用户名: 密码: 验证码:
基于核机器学习的高光谱异常目标检测算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高光谱遥感图像具有很高的光谱分辨率,是一种图谱合一的新型遥感数据。借助其丰富的光谱信息,可以反映目标间的细微差异,使人们可以发现用纹理、边缘等空间特征无法或难以探测的地面目标,这对于目标检测提供了有利的支持。异常检测算法能够在没有先验光谱信息的情况下检测到与周围环境存在光谱差异的目标,具有较强的实用性,成为了高光谱目标检测领域的一个研究热点。由于高光谱图像的高数据维,波段间非线性相关性,混合象素,同物异谱等特点,使得传统线性高光谱异常检测算法的检测性受到影响。核方法是处理非线性信息的有效方法,已得到广泛应用。基于核方法的非线性高光谱异常检测方法仍存在很多不足与有待解决的问题。本文以高光谱异常目标检测技术为研究对象,以核机器学习为方法,以改善和提高高光谱异常目标检测性能为目的,重点解决基于核机器学习的非线性高光谱异常目标检测算法中存在的问题。本文的主要创新点与研究成果如下:
     首先,针对传统高光谱数据特征提取(或降维)方法仅仅利用了高光谱波段间的线性相关信息,损失了波段间非线性信息的问题,提出了基于非线性独立特征提取的高光谱异常检测算法。通过核主成分分析完成数据白化后在特征空间进行独立特征提取,针对高光谱异常检测的特殊性和非线性独立特征的随机性问题,提出了基于局部负熵度量的非线性独立特征优化选择方法,通过选择具有最大局部负熵值的非线性独立特征,有效地提取出适合高光谱异常检测的特征,进而采用RX算子进行高光谱异常检测,很好的抑制了虚警概率。
     其次,针对核RX算法中因背景数据中混入异常点而造成的背景核矩阵退化,从而使得漏检率上升,检测性能下降的问题,提出一种基于空域滤波的核RX算法。考虑到高光谱图像图谱合一的性质,其同一波段相邻像素点在空间上具有很强相关性以及不同波段的对应像素为相同地物的不同波长辐射响应的特点,提出了分波段空域滤波的方法来优化背景数据分布,降低了异常数据对背景核矩阵的影响,使得背景核矩阵能更好的描述实际的背景分布状态,进而提高了检测概率。
     再次,针对基于核方法的多数高光谱异常检测算法中的高斯径向基核函数核参数估计困难问题,提出了自适应的核参数估计方法,形成了基于核方法的自适应异常检测算法。由于核参数的选择对于算法的性能影响较大,而传统方法多采用大量实验人为选择,增加了工作量且不能得到客观的优化结果。通过局部背景分波段二阶分布统计,分析核参数与局部背景总体标准差的变化关系,构造随检测背景变化的局部检测核参数,使得检测算法针对不同背景分布自适应地调整检测核参数,克服了传统采用固定核参数带来的复杂背景下检测性能下降的问题。
     最后,针对现有的基于核方法的高光谱异常检测算法在核函数的选择上过于单调(大多采用高斯径向基核函数)的问题,提出了一种全新的光谱相似度量核函数,并将其应用于高光谱异常检测。针对高斯径向基核的局部适应性强但对于光谱曲线变化分辨力差的弱点,利用光谱曲线相似性度量方式提出了光谱相似度量核函数。对提出的光谱相似度量核作为核函数的确定性进行了理论证明,并推导出了光谱相似度量核的平移不变性质。比较了光谱相似度量核与高斯径向基核对高光谱数据区分能力。通过理论分析与实验验证,结果说明在高光谱异常检测中,光谱相似度量核具有很强的光谱变化分辨能力,能够提高目标尤其是亚像素小目标的检测概率。同时还针对光谱形似度量核对于光谱形状变化敏感性带来的虚警概率较高的问题,结合光谱相似度量核与高斯径向基核函数,形成了混合核函数,同时利用二者的优势,在保证检测概率的情况下降低了虚警概率。
Hyperspectral data as a combination of high spectral resolution and two-dimensional image is a new type of remote sensing data. Utilizing the abundance spectral information to distinguish the tiny difference among ground cover, we can detect the targets which can not be detected by texture, edge in the image space. That is very useful for target detection. In spectral anomaly detection algorithms, materials that have a significantly different spectral signature from their surrounding background clutter pixels are identified as spectral anomalies. In spectral anomaly detectors, no prior knowledge of the target spectral signature is utilized or assumed. So it is a focus in the hyperspectral target detection area. The classical linear anomaly detectors are of poor performance due to the high dimensionality, nonlinear correlation between spectral bands, mixed pixels, spectral variety in hyperspectral imagery. Kernel method is regarded as an effective method to processing nonlinear information and is widely used in many research areas. However, there are some shortages and unsolved problems in kernel machine learning based anomaly detection methods in hyperspectral imagery. This dissertation considers anomaly detection technique as the research object, kernel machine learning as the method, improving the performance of anomaly detection algorithms as the goal, and dealing with the problems endured in kernel based nonlinear anomaly detection methods in hyperspectral imagery. The main innovation contributions of this dissertation are as follows.
     Firstly, in the traditional dimensionality reduction methods, only linear information between spectral bands is used and nonlinear information being wasted. For this problem, a nonlinear independent feature extraction method is proposed and applied to anomaly detection in hyperspectral imagery. With the input data is mapped into an implicit feature space, kernel principal component analysis (KPCA) is performed to whiten data and fully mine the nonlinear information between spectral bands. Then, independent component analysis (ICA) seeks the projection directions in the whitened feature space for making the distribution of the projected data mutually independent. As the nonlinear independent features are extracted randomly, in order to select the best feature for anomaly detection, a local negentropy measurement (LNM) method is proposed for nonlinear independent features selection. After nonlinear independent features ranking by LNM, the nonlinear independent feature with the max LNM score is used for RX anomaly detection. The method suppresses the false alarm rate and improves the performance of anomaly detector.
