生物质催化裂解气化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以白松锯末为生物质原料,借助自制的二级固定床热解装置研究了生物质催化裂解的气化特性;利用实验数据分析了实验条件对表观活化能的影响;研究了催化剂以及实验条件对气体能产率的影响;建立了人工神经网络模型,对不同条件下的生物质催化裂解气化特性进行了预测。
     首先以价格较为低廉的两种多孔熟料(高铝质多孔熟料和粘土质多孔熟料)为催化剂,详细研究了气化介质、催化裂解温度、生物质原料粒径和催化剂粒径等条件对生物质催化裂解气化特性的影响。结果表明:无论是否通入水蒸汽,在相同的催化裂解温度下,高铝质多孔熟料的催化效果均优于粘土质多孔熟料;水蒸汽作为气化介质较氮气的气化效果好;提高催化裂解温度有利于生物质的催化裂解气化;原料粒径与气化特性有一定的关系,在实验条件下,粒径介于0.1~1mm的小颗粒生物质比大颗粒的效果好;就催化剂的粒径而言,在实验条件下,粒径为1~3mm的催化剂的催化效果较好。
     其次建立了生物质气化焦油催化裂解反应动力学模型并求出动力学参数,从理论上对生物质催化裂解气化特性进行分析。结果表明:不催化时的表观活化能是三种实验条件下最高的。以多孔熟料作为催化剂时表观活化能有所减小,说明多孔熟料对焦油有较好的催化作用。以多孔熟料作为催化剂并且加入水蒸汽时,活化能进一步下降,说明水蒸汽的加入有助于焦油的催化裂解。
     在详细研究了生物质催化裂解气化特性的基础上,分别以特种焦、煅烧后的白云石(以下简称白云石)、高铝质多孔熟料(以下简称多孔熟料)为裂解催化剂,以获得高气体能产率为目标,研究了不同工况下的气体能产率以及焦油转化率。结果表明:特种焦作用下气体能产率最高,白云石次之,多孔熟料最差。借助扫描电镜(SEM)对特种焦、白云石、多孔熟料三种催化剂使用前后的微观形貌进行观测,分析了催化剂的微观结构与其催化特性的关联性,指出催化剂的微观结构对生物质的气体能产率有较大影响,催化剂的比表面积、孔隙率、孔径分布以及孔隙结构的无序度等因素均影响其活性。
     为了预测生物质催化裂解的气化特性,建立了三个BP人工神经网络模型,三个模型分别以多孔熟料的热解温度和催化裂解温度、白云石的比表面积和催化裂解温度、特种焦的S/B(Steam/Biomass)值和催化裂解温度为输入变量,以气体能产率和焦油转化率为输出变量,程序输出结果显示:模型1、模型2、模型3的最大相对误差分别为1.9601%、-8.6923%和8.0022%。表明在一定的条件下,建立神经网络模型预测生物质的催化裂解气化特性是可行的。
Using sawdust as biomass raw material, the catalytic cracking characteristicswere investigated in a home-made two-stage fixed bed reactor. By means of theexperiment data, the effects of experiment conditions on the apparent activationenergy were analyzed; then the study which catalysts and experiment conditionaffected gas energy yield was also conducted; the last the Artificial Neural Network(ANN) models were established for simulation and prediction of biomass catalyticcracking.
     At first, using low-cost porous clinker catalysts (the porous high-clay clinker andthe porous high-alumina clinker), the catalytic cracking experiments were conductedat different conditions, such as gasificated liquids, pyrolysis temperature, particlediameter of material, catalyst size, and steam input or not, et al. The results show thatthe porous high-clay clinker has much lower effective than porous high-aluminaclinker on tar conversation on same pyrolysis temperature whether steam input or not;the gasification characteristics with steam were improved; the particle diameter ofmaterial has little influence on catalytic effect, compare with larger diameter ofbiomass material, the diameter of0.1~1mm biomass material was beneficial tocatalytic cracking; the smaller catalyst size of1~3mm has positive influence oncatalytic cracking.
