生物质应用于压块燃料及快速热解的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今世界的能源基础为化石能源,煤和石油的大规模应用促进人类发展的同时又造成全球气候变暖、大气污染等严重的环境问题。生物质能具有可再生,环境友好等优势,与太阳能,风能等一同构成了第三次能源革命的发展方向。本文针对生物质能的利用与转换技术涉及压块燃料与快速热解液化两部分。
     为深入了解户用生物质炉具的使用状况,为优化炉具提供理论依据,并为进一步改善农村人口生活环境提供理论支持,在全国范围选取不同区域内具有代表性的生物质炉具,进行热效率,燃烧温度和烟气排放等方面的测试。发现提高其热效率需要的改进措施有提供足够的扩散型空气供给,加强保温、稳定火焰等,具有水暖功能的炉具应有烟气余热加热水温的设计。生物质炉具的灰渣物理热损失和化学不完全燃烧热损失可以忽略,而排烟热损失是其热量损失的最主要方面,而气化炉的主要热损失是物理不完全燃烧。对生物质炉烟气成分的分析,发现户用生物质炉具在燃烧过程中会产生大量的有害气体,其中CO的过量排放,不仅是对环境的污染,也是对燃料的极大浪费,而NOx和SO2的排放直接导致农村室内空气质量下降。
     快速热解生物质可以最大限度的获取液体产物。以往的生物质快速热解研究都是以N2为热解气氛,然而在热解反应装置中,大多利用热解气循环作载气,其成分主要为CO2,CO和CH4,因此有必要阐明不同气氛对生物质快速热解的影响。在改变热解气氛的条件下,发现与N2相比CO2气氛使得液体产率降低(4%-5%),而固碳和结焦产率上升,快速热解中CO2气氛抑制酚类和芳香烃的产生,使得酮类、链烃和杂环等成分比重增加,并且使产物结构中出现甲氧基支链,催化热解中CO2气氛抑制了HZSM-5的去氧和芳香化催化作用,同时促进稠环芳烃的生成,单环芳烃的生成减少,并且单环芳烃种类较多,使产物结构复杂化。总之,CO2气氛不利于生物质快速热解液化。
Energy infrastructure is fossil fuel in today's world which not only promotes the social development, but also contributes to global warming, air pollution and other serious environmental problems. Biomass energy, which is renewable and friendly to environment, constitutes the development direction of the third energy revolution with the solar energy,wind energy, etc. In this paper, the utilization and conversion of biomass energy involving briquetting fuel and fast pyrolysis was studied.
     Thermal efficiency, combustion temperature,flue gas emissions and others were test on biomass stoves which were selected all over the contury as representativses of different regions. The test provides a theoretical basis for in-depth understanding of usage and optimization of biomass stoves, and it also provides theoretical support of the further improvement of rural living environment. The result shows supplying sufficient diffusion-air, strengthening the insulation and stabling the flame can improve the thermal efficiency, and the stoves with plumbing functions should have the design of flue gas heating water. Ash physical heat loss and chemical incomplete burning heat loss in biomass stove can be ignored, while the flue gas heat losse is the most important aspect of its loss. The gasifier's heat loss is mainly physical incomplete combustion. Through the flue gas composition analysis, it shows biomass stoves produce large amounts of harmful gases in the combustion process, for instance the excess emission of CO is not only the pollution of the indoor environment, but also a great waste of fuel. Furthermore emission of NOX and SO2is a direct resaon of decline of indoor air quality in rural areas.
     Previous studies of biomass fast pyrolysis were mostly under N2atmosphere, however most of the pyrolysis application use pyrolysis gas as the carrier gas, which composes mainly of CO2, CO and CH4. Therefore, an in-depth study of the pyrolysis result under different atmosphere is required.In this paper, influence of two inert atmospheres, N2and CO2, on pyrolysis yields and oil products was studied. It shows changing the pyrolysis atmosphere has apparent influence on result. Carbon dioxide has a harmful influence on both fast and catalytic pyrolysis such as reducing the liquid yield and increasing the solid yield and coke on bed material. Moreover, it inhibits aromatic reaction and causes producing methoxy branched-chains and polycyclic aromatic hydrocarbon in pyrolysis procedure.