     Secondly, the kernel RX detector is of good nonlinear anomaly detection capability, but the degeneration of the background kernel matrix due to the background data blurred by anomaly samples lead to a high miss rate. In this dissertation, a spatial filter based kernel RX anomaly detection algorithm in hyperspectral imagery is proposed. Utilizing the spatial correlation of pixels in a hyperspectral band, the background data is optimized by depressing the anomaly data using spatial filter in every spectral band. The background kernel matrix after spatial filter is a better distribution representation of the real background data. Using this method, the detection probability of kernel RX detector is increased obviously in hyperspectral imagery.
     Thirdly, Gaussian radial basis function (RBF) kernel is used in most of the kernel base anomaly detection algorithms, but the width factor (or kernel parameter) selection for RBF is very difficult. In most of these algorithms, the kernel parameter is obtained through a large number of experiments. It is time consumed, heavy workload, and can not obtain the optimal kernel parameter objectively. For the problem an adaptive kernel parameter estimation method is proposed. Based on the relationship between kernel parameter and the local second-order statistic information in hyperspectral data, an adaptive kernel parameter estimation method is derived. The parameter estimation of kernel function can be obtained along with the shifting of the background clutter pixels automatically. The degeneration of detection performance brought by a global fixed kernel parameter method in a background of miscellaneous terrain is improved by the proposed algorithm. Numerical experiments are conducted and the results show that the detection probability of the proposed algorithm is better than the classical fixed kernel parameter method at the same false alarm rates.
     Finally, for the problem of the kernel function scarce in kernel base anomaly detection methods (RBF is selected in most algorithms) in hyperspectral imagery, a novel spectral similarity measurement kernel function is proposed and applied to anomaly detection in hyperspectral imagery. As the RBF is based on the Euclidean distance of two spectral vectors, it is sensitive for distance variations of two spectral vectors, but not for spectral curve variation. In order to dealing with the spectral curves variation of the same materials, a spectral similarity measurement kernel function is proposed according to the spectral curves similarity description. A theoretical analysis is expounded and the shift invariance property of spectral similarity measurement kernel is derived. Numerical experiments are conducted on real hyperspectral imagery. The detection result comparison of Gaussian radial basis function based and spectral similarity measurement (SSM) kernel based anomaly detector shows the SSM kernel can improve the performance of kernel base anomaly detection methods in hyperspectral imagery. Especially for small sub-pixel targets detection, the SSM kernel is of obvious superiority comparing with the RBF kernel. To solve the false alarm rate rising due to the sensitivity of SSM kernel for spectral curve diversification, RBF kernel and SSM kernel are composite to utilize the advantage of each other. Using the composite kernel, the results of numerical experiments show the false alarm rate declines at the same detection probability comparing to solo SSM kernel used.
引文
[1]Du Peijun, Chen Yunhao, Tang Hong, et al. Hyperspectral Remote Sensing Image Retrieval Based On Spectral Similarity Measure[C]. Proc. SPIE-Int. Soc. Opt. Eng. (USA), USA:SPIE-The International Society for Optical Engineering,2005,6199:61990-61997P.
    [2]Du Yingzi, Chein-I Chang, Hsuan Ren, et al. New Hyperspectral Discrimination Measure for Spectral Characterization[J]. Optical Engineering.2004,43(8):1777-1786P.
    [3]Weimin Liu, Chein-I Chang. Sample Spectral Correlation-Based Measures for Subpixels and Mixed Pixels in Real Hyperspectral Imagery[C]. Proc. SPIE-Int. Soc. Opt. Eng. (USA), USA:SPIE-The International Society for Optical Engineering,2006,6233:62330-62331P.
    [4]张良培,张立福.高光谱遥感[M].武汉:武汉大学出版社,2005:58页.
    [5]夏明革,何友,黄晓冬,等.多传感器图像融合应用评述[J].舰船电子对抗.2002,25(5):38-44页.
    [6]童庆禧,张兵,郑兰芬.高光谱遥感——原理、技术与应用[M].北京:高等教育出版社,2006:1-49页.
    [7]Goetz Alexander F. H., Vane Gregg, Solomon Jerry E., et al. Imaging Spectrometry for Earth Remote Sensing. [J]. Science.1985,228(4704): 1147-1153P.
    [8]Vane G., Goetz A. F. H. Terrestrial Imaging Spectraometry:Current Status, Future Trends[J]. Remote Sensing of Environment.1993(44):117-126P.
    [9]Hunt G. R. Near-Infrared (1.3-2.4 μm) Spectra of Alteration Minerals-Potential for Use in Remote Sensing[J]. Geophysics.1979,44(12): 1974-1986P.
    [10]Goetz A. F. H., Rowan L. C. Geological Remote Sensing[J]. Science.1981, 211:781-791P.
    [11]Green Robert O., Eastwood Michael L., Sarture Charles M., et al. Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer
    (Aviris)[J]. Remote Sensing of Environment.1998,65(3):227-248P.
    [12]Mitchell Peter A. Hyperspectral Digital Imagery Collection Experiment (Hydice)[C]. Proceedings of SPIE-The International Society for Optical Engineering, Paris, Fr:Society of Photo-Optical Instrumentation Engineers, 1995,2587:70-95P.
    [13]Lvesque Jose, Staenz Karl. A Method for Monitoring Mine Tailings Re-Vegetation Using Hyperspectral Remote Sensing[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Anchorage, AK, United states:Institute of Electrical and Electronics Engineers Inc.,2004,1: 575-578P.
    [14]T. Cocks, T. Jenssen, A. Steward, et al. The Hymap Airborne Hyperspectral Sensor:The System, Calibration, and Performance[C]. In Proceedings of the 1st EARSEL Workshop on Imaging Spectroscopy, 1998.
    [15]Kunkel B., Blechinger F., Viehmann D., et al. Rosis Imaging Spectrometer and its Potential for Ocean Parameter Measurements (Airborne and Space-Borne)[C]. International Journal of Remote Sensing, Valletta, Malta: Publ by Taylor & Francis,1991,12:753-761P.
    [16]Kunkel B., Blechinger F., Doerffer R., et al. Rosis-an Imaging Spectrometer for Environmental Monitoring[C]. Proceedings of the International Symposium on Remote Sensing of Environment, Rio de Janiero, Braz:Publ by Environmental Research Inst of Michigan,1991,1: 147-159P.
    [17]Babey S. K., Anger C. D. Compact Airborne Spectrographic Imager (Casi)[J]. Digest-International Geoscience and Remote Sensing Symposium (IGARSS).1989,2:1028-1031P.
