
    [64]王益平,蓝月存,饶义飞,等NiO/AC催化臭氧氧化去除水中的苯酚[J].环境工程学报,2010,4(11):2441-2445.
    [65]贺茂云,肖波,胡智泉,等.镍基催化剂的制备及其对垃圾气化产生氢的催化活性[J].中国环境科学,2009,29(4):391-394.
    [66]Chang F W, Tsay M T, Kou M S, Yang C M. Characterization of Nickel Catalysts on RHA-AI2O3Composite Oxides Prepared by Ion Exchange[J]. Appl.Catal.A,2002,226(1-2):213-200.
    [67]Chang F W, Tsay M T, Kou M S. Effect of Thermal Treatments on Catalyst Reducibility and activety in Nickel Supported on RHA-Al2O3Systems[J]. Thermochimica Acta,2002,386(2):16-20.
    [68]刘迎新Ni/SiO2催化剂的制备条件对催化间二硝基苯加氢反应性能的影响[J].化工学报,2004,55(1):37-41.
    [69]吉文欣,李永昕.甲烷催化燃烧中制备参数对NiO/CuO·ZrO催化剂高温反应性能的影响[J].燃烧化学学报,2004,32(6):372-377.
    [70]豆斌林,鲁军,申文琴,等.高温煤气中NH3、有机硫、HC1及焦油 蒸汽的同时脱除[J].华东理工大学学报,2001,27(2):177-180.
    [71]赵永祥,武志刚,许临萍,等.前驱物对NiO/SiO2气凝胶催化剂性能的影响[J].化学学报,2002,60(4):596-599.
    [72]Liu X, Zhang X, Fu S, et al. Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors[J]. Materials Research Bulletin,2006,(41):620-627.
    [73]Lee C Y, Chang C M, Wang Y H, et al. A self-heating gas sensor with integrated NiO thin-film for formalde-hyde detection [J]. Sensors and Actuators B,2007,122:503-510.
    [74]楼贤春,赵修建,熊玉立.NiO电致变色薄膜的研究进展[J].建材世界,2009,30(5):1-3.
    [75]王连超,孟凡利,孙宇峰,等.电致变色纳米氧化镍薄膜的溶胶-凝胶法制备与表征[J].无机材料学报,2004,19(6):1391-1396.
    [76]张智宏,王玉峰,张少瑜.用柠檬酸通过固相反应法制备氧化镍[J].机械工程材料,2010,34(1):49-51.
    [77]吕伟,吴莉莉,徐润春等.二维纳米结构-氧化铋纳米片的制备与表征[J].山东大学学报(工学版),2008,38(1):109-112.
    [78]陈其猛,易双萍,赵渺CNTs对MH/Ni电池正极电化学性能的影响[J].华南师范大学学报(自然科学版),2009,11(S1):90-92.
    [79]陈野,刘良,张尊波,等.并流沉淀法合成氧化镍及其电容性能[J].功能材料,2008,25(5):424-427.
    [80]吴东辉,章忠秀,汪信.沉淀法制备氧化镍纳米晶[J].功能材料,2005,36(6):906-907.
    [81]宋全生,刘萍,唐致远,等.氧化镍热分解法制备及电化学电容器特性[J].电源技术,2005,29(6):369-391.
    [82]吴莉莉,吕伟,吴佑实,等.均相沉淀法制备氧化镍纳米线[J].中国有色金属学报,2005,15(1):61-65.
    [83]Thota S, Kumar J. Sol-gel synthesis and anomalous magnetic behavior of NiO nano particles[J]. Journal of Physics and Chemistry o f Solids,2007,68:1951-1964.
    [84]Tiwari S D, Rajeev K P. Magnetic properties of NiO nanoparticles [J]. Thin Solid Films,2006,505:113-117.
    [85]刘胜峰,吴春艳,韩笑钊.高分子网络法制备纳米NiO超细粉的研究[J].无机化学学报,2003,5(2):46-57.
    [86]施尔畏,夏长泰,王步国,等.水热法的应用与发展[J].无机材料学报,1996,11(2):193-206.
    [87]李健,向兰.水热改性法制备分散性纳米氧化镍[J].稀有金属材料与工程,2004,33(4):425-428.
    [88]娄向东,楚文飞,韩珺,等.水热法制备片状纳米氧化镍及其光催化性能[J].水处理技术,2007,33(11):23-27.
    [89]韩冬云,杨怀玉,王福会.热处理对微乳液法制备纳米氧化镍的影响[J].无机盐工业,2006,38(12):32-34.
    [90]黄凯.可控缓释沉淀-热分解法制备超细氧化镍粉末的粒度和形貌控制研究[D].长沙:中南大学,2003,7.
    [91]Han D Y, Yang H Y, Shen C B, et al. Synthesis and size control of NiO nanoparticles by water-in-oil microe-mulsion[J]. Powder Technology,2004,147:113-116.
    [92]Lin Y, Xie T, Cheng B C, et al. Ordered nickel oxide nanowire arrays and their optical absorption properties[J]. Chemical Physics Letters,2003,380:521-525.
    [93]Keitaro M, Bhabendra K P, Takashi K, er al. Formation of nickel oxide nanoribbons in the cavity of carbon nanotubes[J]. J Phys Chem B,2001,105:5682-5688.
    [94]Lang J.W., Kong L.B., Wu W.J., et al.. Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors. Chemical Communication,2008,51:4213-4215.
    [95]Sonavane A C, Patil P S, Patil R S, et al. Efficient electrochromic nickel oxide thin films by electrodeposition[J]. Journal of Alloys and Compounds,2010,489(2):667-673.
    [96]Xing W, Li F, Yan Z F, Synthesis and electrochemical properties of mesoporous nickel oxide [J]. Journal of Power Sources,2004,134(2):324-330.