引文
[1].吴少杰.从秸秆焚燃看当前我国的生物质能资源的利用开发[J].乡镇经济,2008,3(1):39-42.
    [2].刘德华,生物质能利用技术[M].2008,北京:化学工业出版社.
    [3].Ligang, W.原料对自由落下床中生物质与煤共热解行为的影响[J].燃料化学学报,2011,39(10):728-734.
    [4].贺茂云.城市生活垃圾催化气化制取富氢气体的研究[J].环境工程,2009,27(2):97-101.
    [5].徐保江,李美玲,and曾忠.旋转锥式闪速热解生物质试验研究[J].环境工程,1999,17(5):71-74.
    [6].张长飞.污泥燃料化技术研究[J].环境工程,2010,28(增刊):377-380.
    [7].付鹏.热解过程中玉米秆颗粒孔隙结构的演化[J].中国电机工程学报,2008,28(35):108-113.
    [8].陆强,生物质选择性热解液化的研究[D].2010,中国科学技术大学:合肥.
    [9].王小娇.甘肃河西荒漠能源植物资源利用与产业化研究[J].环境工程,2008,26(增刊):356-359.
    [10].Raveendran, K., A. Ganesh, and K.C. Khilar. Pyrolysis characteristics of biomass and biomass components[J]. Fuel,1996,75(8):987-998.
    [11].A.V.Bridgwater. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass and Bioenergy,2011,91(1):263-272.
    [12].Diblasi, C. Modeling chemical and physical processes of wood and biomass pyrolysis[J]. Progress in Energy and Combustion Science,2008,34(1):47-90.
    [13].Williams, P.T. and S. Besler. The Pyrolysis of Rice Husks in a Thermogravimetric Analyzer and Static Batch Reactor[J]. Fuel,1993, 72(2):151-159.
    [14].Shafizadeh, F. Introduction to Pyrolysis of Biomass[J]. Journal of Analytical and Applied Pyrolysis,1982,3(4):283-305.
    [15].Sipila, K., et al. Characterization of biomass-based flash pyrolysis oils[J]. Biomass & Bioenergy,1998,14(2):103-113.
    [16].Evans, R.J. and T.A. Milne. Molecular Characterization of the Pyrolysis of Biomass.1. Fundamentals[J]. Energy & Fuels,1987,1(2):123-137.
    [17].郑小明.生物质热解油品位催化提升的思考和初步进展[J].催化化学,2009,30(8):765-769.
    [18].Tang, Y., et al. One-step hydrogenation-esterification of aldehyde and acid to ester over bifunctional Pt catalysts:A model reaction as novel route for catalytic upgrading of fast pyrolysis bio-oil[J]. Energy & Fuels,2008,22(5):3484-3488.
    [19].Deng, L., Y. Fu, and Q.X. Guo. Upgraded Acidic Components of Bio-oil through Catalytic Ketonic Condensation[J]. Energy & Fuels,2009,23(1):564-568.
    [20].Xu, R., et al. Bio-oil production by flash pyrolysis of sugarcane residues and post treatments of the aqueous phase[J]. Journal of Analytical and Applied Pyrolysis, 2011,91(1):263-272.
    [21].Zhang, H.Y., et al. Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor[J]. Bioresource Technology,2009, 100(3):1428-1434.
    [22].Jindarom, C., et al. Thermochemical decomposition of sewage sludge CO2 and N-2 atmosphere[J]. Chemosphere,2007,67(8):1477-1484.
    [23].Minkova, V., et al. Thermochemical treatment of biomass in a flow of steam or in a mixture of steam and carbon dioxide[J]. Fuel Processing Technology,2000, 62(1):45-52.
    [24].Zhang, H., et al. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmo spheres [J]. Bioresource Technology,2011, 102(5):4258-4264.
    [25].李欣,气化熔融处理城市垃圾时灰渣的熔融特性及行为研究[D],材料科学与工程学院.2009,重庆大学:重庆.