    [18]Smith Marie-Louise, Martin Mary E., Plourde Lucie, et al. Analysis of Hyperspectral Data for Estimation of Temperate Forest Canopy Nitrogen Concentration:Comparison Between an Airborne (Aviris) and a Spaceborne (Hyperion) Sensor[J]. IEEE Transactions on Geoscience and Remote Sensing.2003,41(6 PART Ⅰ):1332-1337P.
    [19]Ungar Stephen G., Pearlman Jay S., Mendenhall Jeffrey A., et al.
    Overview of the Earth Observing One (Eo-1) Mission[J]. IEEE Transactions on Geoscience and Remote Sensing.2003,41(6 PART Ⅰ): 1149-1159P.
    [20]邵晖,王建宇,薛永祺.推帚式超光谱成象仪(PHI)关键技术[J].遥感学报.1998,2(4):251-254页.
    [21]Shaw G., Manolakis D. Signal Processing for Hyperspectral Image Exploitation[J]. IEEE Signal Processing Magazine.2002,19(1):12-16P.
    [22]Chang Chein-I, Chiang Shao-Shan. Anomaly Detection and Classification for Hyperspectral Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing.2002,40(6):1314-1325P.
    [23]贺霖.高光谱图像自动目标检测技术研究[D].西安:西北工业大学博士学位论文,2007.
    [24]Scharf Louis L., Friedlander Benjamin. Matched Subspace Detectors[J]. IEEE Transactions on Signal Processing.1994,42(8):2146-2156P.
    [25]Margalit Avigdor, Reed Irving S., Gagliardi Robert M. Adaptive Optical Target Detection Using Correlated Images.[J]. IEEE Transactions on Aerospace and Electronic Systems.1985, AES-21(3):394-405P.
    [26]Robinson Ian S., Nguyen Mai H., Tull Jerry, et al. Comparison of Hyperspectral Sub-Pixel Detection with and without a Priori Knowledge of Target Features[C]. IEEE Aerospace Applications Conference Proceedings, Snowmass at Aspen, CO, USA:IEEE Comp Soc,1998,5:183-189P.
    [27]Stein David W. J., Beaven Scott G., Hoff Lawrence E., et al. Anomaly Detection From Hyperspectral Imagery[J]. IEEE Signal Processing Magazine.2002,19(1):58-69P.
    [28]李智勇.高光谱图像异常检测方法研究[D].长沙:国防科学技术大学博士学位论文,2004.
    [29]Harsanyi Joseph C., Chang Chein-I. Hyperspectral Image Classification and Dimensionality Reduction:An Orthogonal Subspace Projection Approach[J]. IEEE Transactions on Geoscience and Remote Sensing.1994, 32(4):779-785P.
    [30]Du Qian, Ren Hsuan, Chang Chein-I. A Comparative Study for Orthogonal Subspace Projection and Constrained Energy Minimization[J]. IEEE
    Transactions on Geoscience and Remote Sensing.2003,41(6 PART II): 1525-1529P.
    [31]Du Qian, Ren Hsuan. Performance Analysis for Cem and Osp[C]. Proceedings of SPIE-The International Society for Optical Engineering, Orlando, FL, United states:SPIE,2002,4725:501-508P.
    [32]Chein-I Chang. Further Results On Relationship Between Spectral Unmixing and Subspace Projection[J]. IEEE Transactions on Geoscience and Remote Sensing.1998,36(3):1030-1032P.
    [33]Hsuan Ren, Chein-I Chang. A Generalized Orthogonal Subspace Projection Approach to Multispectral Image Classification[C]. Proc. SPIE-Int. Soc. Opt. Eng. (USA), USA:SPIE-Int. Soc. Opt. Eng,1998,3500: 42-53P.
    [34]Ren H., Chein-I Chang. A Generalized Orthogonal Subspace Projection Approach to Unsupervised Multispectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing.2000,38(6): 2515-2528P.
    [35]Te-Ming Tu, Chin-Hsing Chen, Chein-I Chang. A Posteriori Least Squares Orthogonal Subspace Projection Approach to Desired Signature Extraction and Detection[J]. IEEE Transactions on Geoscience and Remote Sensing. 1997,35(1):127-139P.
    [36]Te-Ming Tu, Hsuen-Chyun Shyu, Ching-Hai Lee, et al. An Oblique Subspace Projection Approach for Mixed Pixel Classification in Hyperspectral Images[J]. Pattern Recognition.1999,32(8):1399-1408P.
    [37]Brumbley Clark, Chang Chein-I. An Unsupervised Vector Quantization-Based Target Subspace Projection Approach to Mixed Pixel Detection and Classification in Unknown Background for Remotely Sensed Imagery[J]. Pattern Recognition.1999,32(7):1161-1174P.
    [38]Du Qian, Chein-I Chang. Interference Subspace Projection Approach to Subpixel Target Detection[J]. Proceedings of the SPIE-The International Society for Optical Engineering.2001,4381:570-577P.
    [39]Chein-I Chang, Du Qian. Noise Subspace Projection Approaches to Determination of Intrinsic Dimensionality of Hyperspectral Imagery[C].
    Proc. SPIE-Int. Soc. Opt. Eng. (USA), USA:SPIE-Int. Soc. Opt. Eng, 1999,3871:34-44P.
    [40]Te-Ming Tu, Chin-Hsing Chen, Chein-I Chang. A Noise Subspace Projection Approach to Target Signature Detection and Extraction in an Unknown Background for Hyperspectral Images [J]. IEEE Transactions on Geoscience and Remote Sensing.1998,36(1):171-181P.
    [41]Hsuan Ren, Chein-I Chang. Automatic Spectral Target Recognition in Hyperspectral Imagery[J]. IEEE Transactions on Aerospace and Electronic Systems.2003,39(4):1232-1249P.
    [42]Chein-I Chang, Hsuan Ren. An Experiment-Based Quantitative and Comparative Analysis of Target Detection and Image Classification Algorithms for Hyperspectral Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing.2000,38(2):1044-1063P.
    [43]Harsanyi J. C., Farrand W., Chang C. I. Detection of Subpixel Spectral Signatures in Hyperspectral Image Sequences[C]. Proceedings of American Society of Photogrammetry and Remote Sensing Annual Meeting, Reno:1994:236-247P.