     For analyzing biomass catalytic cracking characteristics in theory, reactionkinetic model has been established, and the kinetic parameters have been obtained.The results show that the apparent activation energy without using catalyst is largestamong the three conditions. The apparent activation energy become smaller afterusing porous high-alumina clinker as catalyst, which indicate that poroushigh-alumina clinker was beneficial to tar catalytic cracking. The apparent activationenergy is the smallest under using porous high-alumina clinker as catalyst and steaminput, it shows that this condition is more beneficial to tar catalytic cracking.
     The purpose of this chapter was to get high gas energy yield by catalytic cracking reaction of biomass. The tar conversion rate and gas energy yield wereinvestigated with the special coke, calcined dolomite, and porous high-aluminaclinker as catalysts. The results show that the special coke is the most effective amongthree kinds of catalysts, catalytic effect of dolomite is worse than the special coke andporous clinker is the worst. Gas energy yield is the highest when the special coke isused; and the gas energy yield using dolomite as catalyst is higher than that of porousclinker. The microstructure of catalysts was observed by scanning electronmicroscopy (SEM), and the influence of catalyst’s microstructure on gas energy yieldwas studied, it can conclude that activity of catalyst is influenced by surface area,porosity, pore size distribution and disorder degree of pore structure, etc.Microstructure of catalysts greatly influences gas energy yield of biomass.
     For predicting biomass catalytic cracking gasification characteristics, three kindsof BP Artificial Neural Network (ANN) models had been set up. Model1: usingpyrolysis temperature and cracking temperature as input variables under the conditionof using porous clinker as catalyst; Model2: using specific surface area and crackingtemperature as input variables under the condition of using calcined dolomite ascatalyst; Model3: using S/B value and cracking temperature as input variables underthe condition of using the special coke as catalyst. The max relative errors of Model1,Model2and Model3were1.9601%,-8.6932%and8.0022%respectively. Theresults show that the three kinds of ANN models were effective for simulation andprediction of biomass catalytic cracking gasification characteristics in certaincondition.
引文
[1]吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社,2003.
    [2]惠晶,方光辉.新能源转换与控制技术[M].北京:机械工业出版社,2008.
    [3]尹天佑.生物质能源技术开发利用与产业化[M].长春:吉林大学出版社,2005.
    [4] PEKKA A, SIMELL, JUKKA K, et a1. Tar-decomposition activity of carbonate rocks underhigh CO2partia1pressure[J]. Fuel,1995,74(6):938-945.
    [5]王铁军,常杰,吴创之,等.生物质气化焦油催化裂解特性[J].太阳能学报,2003,24(3):376-379.
    [6] CORELLA JOSE, ALBERTO ORIO, PILAR AZNAR. Biomass gasification with air influidized bed: reforming of the gas composition with commercial steam reformingcatalysts[J]. Ind Eng Chem Res,1998,37(12):4617-4624.
    [7] JAVIER GIL, CORELLA JOSE, MARIA P, et a1. Biomass gasification in atmospheric andbubbling fluidized bed: effect of the type of gasifying agent on the product distribution[J].Biomass and Bioenergy,1999,17(5):389-403.
    [8] WANG TIEJUN, CHANG JIE, LV PENGMEI. Novel catalyst for cracking of biomass tar[J].Energy&Fuels,2005,19(1):22-27.
    [9]陈冠益,方梦祥,骆仲泱,等.热解和气化过程中焦油裂解的研究[J].煤炭转化,2000,23(4):1-6.
    [10] RAPAGNA S, PROVENDIER H, PETIT C, et al. Development of catalysts suitable forhydrogen or syn-gas production from biomass gasification[J]. Biomass and Bioenergy,2002,22(5):377-388.