    [97]Wang Y P, Zhu W J, Lu D L. Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate[J]. Thermochim Acta,2005,437(1/2):106-109.
    [98]Ghosh M, Biswas K, Sundaresan A. MnO and NiO nanoparticles: synthesis and magnetic properties[J]. J Mater Chem,2006,16(1):106-111.
    [99]Sietama J R A, Meeldijk J D, Breejen J P D J. The preparation of supported NiO and CO3O4nanoparticles by the nitric oxide controlled thermal decomposition of nitrates[J]. Chem Int Ed,2007,46(24):4547.4549.
    [100]Wu M S, Hsieh H H. Nickel oxide/hydroxide nanoplates synthesized by chemical precipition for electrochemical capacitiors[J]. Electrochimica Acta,2008,53(8):3427-3435.
    [101]Xu K C, Hong Q K, Liu S. A novel wet chemical route to NiO nanowires[J]. J Cryst Growth,2003,255(3-4):308-312.
    [102]Deng J J, Deng J C, Liu Z L, Influence of addition of cobalt oxide on microstructure and electrochemical capacitive performance of nickel oxide[J]. J Solid State Electrochem,2009,13(9):1387-1394.
    [103]Zheng M B, Cao J M, Chen Y P. Facile fabrication of nickel oxide hollow spheres and amorphous carbon/nickel nanoparticles composites using colloidal carbonaceous microspheres as template[J]. Chem Lett2005,34(8):1174-1175.
    [104]Wu L L, Wu Y S, Wei H Y Synthesis and characteristics of NiO nanowire by a solution method[J]. Mater Lett,2004,58(21):2700-2703.
    [105]Zhao Sheng-li, Wen Jiu-ba, Wang Hong-kang, et al. Preparation and electrochemical properties of nanocrystalline NiO[J]. Chinese Journal of Materials Research,2008,22(4):415-419.
    [106]Liu X M, Zhang X G, Fu S Y. Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaciors[J]. Materials Research Bulletin,2006,41(3):620-627.
    [107]Sonavane A C, Patil P S, Patil R S, et al. Efficient electrochromic nickel oxide thin films by electrodeposition[J]. Journal of Alloys and Compounds,2010,489(2):667-673.
    [108]Jing-Jing Deng, Jian-Cheng Deng, Zi-Ling Liu et al. Influence of addition of cobalt oxide on microstructure and electrochemical capacitive performance of nickel oxide[J], J Solid Electrochem,2009,13(9):1378-1394.
    [109]Sietama J R A, Meeldijk J D, Breejen J P D J. The preparation of supported NiO and CO3O4nanoparticles by the nitric oxide controlled thermal decomposition of nitrates[J]. Chem Int Ed,2007,46(24):4547-4549.
    [110]许娟,周益明,王文昌等,固相反应法制备NiO-Co3O4复合物及其超级电容器性能[J],电子元件与材料,2009,10(28):18-21.
    [111]Ghosh M, Biswas K, Sundaresan A. MnO and NiO nanoparticles: synthesis and magnetic properties[J]. J Mater Chem,2006,16(1):106-111.
    [112]潘路,张祖德,一维纳米Co3O4,Ag/Co3O4及CuO/Co3O4的合成与电催化性能[J],无机化学学报,2010,4(26):573-580.
    [113]路彦景,李向清,穆劲CuO-NiO助催化剂对TiO2(P25)光催化活性的影响[J],无机化学学报,2009,7(25):1149-1152.
    [114]俞燕青,周益明,戴跃华等.Cu掺杂的NiO的制备及其超级电容器性能[J],南京师大学报(自然科学版),2007,1(30):57-60.
    [115]尹五生,聚吡咯导电材料合成方法的进展[J].功能材料,1996,27(2):97-102.
    [116]林生岭,曹旭,林琪,等.化学氧化法合成聚吡咯工艺条件优化及电化性能[J].江苏科技大学学报(自然科学版),2010,24(4):353-356.
    [117]OuYang-mi, BaiRu, XuYi etal. Fabrication of polypyrrole/TiO2nanocomposite via electrochemical process and its photoconductivity[J]. Science Direct. Trans.Nonferrous Met. Soc. China,2009,19:1572-1577.
    [118]段国晨,齐暑华,吴新明,等.聚吡咯/无机粒子纳米复合材料的研究进展[J].中国塑料,2010,24(5):14-19.
    [119]邓建国,贺传兰,龙新平,等.磁性Fe3O4/聚吡咯纳米微球的合成与表征[J].高分子学报,2003,6(3):393-397.
    [120]陈爱华,王海侨,赵彬,等.Fe3O4/聚吡咯复合材料的制备及表征[J].复合材料学报,2004,21(2):157.
    [121]张爱勤,张林森,王力臻,活性炭/聚吡咯混合电容器的电化学性能[J].电子元件与材料,2009,28(4):64-66.
    [122]LIU W F, HUANG X J, WANG Z X, LI H, CHEN L Q. Studies of stannic oxide as an anode material for lithium-ion batteries [J]. J Electrochem Soc,1998,145(1):59-62.
    [123]何则强,李新海,熊利芝,等.锡基复合氧化物的高能球磨法制备及其电化学性能[J].无机化学学报,2004,35(1):102-106.
    [124]王彦宗,沈明欢,刘振营,等.聚苯胺-二氧化锡纳米复合材料合成与表征[J].化工新型材料,2007,1(1):46-69.
    [125] Takeuchi Sakae, Fujimori Hiroyasu, Tawarayama Yoshio etal.Translated by Zhang Minda. Fanctional Metal Materials [M].Shenyang:Liaoning Science and Technology press,1998:243.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700