    [44]Manolakis D. G. Overview of Algorithms for Hyperspectral Target Detection:Theory and Practice[C]. Proc. SPIE-Int. Soc. Opt. Eng. (USA), USA:SPIE-Int. Soc. Opt. Eng,2002,4725:202-215P.
    [45]Manolakis D. Detection Algorithms for Hyperspectral Imaging Applications:A Signal Processing Perspective[C].2003 IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data (IEEE Cat. No.03EX808), Piscataway, NJ, USA:IEEE,2004:378-384P.
    [46]Manolakis D. Taxonomy of Detection Algorithms for Hyperspectral Imaging Applications[J]. Optical Engineering.2005,44(6):66401-66403P.
    [47]Scharf L. L., Kraut S., McCloud M. L. A Review of Matched and Adaptive Subspace Detectors[C]. Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373), Piscataway, NJ, USA:IEEE,2000:82-86P.
    [48]Scharf L. L., Friedlander B. Matched Subspace Detectors[J]. IEEE Transactions on Signal Processing.1994,42(8):2146-2157P.
    [49]Schaum A. Spectral Subspace Matched Filtering[J]. Proceedings of the SPIE-The International Society for Optical Engineering.2001,4381: 1-17P.
    [50]Manolakis D., Shaw G. Detection Algorithms for Hyperspectral Imaging Applications[J]. IEEE Signal Processing Magazine.2002,19(1):29-43P.
    [51]Stein D. W. J., Beaven S. G., Hoff L. E., et al. Anomaly Detection From Hyperspectral Imagery[J]. IEEE Signal Processing Magazine.2002,19(1): 58-69P.
    [52]Manolakis D., Marden D., Shaw G. A. Hyperspectral Image Processing for Automatic Target Detection Applications[J]. Lincoln Laboratory Journal. 2003,14(1):79-116P.
    [53]Kraut S., Scharf L. L., McWhorter L. T. Adaptive Subspace Detectors[J]. IEEE Transactions on Signal Processing.2001,49(1):1-16P.
    [54]Manolakis D., Siracusa C. Marden D., et al. Hyperspectral Adaptive Matched Filter Detectors:Practical Performance Comparison[J]. Proceedings of the SPIE-The International Society for Optical Engineering.2001,4381:18-33P.
    [55]Bajorski P. Analytical Comparison of the Matched Filter and Orthogonal Subspace Projection Detectors for Hyperspectral Images[J]. IEEE Transactions on Geoscience and Remote Sensing.2007,45(7): 2394-2402P.
    [56]Manolakis D., Lockwood R., Cooley T., et al. Robust Matched Filters for Target Detection in Hyperspectral Imaging Data[C].2007 IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE Cat. No.07CH37846), Piscataway, NJ, USA:IEEE,2007: 529-532P.
    [57]Nasrabadi N. M. Regularized Spectral Matched Filter for Target Recognition in Hyperspectral Imagery[J]. IEEE Signal Processing Letters. 2008,15:317-320P.
    [58]Chein-I Chang, Hsuan Ren. Linearly Constrained Minimum Variance Beamforming Approach to Target Detection and Classification for Hyperspectral Imagery[C]. IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293), Piscataway, NJ, USA:IEEE,1999, vol.2:1241-1243P.
    [59]Chein-I Chang, Du Qian, Shao-Shan Chiang, et al. Unsupervised Target Subpixel Detection in Hyperspectral Imagery[C]. Proc. SPIE-Int. Soc. Opt. Eng. (USA), USA:SPIE-Int. Soc. Opt. Eng,2001,4381:370-379P.
    [60]Hsuan Ren, Chein-I Chang. Target-Constrained Interference-Minimized Approach to Subpixel Target Detection for Hyperspectral Images[J]. Optical Engineering.2000,39(12):3138-3145P.
    [61]Hsuan Ren, Chein-I Chang. A Target-Constrained Interference-Minimized Filter for Subpixel Target Detection in Hyperspectral Imagery[C]. IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet:The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120), Piscataway, NJ, USA:IEEE,2000, vol.4:1545-1547P.
    [62]Reed I. S., Yu X. Adaptive Multiple-Band Cfar Detection of an Optical Pattern with Unknown Spectral Distribution[J]. IEEE Transactions on Acoustics, Speech and Signal Processing.1990,38(10):1760-1770P.
    [63]Xiaoli Yu, Hoff L. E., Reed I. S., et al. Automatic Target Detection and Recognition in Multiband Imagery:A Unified Ml Detection and Estimation Approach[J]. IEEE Transactions on Image Processing.1997, 6(1):143-156P.
    [64]Stein D. W. J., Beaven S. G., Hoff L. E., et al. Anomaly Detection From Hyperspectral Imagery[J]. IEEE Signal Processing Magazine.2002,19(1): 58-69P.
    [65]Chein-I Chang, Shao-Shan Chiang. Anomaly Detection and Classification for Hyperspectral Imagery [J]. IEEE Transactions on Geoscience and Remote Sensing.2002,40(6):1314-1325P.
    [66]Chein-I Chang, Hsuan Ren, Shao-Shan Chiang. Real-Time Processing Algorithms for Target Detection and Classification in Hyperspectral Imagery [J]. IEEE Transactions on Geoscience and Remote Sensing.2001, 39(4):760-768P.
    [67]Hsuan Ren, Chien-Wen Chen, Hsien-Ting Chen. Weighted Anomaly Detection for Hyperspectral Remotely Sensed Images[C]. Proc. SPIE-Int. Soc. Opt. Eng. (USA), USA:SPIE-The International Society for Optical Engineering,2005,5995:599501-599507P.
    [68]Hsuan Ren, Jing Wang. Background Whitened Target Detection Algorithm for Hyperspectral Imagery[C]. Proc. SPIE-Int. Soc. Opt. Eng. (USA), USA:SPIE-The International Society for Optical Engineering,2005, 5806:511-518P.
    [69]Ashton Edward A., Schaum Alan. Algorithms for the Detection of Sub-Pixel Targets in Multispectral Imagery [J]. Photogrammetric Engineering and Remote Sensing.1998,64(7):723-731P.