    [11] RAPAGNA S, JAND N, KIENNEMANN A, et al. Steam gasification of biomass in afluidized bed of olivine particles[J]. Biomass and Bioenergy,2000,19(3):187-197.
    [12]陈冠益,颜蓓蓓,贾佳妮,等.生物质二级固定床催化热解制取富氢燃气[J].太阳能学报,2008,29(3):360-364.
    [13]张秀梅,陈冠益,孟祥梅,等.催化热解生物质制取富氢气体的研究[J].燃料化学学报,2004,32(4):446-449.
    [14]张蕾,张磊,舒新前,等.稻草催化热解制取氢气的研究[J].太阳能学报,2009,30(6):842-845.
    [15]杜丽娟,李建芬,肖波,等.生物质催化裂解制合成气的研究[J].化学工程师,2008,(6):3-9.
    [16]张郑磊,柳丹,王晋权.不同催化剂下玉米秸秆热解产物特性研究[J].锅炉技术,2008,39(6):75-78.
    [17] ANDREA CORUJO, LUIS YERMAN, BEATRIZ ARIZAGA, et al. Improved yieldparameters in catalytic steam gasification of forestry residue; optimizing biomass feed rateand catalyst type[J]. Biomass and Bioenergy,2010,34(12):1695-1702.
    [18] DOMNA A CONSTANTINOU, JOSE LUIS G FIERRO, ANGELOS M EFSTATHIOU. Acomparative study of the steam reforming of phenol towards H2production over naturalcalcite, dolomite and olivine materials[J]. Applied Catalysis B: Environmental,2010,95(3-4):255-269.
    [19] MIAO YELIAN, XUE JUN, XIA FAJUN, et al. Utilization of porous dolomite pellets forthe catalytic decomposition of acetic acid[J]. Biomass and Bioenergy,2010,34(12):1855-1860.
    [20]阴秀丽,赵增立,徐冰燕,等.白云石和石灰石对废轮胎热解产物的影响[J].燃料化学学报,2001,29(3):283-285.
    [21]罗思义,肖波,郭献军.城市生活垃圾水蒸气催化热解的实验研究[J].环境科学与技术,2009,32(8):43-47.
    [22]侯斌,吕子安,李晓辉.生物质热解产物中焦油的催化裂解[J].燃料化学学报,2001,29(1):70-75.
    [23]陈冠益,李强,SPLIETHOFF H,等.生物质热解气化制取氢气[J].太阳能学报,2004,25(6):776-781.
    [24]任强强,赵长遂.稻秆热解及催化热解的试验研究[J].太阳能学报,2009,30(1):116-121.
    [25]陈鸿伟,庞永梅,王晋权,等.CaO催化热解玉米秸秆实验研究[J].节能,2007,(7):21-22.
    [26]肖军,沈来宏,邓霞,等.生物质催化热解气化热重分析研究[J].太阳能学报,2009,30(9):1252-1257.
    [27] AZNAR M P. Commercial steam reforming catalysts to improve biomass gasification withsteam-oxygen mixtures[J]. Ind Eng Chem Res,1998,37(7):2668-2680.
    [28] COURSON C, UDRON L, SWIERCZYNSKI D, et al. Hydrogen production from biomassgasification on nickel catalysts tests for dry reforming of methane[J]. Catalysis Today,2002,76(1):75-86.
    [29]李建芬.生物质催化热解和气化的应用基础研究[D].武汉:华中科技大学环境科学与工程学院,2007.
    [30]贺茂云,肖波,胡智泉,等.镍基催化剂的制备及其对垃圾气化产氢的催化活性[J].中国环境科学,2009,29(4):391-396.
    [31]岳思.生物质微米燃料催化气化制富氢燃气研究[D].武汉:华中科技大学环境科学与工程学院,2007.
    [32] KARMAKAR M K, DATTA A B. Generation of hydrogen rich gas through fluidized bedgasification of biomass[J]. Bioresource Technology,2011,102(2),1907-1913.