    [26].Shuangning, X., Y. Weiming, and B. Li. Flash pyrolysis of agricultural residues using a plasma heated laminar entrained flow reactor[J]. Biomass and Bioenergy, 2005,29(2):135-141.
    [27].Chen, Y, et al. Modeling biomass pyrolysis kinetics and mechanisms.[J]. Abstracts of Papers of the American Chemical Society,1997,213:31-Fuel.
    [28].Pattiya, A., J.O, Titiloye, and A.V. Bridgwater. Evaluation of catalytic pyrolysis of cassava rhizome by principal component analysis[J]. Fuel,2010, 89(1):244-253.
    [29].Boateng, A.A., C.A. Mullen, and N.M. Goldberg. Producing Stable Pyrolysis Liquids from the Oil-Seed Presscakes of Mustard Family Plants:Pennycress (Thlaspi arvense L.) and Camelina (Camelina sativa)[J]. Energy & Fuels,2010, 24:6624-6632.
    [30].Carlson, T.R., et al. Catalytic fast pyrolysis of glucose with HZSM-5:The combined homogeneous and heterogeneous reactions[J]. Journal of Catalysis, 2010,270(1):110-124.
    [31].Abdullah, N., H. Gerhauser, and F. Sulaiman. Fast pyrolysis of empty fruit bunches[J]. Fuel,2010,89(8):2166-2169.
    [32].Abelha, P., I. Gulyurtlu, and I. Cabrita. Release of nitrogen precursors from coal and bio mass residues in a bubbling fluidized bed[J]. Energy & Fuels,2008, 22(1):363-371.
    [33].Ahmad, A.L., et al. Microalgae as a sustainable energy source for biodiesel production:A review[J]. Renewable & Sustainable Energy Reviews,2011, 15(1):584-593.
    [34].Antal, M.J., et al. Design and Operation of a Solar Fired Biomass Flash Pyrolysis Reactor[J]. Solar Energy,1983,30(4):299-312.
    [35]. Wu, L., et al. Production of alkanes (C-7-C-29) from different part of poplar tree via direct deoxy-liquefaction[J]. Bioresource Technology,2009, 100(6):2069-2076.
    [36].Zwart, R.W.R., H. Boerrigter, and A. van der Drift. The impact of biomass pretreatment on the feasibility of overseas biomass conversion to Fischer-Tropsch products[J]. Energy & Fuels,2006,20(5):2192-2197.
    [37].Zou, S.P., et al. Thermochemical Catalytic Liquefaction of the Marine Microalgae Dunaliella tertiolecta and Characterization of Bio-oils[J]. Energy & Fuels,2009,23(7):3753-3758.
    [38].Zou, S.P., et al. Bio-oil production from sub-and supercritical water liquefaction of microalgae Dunaliella tertiolecta and related properties[J]. Energy & Environmental Science,2010,3(8):1073-1078.
    [39].Zimmerman, A.R. Abiotic and Microbial Oxidation of Laboratory-Produced Black Carbon (Biochar)[J]. Environmental Science & Technology,2010, 44(4):1295-1301.
    [40].Zhou, X.P., et al. Assessment of sustainable biomass resource for energy use in China[J]. Biomass & Bioenergy,2011,35(1):1-11.
    [41].Williams, P.T. and S. Besler. Polycyclic Aromatic-Hydrocarbons in Waste Derived Pyrolytic Oils[J]. Journal of Analytical and Applied Pyrolysis,1994, 30(1):17-33.
    [42].Zanzi, R., K. Sjostrom, and E. Bjornbom. Rapid high-temperature pyrolysis of biomass in a free-fall reactor[J]. Fuel,1996,75(5):545-550.
    [43].Becidan, M., O. Skreiberg, and J.E. Hustad. Experimental study on pyrolysis of thermally thick biomass residues samples:Intra-sample temperature distribution and effect of sample weight ("scaling effect")[J]. Fuel,2007, 86(17-18):2754-2760.
    [44].Porada, S. A comparison of basket willow and coal hydrogasification and pyrolysis[J]. Fuel Processing Technology,2009,90(5):717-721.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700