    [70]Riley R. A., Newsom R. K., Andrews A. K. Anomaly Detection in Noisy Hyperspectral Imagery[C]. Proc. SPIE-Int. Soc. Opt. Eng. (USA), USA: SPIE-Int. Soc. Opt. Eng,2004,5546:159-170P.
    [71]Schweizer S. M., Moura J. M. F. Modeling and Detection in Hyperspectral Imagery[C]. Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181), New York, NY, USA:IEEE,1998, vol.4:2273-2276P.
    [72]Schweizer S. M., Moura J. M. F. Detection in Hyperspectral Imagery[C]. Proc. SPIE-Int. Soc. Opt. Eng. (USA), USA:SPIE-Int. Soc. Opt. Eng, 1998,3372:188-198P.
    [73]Schweizer S. M., Moura J. M. F. Hyperspectral Imagery:Clutter Adaptation in Anomaly Detection[J]. IEEE Transactions on Information Theory.2000,46(5):1855-1871P.
    [74]Thornton S. M., Moura J. M. F. The Fully Adaptive Gmrf Anomaly Detector for Hyperspectral Imagery[C].2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), Piscataway, NJ, USA:IEEE,2000, vol.1:37-40P.
    [75]Schweizer S. M., Moura J. M. F. Efficient Detection in Hyperspectral Imagery [J]. IEEE Transactions on Image Processing.2001,10(4): 584-597P.
    [76]Yver B., Marion R. A Theoretical Framework for Hyperspectral Anomaly Detection Using Spectral and Spatial a Priori Information[J]. IEEE
    Geoscience and Remote Sensing Letters.2007,4(3):436-440P.
    [77]Plaza A., Martinez P., Perez R., et al. A New Method for Target Detection in Hyperspectral Imagery Based On Extended Morphological Profiles[C]. IGARSS 2003.2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), Piscataway, NJ, USA:IEEE,2003, vol.6:3772-3774P.
    [78]Plaza A., Martinez P., Plaza J., et al. Dimensionality Reduction and Classification of Hyperspectral Image Data Using Sequences of Extended Morphological Transformations [J]. IEEE Transactions on Geoscience and Remote Sensing.2005,43(3):466-479P.
    [79]Broadwater J., Chellappa R. Hybrid Detectors for Subpixel Targets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.2007, 29(11):1891-1903P.
    [80]Heesung Kwon, Der S. Z., Nasrabadi N. M. Adaptive Anomaly Detection Using Subspace Separation for Hyperspectral Imagery [J]. Optical Engineering.2003,42(11):3342-3351P.
    [81]Kwon H., Der S. Z., Nasrabadi N. M. Projection-Based Adaptive Anomaly Detection for Hyperspectral Imagery[C]. Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429), Piscataway, NJ, USA:IEEE,2003, vol.1:1001-1004P.
    [82]Heesung Kwon, Nasrabadi N. M. Kernel Spectral Matched Filter for Hyperspectral Imagery[J]. International Journal of Computer Vision.2007, 71(2):127-141P.
    [83]Heesung Kwon, Nasrabadi N. M. Kernel Canonical Correlation Analysis for Hyperspectral Anomaly Detection[C]. Proc. SPIE-Int. Soc. Opt. Eng. (USA), USA:SPIE-The International Society for Optical Engineering, 2006,6233:623301-623303P.
    [84]Heesung Kwon, Nasrabadi N. M. Kernel Subspace Matched Target Detectors[C]. Proc. SPIE-Int. Soc. Opt. Eng. (USA), USA:SPIE-The International Society for Optical Engineering,2006,6064:60641P.
    [85]Heesung Kwon, Nasrabadi N. M. Kernel Matched Subspace Detectors for Hyperspectral Target Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.2006,28(2):178-194P.
    [86]Heesung Kwon, Nasrabadi N. M. Kernel Adaptive Subspace Detector for Hyperspectral Imagery[J]. IEEE Geoscience and Remote Sensing Letters. 2006,3(2):271-275P.
    [87]Heesung Kwon, Nasrabadi N. M. Hyperspectral Target Detection Using Kernel Orthogonal Subspace Projection[C].2005 International Conference on Image Processing, Piscataway, NJ, USA:IEEE,2006:702-705P.
    [88]Heesung Kwon, Nasrabadi N. M. Kernel Rx:A New Nonlinear Anomaly Detector[C]. Proc. SPIE-Int. Soc. Opt. Eng. (USA), USA:SPIE-The International Society for Optical Engineering,2005,5806:35-46P.
    [89]Heesung Kwon, Nasrabadi N. M. A Comparative Study of Kernel Spectral Matched Signal Detectors for Hyperspectral Target Detection[C]. Proc. SPIE-Int. Soc. Opt. Eng. (USA), USA:SPIE-The International Society for Optical Engineering,2005,5806:827-838P.
    [90]Heesung Kwon, Nasrabadi N. M. Kernel Adaptive Subspace Detector for Hyperspectral Target Detection[C].2005 IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE Cat. No.05CH37625), Piscataway, NJ, USA:IEEE,2005, Vol.4:681-684P.
    [91]Heesung Kwon, Nasrabadi N. M. Kernel Rx-Algorithm:A Nonlinear Anomaly Detector for Hyperspectral Imagery [J]. IEEE Transactions on Geoscience and Remote Sensing.2005,43(2):388-397P.
    [92]Heesung Kwon, Nasrabadi N. M. Kernel-Based Subpixel Target Detection in Hyperspectral Images[C].2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), Piscataway, NJ, USA: IEEE,2004:717-721P.
    [93]Goldberg H., Kwon H., Nasrabadi N. M. Kernel Eigenspace Separation Transform for Subspace Anomaly Detection in Hyperspectral Imagery [J]. IEEE Geoscience and Remote Sensing Letters.2007,4(4):581-585P.
    [94]Banerjee A., Burlina P., Meth R. Fast Hyperspectral Anomaly Detection Via Svdd[C]. Proceedings 2007 IEEE International Conference on Image Processing, ICIP 2007, Piscataway, NJ, USA:IEEE,2007:101-104P.
    [95]Banerjee A., Burlina P., Diehl C. A Support Vector Method for Anomaly
    Detection in Hyperspectral Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing.2006,44(8):2282-2291P.