    [33]杨天华,孙洋,刘耀鑫,等.多孔床料对生物质产气特性影响实验研究[J].太阳能学报,2008,29(4):482-486.
    [34]吕鹏梅,熊祖鸿,常杰,等.生物质催化气化制取富氢燃气的研究[J].环境污染治理技术与设备,2003,4(11):31-34.
    [35] DELGADO J, AZNAR M P. Biomass gasification with steam in fluidized bed: effectivenessof CaO, MgO and CaO-MgO for hot raw gas cleaning[J]. Ind Eng Chem Res,1997,36(5):1535-1543.
    [36]贾永斌,张守玉,程中虎,等.热解和气化过程中焦油裂解的研究[J].煤炭转化,2000,23(4):1-6.
    [37]杨海平,陈汉平,晏蓉,等.温度对生物质固定床热解影响的研究[J].太阳能学报,2007,28(10):1152-1157.
    [38] SERGIO RAPAGNA, AJMAL LATIF. Steam gasification of almond shells in a fluidizedbed reactor: the influence of temperature and particle size on product yield anddistribution[J]. Biomass and Bioenergy,1997,12(4):281-288.
    [39] ROLANDO ZANZI, KRISTER SJOSTROM, EMILIA BJORNBOM. Rapidhigh-temperature pyrolysis of biomass in a free-fall reactor[J]. Fuel,1996,75(5):545-550.
    [40] LI SHIGUANG, XU SHAOPING, LIU SHUQIN, et al. Fast pyrolysis of biomass infree-fall reactor for hydrogen-rich gas[J]. Fuel Processing Technology,2004,85(8-10):1201-1211.
    [41]张晓东,周劲松.生物质热解煤气中焦油含量的影响因素[J].燃烧科学与技术,2003,9(4):329-334.
    [42] NARVAEZ I, CORELLA JOSE, ORIO A. Fresh tar elimination over a commercialsteam-reforming catalyst: kinetics and effect of different variables of operation[J]. Ind EngChem Res,1997,36(2):317-327.
    [43] YAHYA H KHRAISHA, IHSAN M SHABIB. Thermal analysis of shale oil usingthermogravimetry and differential scanning calorimetry[J]. Energy Conversion andManagement,2002,43(2):229-239.
    [44] SAFI M J, MISHRA I M, PRASAD B. Global degradation kinetics of pine needles in air[J].Thermochimica Acta,2004,412(1-2):155-162.
    [45] LEDE J. The cyclone: a multifunctional reactor for the fast pyrolysis of biomass[J]. Ind EngChem Res,2000,39(4):893-903.
    [46] RATH J, STEINER G, WOLFINGER M G, et al. Tar cracking from fast pyrolysis of largebeech wood particles[J]. Journal of Analytical and Applied Pyrolysis,2002,62(1):83-92.
    [47] FAGBEMI L, KHEZAMI L, CAPART R. Pyrolysis products from different biomasses:application to the thermal cracking of tar[J]. Applied Energy,2001,69(4):293-306.
    [48] CORELLA J, TOLEDO J M, AZNAR M P. Improving the modeling of the kinetics of thecatalytic tar elimination in biomass gasification[J]. Ind Eng Chem Res,2002,41(14):3351-3356.
    [49] SANG JUN YOON, YOUNG-CHAN CHOI, JAE-GOO LEE. Hydrogen production frombiomass tar by catalytic steam reforming[J]. Energy Conversion and Management,2010,51(1):42-47.
    [50] JOHANNES RATH, GERNOT STAUDINGER. Cracking reactions of tar from pyrolysis ofspruce wood[J]. Fuel,2001,80(10):1379-1389.
    [51] DARIUSZ SWIERCZYNSKI, CLAIRE COURSON, ALAIN KIENNEMANN. Study ofsteam reforming of toluene used as model compound of tar produced by biomassgasification[J]. Chemical Engineering and Processing: Process Intensification,2008,47(3):508-513.