    [96]Meth Reuven, Banerjee Amit, Burlina Philippe, et al. Rapid, High Performance Hyperspectral Anomaly Detection Via Global Support Vector Data Description[C]. Proceedings of SPIE-The International Society for Optical Engineering, Orlando, FL, United states:SPIE,2008,6967P.
    [97]Balasubramanian G., Angeli S., Shettigara V. K., et al. Band Selection Using Support Vector Machines for Improving Target Detection in Hyperspectral Images [C]. Proceedings-Digital Image Computing Techniques and Applications:9th Biennial Conference of the Australian Pattern Recognition Society, DICTA 2007, Glenelg, SA, Australia: Institute of Electrical and Electronics Engineers Inc.,2007:446-453P.
    [98]Yanfeng Gu, Ying Liu, Ye Zhang. A Selective Kpca Algorithm Based On High-Order Statistics for Anomaly Detection in Hyperspectral Imagery[J]. IEEE Geoscience and Remote Sensing Letters.2008,5(1):43-47P.
    [99]耿修瑞.高光谱遥感图像目标探测与分类技术研究.[D].北京:中国科学院遥感应用研究所博士学位论文,2005.
    [100]李智勇,匡纲要,郁文贤,等.基于高光谱图像主成分分量的小目标检测算法研究[J].红外与毫米波学报.2004,23(4):286-290页.
    [101]李智勇,郁文贤,匡纲要.基于高维几何特性的高光谱异常检测算法研究[J].遥感技术与应用.2003,18(6):379-383页.
    [102]路威,余旭初,刘娟,等.基于分布异常的高光谱遥感影像小目标检测算法[J].测绘学报.2006,35(1):40-45页.
    [103]路威.面向目标探测的高光谱影像特征提取与分类技术研究[D].郑州:解放军信息工程大学博士学位论文,2004.
    [104]Lin He, Quan Pan, di Wei, et al. Anomaly Detection in Hyperspectral Imagery Based On Maximum Entropy and Nonparametric Estimation[J]. Pattern Recognition Letters.2008,29(9):1392-1403P.
    [105]邸韡,潘泉,贺霖,等.基于多检测器最大熵融合的多通道光谱图像异常检测[J].光子学报.2007,36(7):1338-1344页.
    [106]贺霖,潘泉,邸韡,等.一种基于单似然检验的高光谱图像小目标检测器[J].光学学报.2007,27(12):2155-2162页.
    [107]邸韡,潘泉,赵永强,等.高光谱图像波段子集模糊积分融合异常检测[J].电子与信息学报.2008,30(2):267-271页.
    [108]Lin He, Quan Pan, Yong-Qiang Zhao, et al. Source Based Small Targets Detection for Hyperspectral Imagery Using Evidential Reasoning[C]. Proceedings of the 2006 International Conference on Machine Learning and Cybernetics, Piscataway, NJ, USA:IEEE,2006:6P.
    [109]Yanfeng Gu, Ye Zhang, Junping Zhang. A Kernel Based Nonlinear Subspace Projection Method for Reduction of Hyperspectral Image Dimensionality[C]. Proceedings 2002 International Conference on Image Processing (Cat. No.02CH37396), Piscataway, NJ, USA:IEEE,2002, vol.2:357-360P.
    [110]Gu Yanfeng, Zhang Ye, Quan Taifan. A Kernel-Based Nonlinear Subspace Projection Method for Dimensionality Reduction of Hyperspectral Image Data[J]. Chinese Journal of Electronics.2003,12(2):203-207P.
    [111]Gu Yanfeng, Liu Ying, Zhang Ye. Kernel-Based Subpixel Target Detection for Hyperspectral Images[J]. Chinese Journal of Electronics. 2007,16(3):485-488P.
    [112]Yanfeng Gu, Ying Liu, Ye Zhang. A Selective Kpca Algorithm Based On High-Order Statistics for Anomaly Detection in Hyperspectral Imagery[J]. IEEE Geoscience and Remote Sensing Letters.2008,5(1):43-47P.
    [113]Yanfeng Gu, Ying Liu, Ye Zhang. A Soft Classification Algorithm Based On Spectral-Spatial Kernels in Hyperspectral Images[C].2007 Second International Conference on Innovative Computing, Information and Control, Los Alamitos, CA, USA:IEEE Computer Society,2007: 2195-2198P.
    [114]Yanfeng Gu, Ying Liu, Ye Zhang. A Selective Kernel Pca Algorithm for Anomaly Detection in Hyperspectral Imagery[C].2006 IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE Cat. No. 06CH37812C), Piscataway, NJ, USA:IEEE,2006:725-728P.
    [115]Yanfeng Gu, Ye Zhang, Junping Zhang. A Kernel Based Nonlinear Subspace Projection Method for Reduction of Hyperspectral Image Dimensionality[C]. Proceedings 2002 International Conference on Image
    Processing (Cat. No.02CH37396), Piscataway, NJ, USA:IEEE,2002, vol.2:357-360P.
    [116]寻丽娜,方勇华,李新.高光谱图像中基于端元提取的小目标检测算法[J].光学学报.2007,27(7):1178-1182页.
    [117]谌德荣,宫久路,陈乾,等.基于样本分割的快速高光谱图像异常检测支持向量数据描述方法[J].兵工学报.2008,29(9):1049-1053页.
    [118]谌德荣,张立燕,陶鹏,等.结合邻域聚类分割的高光谱图像异常检测支持向量数据描述方法[J].宇航学报.2007,28(03):767-771页.
    [119]张立燕,谌德荣,李世义,等.基于低概率检测的高光谱图像有损压缩方法研究[J].弹箭与制导学报.2008,28(01):307-310页.
    [120]张立燕,谌德荣,陶鹏.基于顶点成分分析的高光谱图像低概率异常检测方法研究[J].宇航学报.2007,28(05):1262-1265页.
    [121]李庆波,李响,张广军.一种基于光谱奇异值检测的高光谱遥感小目标探测方法[J].光谱学与光谱分析.2008,28(8):1832-1836页.
    [122]赵春晖,季亚新.基于二代曲波变换和Pcnn的高光谱图像融合[J].哈尔滨工程大学学报.2008,29(07):729-734页.
    [123]季亚新.高光谱图像异常检测算法研究[D].哈尔滨:哈尔滨工程大学硕士学位论文,2008.
    [124]Vapnik V., Chervonenkis A. J. On the Uniform Convergence of Relative Frequencies of Events to their Probabilities [J]. Theory Probability Application.1971,16:264-280P.
    [125]Rumelhart D. E., Hinton G. E., Williams R. T. Learning Internal Representations by Error Propagation, Parallel Distributed Processing: Explorations in Macrostructure of Cognition[M]. Badford Books, Cambridge, MA.,1986,318-362P.
    [126]Boser B. E., Guyon I. M., Vapnik V. N. A Training Algorithm for Optimal Margin Classifiers[C]. Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, New York, NY, USA:ACM,1992: 144-152P.
    [127]Burges C. J. C. A Tutorial On Support Vector Machines for Pattern Recognition[J]. Data Mining and Knowledge Discovery.1998,2(2): 121-167P.
    [128]Campbell C. Kernel Methods:A Survey of Current Techniques[C]. Neurocomputing (Netherlands), Netherlands:Elsevier,2002,48:63-84P.
    [129]Cortes C., Vapnik V. Support-Vector Networks[J]. Machine Learning. 1995,20(3):273-297P.
    [130]Smola A. J., Scholkopf B. A Tutorial On Support Vector Regression[J]. Statistics and Computing.2004,14(3):199-222P.
    [131]Smola A. J., Scholkopf B. On a Kernel-Based Method for Pattern Recognition, Regression, Approximation, and Operator Inversion[J]. Algorithmica (New York).1998,22(1-2):211-231P.
    [132]Vapnik Vladimir N. The Nature of Statistical Learning Theory [M]. Springer Verlag,1995.
    [133]Vapnik V. N. An Overview of Statistical Learning Theory[J]. IEEE Transactions on Neural Networks.1999,10(5):988-999P.
    [134]Mercer J. Functions of Positive and Negative Type and their Connection with the Theory of Integral Equations[J]. Philos. Trans. Roy. Soc.1909, A(209):415-446P.
    [135]Scholkopf B., Smola A. J. Learning with Kernels[M]. MIT Press, Cambridge,2002.
    [136]Schlkopf Bernhard, Mika Sebastian, Burges Chris J. C., et al. Input Space Versus Feature Space in Kernel-Based Methods[J]. IEEE Transactions on Neural Networks.1999,10(5):1000-1017P.
    [137]Scholkopf B., Smola A., Muller K. R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem[J]. Neural Computation.1998,10(5): 1299-1319P.
    [138]Mika Sebastian, Ratsch Gunnar, Weston Jason, et al. Fisher Discriminant Analysis with Kernels[C]. Neural Networks for Signal Processing-Proceedings of the IEEE Workshop, Madison, WI, USA:IEEE,1999: 41-48P.
    [139]Odone Francesca, Barla Annalisa, Verri Alessandro. Building Kernels From Binary Strings for Image Matching[J]. IEEE Transactions on Image Processing.2005,14(2):169-180P.
    [140]LeCun Y., Jackel L. D., Bottou L., et al. Learning Algorithms for
    Classification:A Comparison On Handwritten Digit Recognition[C]. Neural Networks:The Statistical Mechanics Perspective. Proceedings of the CTP-PBSRI. Joint Workshop on Theoretical Physics, Singapore, Singapore:World Scientific,1995:261-276P.
    [141]Osuna Edgar, Freund Robert, Girosi Federico. Training Support Vector Machines:An Application to Face Detection[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, PR, USA:IEEE,1997:130-136P.
    [142]Jonsson K., Kittler J., Li Y. P., et al. Support Vector Machines for Face Authentication[J]. Image and Vision Computing.2002,20(5-6):369-375P.
    [143]Joachims T. Text Categorization with Support Vector Machines:Learning with Many Relevant Features[C]. Machine Learning:ECML-98.10th European Conference on Machine Learning. Proceedings, Berlin, Germany: Springer-Verlag,1998:137-142P.
    [144]Tong S., Koller D. Support Vector Machine Active Learning with Applications to Text Classification[J]. Journal of Machine Learning Research.2002,2(1):45-66P.
    [145]Brown M., Grundy W., Lin D., et al. Knowledge-Based Analysis of Microarray Gene Expression Data by Using Support Vector Machines[J]. Proc. Natl. Acad. Sci.2000,97:262-267P.
    [146]Eisen M., Spellman P., Brown P., et al. Clustering Analysis and Display of Genome-Wide Expression Patterns[J]. Proc. Natl. Acad. Sci.1998,95: 14863-14868P.
    [147]Grundy William Noble. Family-Based Homology Detection Via Pairwise Sequence Comparison[C]. Proceedings of the Annual International Conference on Computational Molecular Biology, RECOMB, New York, NY, USA:ACM,1998:94-100P.
    [148]Kyoung-jae Kim. Financial Time Series Forecasting Using Support Vector Machines[J]. Neurocomputing.2003,55(1-2):307-319P.
    [149]Yang Jian, Frangi Alejandro F., Yang Jing-Yu, et al. Kpca Plus Lda:A Complete Kernel Fisher Discriminant Framework for Feature Extraction and Recognition[J]. IEEE Transactions on Pattern Analysis and Machine
    Intelligence.2005,27(2):230-244P.
    [150]Kim Sang-Woon, Oommen B. John. On Utilizing Search Methods to Select Subspace Dimensions for Kernel-Based Nonlinear Subspace Classifiers[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.2005,27(1):136-141P.
    [151]Camps-Valls Gustavo, Bruzzone Lorenzo. Kernel-Based Methods for Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing.2005,43(6):1351-1362P.
    [152]Bruzzone Lorenzo, Chi Mingmin, Marconcini Mattia. Transductive Svms for Semisupervised Classification of Hyperspectral Data[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Seoul, Korea, Republic of:Institute of Electrical and Electronics Engineers Inc.,2005,1: 164-167P.
    [153]Kuo Bor-Chen, Sheu Tian-Wei, Li Cheng-Hsuan, et al. Hyperspectral Image Classification Using Kernel-Based Nonparametric Weighted Feature Extraction[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Denver, CO, United states:Institute of Electrical and Electronics Engineers Inc.,2006:557-560P.