    [52]王通洲,高虹.两种玉米秸秆热解过程动力学模型的比较[J].太阳能学报,2010,31(4):487-490.
    [53]宋春财,胡浩权,朱盛维,等.生物质秸秆热重分析及几种动力学模型结果比较[J].燃料化学学报,2003,31(4):311-316.
    [54]蒋剑春,沈兆邦.生物质热解动力学的研究[J].林产化学与工业,2003,23(4):1-6.
    [55]袁海荣,刘荣厚,姜恒,等.向日葵籽壳热解反应动力学的研究[J].农业工程学报,2006,22(4):220-223.
    [56]尤占平.生物质炭催化重整热解焦油技术研究[D].天津:天津大学环境科学与工程学院,2010.
    [57] YAMAGUCHI T, YAMASAKI K, YOSHIDA O, et al. Deactivation and regeneration ofcatalyst for steam gasification of wood to methanol synthesis gas[J]. Ind Eng Chem ProdRes Dev,1986,25(2):239-243.
    [58]尤占平,由世俊,李宪莉,等.生物质炭催化裂解焦油的性能研究[J].可再生能源,2011,29(3):39-42.
    [59] EL-RUB ZIAD ABU. Biomass char as an in-situ catalyst for tar removal in gasificationsystems[D]. Enschede University of Twente,2008.
    [60]陈汉平,杨海平,李斌,等.生物质流化床气化焦油析出特性的研究[J].燃料化学学报,2009,37(4):433-437.
    [61] OKUMURA Y, HANAOKA T, SAKANISHI K. Effect of pyrolysis conditions ongasification reactivity of woody biomass-derived char[J]. Proceedings of the CombustionInstitute,2009,32(2):2013-2020.
    [62]李永华,仉国明,陶哲,等.基于热化学平衡的生物质气化过程建模[J].锅炉技术,2010,41(5):5-9.
    [63]李大中,张瑞祥,韩璞,等.基于热化学平衡机理的生物质气化过程模型[J].节能技术,2008,26(151):418-422
    [64]闫桂焕,孙奉仲,孙荣峰,等.生物质气化过程的热力学模型研究[J].农业机械学报,2010,41(9):85-89.
    [65] SHARMA A K. Equilibrium and kinetic modelling of char reduction reactions in adowndraft biomass gasifier: a comparison[J]. Solar Energy,2008,82(10):918-928.
    [66] GOBEL B, HENRIKSEN U, JENSEN T K, et al. The development of a computer model fora fixed bed gasifier an its use for optimization an control[J]. Bioresour Technol,2007,98(10):2043-2052.
    [67] FERMOSO J, ARIAS B, PEVIDA C, et al. Kinetic models comparison for steamgasification of different nature fuel chars[J]. J Therm Anal Calorim,2008,91(3):779-786.
    [68]王智微,唐松涛,苏学泳,等.流化床中生物质热解气化的模型研究[J].燃料化学学报,2002,30(4):342-346.
    [69]马隆龙,陈平,原晓华,等.内循环流化床生物质气化过程的神经网络模型[J].太阳能学报,2007,28(12):1354-1359.
    [70]唐松涛,李定凯,吕子安,等.流化床中生物质热解过程的混沌神经网络模拟[J].化工学报,2003,54(6):783-789.
    [71]陈允平.人工神经网络原理及其应用[M].北京:中国电力出版社,2002.
    [72]飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2005.
    [73]韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2002.
    [74]刘晓莉,杨灵娥,宋春玲.提高多目标输出神经网络模型泛化能力和预测精度的方法[J].佛山科学技术学院学报,2008,26(1):31-33.
    [75] HAGAN M T, MENHA M B. Training feedforward networks with the marquardtalgorithm[J]. IEEE Trans Neural Net,1994,5(6):989-993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700