    [154]Capobianco L., Carli L., Garzelli A., et al. Comparison of Kernel-Based Methods for Spectral Signature Detection and Classification of Hyperspectral Images[C]. Proceedings of SPIE-The International Society for Optical Engineering, Stockholm, Sweden:SPIE,2006,6365P.
    [155]Bruzzone Lorenzo, Chi Mingmin, Marconcini Mattia. Advanced Semisupervised Svm Approaches to Classification of Hyperspectral Data[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Denver, CO, United states:Institute of Electrical and Electronics Engineers Inc.,2006:3887-3890P.
    [156]Bazi Yakoub, Melgani Farid. Toward an Optimal Svm Classification System for Hyperspectral Remote Sensing Images[J]. IEEE Transactions on Geoscience and Remote Sensing.2006,44(11):3374-3385P.
    [157]Nasrabadi Nasser M. Kernel-Based Spectral Matched Signal Detectors for Hyperspectral Target Detection[C]. Lecture Notes in Computer Science
    (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Kolkata, India:Springer Verlag,2007,4815 LNCS:67-76P.
    [158]Guo Baofeng, Gunn Steve R., Damper R. I., et al. Customizing Kernel Functions for Svm-Based Hyperspectral Image Classification[J]. IEEE Transactions on Image Processing.2008,17(4):622-629P.
    [159]赵树杰.信号检测与估计理论[M].北京:清华大学出版社,2005.
    [160]Kay Steven M. Fundamentals of Statistical Signal Processing:Detection Theory[M]. New Jersey:Prentice Hall PTR,1998.
    [161]Jutten C., Herault J. Independent Components Analysis (Inca) Versus Principal Components Analysis[C]. Signal Processing IV:Theories and Applications. Proceedings of EUSIPCO-88. Fourth European Signal Processing Conference, Amsterdam, Netherlands:North-Holland,1988: 643-646P.
    [162]Jutten C., Herault J. Blind Separation of Sources Ⅰ. An Adaptive Algorithm Based On Neuromimetic Architecture [J]. Signal Processing.1991,24(1): 1-10P.
    [163]Comon P., Jutten C., Herault J. Blind Separation of Sources. Ii. Problems Statement[J]. Signal Processing.1991,24(1):11-20P.
    [164]Comon P. Independent Component Analysis, a New Concept?[J]. Signal Processing.1994,36(3):287-314P.
    [165]Hyvarinen A., Oja E. Independent Component Analysis:Algorithms and Applications[J]. Neural Networks.2000,13(4-5):411-430P.
    [166]Xi-Ren Cao, Ruey-Wen Liu. General Approach to Blind Source Separation[J]. IEEE Transactions on Signal Processing.1996,44(3): 562-571P.
    [167]Jing Wang, Chein-I Chang. Independent Component Analysis-Based Dimensionality Reduction with Applications in Hyperspectral Image Analysis[J]. IEEE Transactions on Geoscience and Remote Sensing.2006, 44(6):1586-1600P.
    [168]Jing Wang, Chein-I Chang. Applications of Independent Component Analysis in Endmember Extraction and Abundance Quantification for Hyperspectral Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing.2006,44(9):2601-2616P.
    [169]Sarigul E., Alam M. S. Hyperspectral Target Detection Using Independent Component Analysis Based Linear Mixture Model[C]. Proc. SPIE-Int. Soc. Opt. Eng. (USA), USA:SPIE-The International Society for Optical Engineering,2007,6565:65650-65651P.
    [170]Bach F. R., Jordan M. I. Kernel Independent Component Analysis[J]. Journal of Machine Learning Research.2003,3(1):1-48.
    [171]Ruiz A., Lopez-de-Teruel P. E. Nonlinear Kernel-Based Statistical Pattern Analysis[J]. IEEE Transactions on Neural Networks.2001,12(1):16-32P.
    [172]Hyvarinen A. The Fixed-Point Algorithm and Maximum Likelihood Estimation for Independent Component Analysis[J]. Neural Processing Letters.1999,10(1):1-5P.
    [173]Hyvarinen A. Fast and Robust Fixed-Point Algorithms for Independent Component Analysis[J]. IEEE Transactions on Neural Networks.1999, 10(3):626-634P.
    [174]Xu Xiaoyin, Miller Eric L. Adaptive Two-Pass Median Filter to Remove Impulsive Noise[C]. IEEE International Conference on Image Processing, Rochester, NY, United states:Institute of Electrical and Electronics Engineers Computer Society,2002,1:808-811P.
    [175]Goldberg H., Nasrabadi N. M. A Comparative Study of Linear and Nonlinear Anomaly Detectors for Hyperspectral Imagery[C]. Proc. SPIE-Int. Soc. Opt. Eng. (USA), USA:SPIE-The International Society for Optical Engineering,2007,6565:656501-656504P.
    [176]Tax David M. J., Duin Robert P. W. Support Vector Data Description[J]. Machine Learning.2004,54(1):45-66P.
    [177]Laskov P. Feasible Direction Decomposition Algorithms for Training Support Vector Machines[J]. Machine Learning.2002,46(1-3):315-349.
    [178]Scholkopf B., Platt J. C., Shawe-Taylor J., et al. Estimating the Support of a High-Dimensional Distribution[J]. Neural Computation.2001,13(7): 1443-1471P.
    [179]Boser B. E., Guyon I. M., Vapnik V. N. A Training Algorithm for Optimal Margin Classifiers[C]. Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, New York, NY, USA:ACM,1992: 144-152P.
    [180]Poggio T. On Optimal Nonlinear Associative Recall[J]. Biological Cybernetics.1975,19(4):201-209P.
    [181]Park Bosoon, Windham William R., Lawrence Kurt C., et al. Hyperspectral Image Classification for Fecal and Ingesta Identification by Spectral Angle Mapper[C]. ASAE Annual International Meeting 2004, Ottawa, ON, Canada:American Society of Agricultural and Biological Engineers,2004:3787-3803P.
    [182]Park B., Windham W. R., Lawrence K. C., et al. Contaminant Classification of Poultry Hyperspectral Imagery Using a Spectral Angle Mapper Algorithm[J]. Biosystems Engineering.2007,96(3):323-333P.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700