鸡腿菇子实体蛋白提取、特性及酶解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸡腿菇(Coprinus comatus)味道鲜美,营养丰富,富含多种生物活性物质且生产成本低,周期短,抗逆性强,单产高,经济效益显著,具有广阔的发展前景。但其研究基础尚显薄弱,尤其在其蛋白质的研究方面。
     本文以鸡腿菇子实体为原料,优化了其蛋白的碱溶酸沉法最适提取工艺,研究了其蛋白的特性,寻求到了其蛋白酶解的最适酶制剂,并得到酶解最佳工艺条件。试验内容与结果如下:
     (1)以鸡腿菇子实体为原料,以提取液pH值、提取温度、料液比、提取时间为其蛋白提取的影响因素,采用正交试验优化碱溶酸沉法提取蛋白的工艺条件,结果表明:鸡腿菇子实体蛋白提取的最佳工艺参数为提取液pH 11.5,提取温度50℃,料液比1:15,提取时间50min,蛋白提取率为24.3%,在pH 3.5条件下沉淀蛋白效果最佳。
     (2)对制备所得的鸡腿菇子实体蛋白特性分析表明:其分子量主要集中在50-90kDa、20-35kDa和13-17kDa等区间内;必需氨基酸含量占氨基酸总量的40.57%,必需氨基酸含量与非必需氨基酸含量的比值为0.68,为理想蛋白质;在碱性条件下,鸡腿菇子实体蛋白显示了良好的溶解性、乳化性、起泡能力。
     (3)以鸡腿菇子实体蛋白为原料,分别用木瓜蛋白酶、Alcalase 2.4L、Neutrase 0.8L、Protamex、Flavorzyme 1000L在各自适宜的条件下进行酶解,比较酶解物的水解度(DH)、蛋白质回收率(PR)、感官品质、抗氧化活性等。结果表明鸡腿菇子实体蛋白在Alcalase 2.4L的作用下,其水解度、蛋白质回收率最高,感官品质较为优良,抗氧化活性相对较高。研究了酶活底物比、底物浓度、酶解温度、pH值、时间对Alcalase 2.4L酶解鸡腿菇子实体蛋白的影响,并采用响应面法(RSM)优化得到了最佳工艺条件为酶解pH 9.0、温度54.8℃,酶活底物比6271 U/g、底物浓度1.0%、酶解时间240min,在此条件下,得到水解度为24.05%。
The basidiomycete, Coprinus comatus, is a kind of edible fungus reputed for its delicious taste and high nutrition. It contains a variety of functional active compounds. The production cost is low, with short production cycle, strong stress resistance and high yield. So it has broad propect for development. But the research on it remains rather weak, especially its protein.
     In this paper, the extraction process of the fruit body protein of Coprinus comatus was optimized and its functional properties were studied. The best protease for enzymolysis of the fruit body protein of Coprinus comatus was determinded and the technical parameters were optimized. The main results were presented as follows:
     (1) The effects of leaching solution pH value, temperature, ratio of solid to liquid, time on the extraction of the fruit body protein of Coprinus comatus were investigated. The optimum conditions of alkaline extraction were determined by orthogonal test plan and the isoelectric point was explored. In addition, the molecular weight distribution, amino acid composition and functional properties of the protein were studied. The results showed that the optimum extraction conditions were:pH at 11.5, temperature at 50℃, solid:liquid ratio(w/v) at 1:15, time at 50min. The isoelectric point was pH 3.8. At these conditions, the protein extraction rate was 24.3%, purity 80.7%.
     (2) The molecular weight of the extracted protein mainly distributed in 50-90kDa, 20-35kDa and 13~17kDa areas and contained relatively complete amino acid composition. The ratio of essential amino acid to total amino acid is 40.57%, essential amino acid to nonessential amino acids at 0.68, which determinded it a good protein. The protein had good solubility, emulsibility and foaming properties at high alkaline condition.
     (3) Five proteases (Papain, Alcalase 2.4L, Neutrase 0.8 L, Protamex, Flavorzyme 1000L) were used to hydrolyze the fruit body protein of Coprinus comatus at their suitable conditions. Based on the comparision of degree of hydrolysis (DH), protein recovery (PR), sensory evaluation and antioxidant activities of hydrolysates, Alcalase 2.4L was the most suitable protease for the protein, for its highest DH and PR, better sensory quality and antioxidant activities. The effects of enzymolysis temperature, pH, time, ratio of enzyme activity to substrate ratio ([E]/[S]) and substrate concentration on DH were studied. Response surface methodology was used to optimise the hydrolysis parameters of the fruit body protein of Coprinus comatus by Alcalase 2.4L. The results showed that the optimum conditions were pH at 9.0, temperature at 54.8℃, [E]/[S] at 6271U/g, time at 240min, substrate concentration at 1%. At these conditions, the DH was 24.05%.
引文
·敖宏.灵芝蛋白的提取、酶解及抗氧化性能研究[D].华南理工大学,2010.
    ·陈启武,刘健,陈莎.鸡腿蘑、姬松茸、大球盖菇生产全书[M].北京:中国农业出版社,2009.
    ·陈玉珍,唐黎,申晓东,等.白斑狗鱼含肉率及肌肉营养成分分析[J].水产科学,2010,29(10):578-582.
    ·戴志远,张婷,张燕平,等.Alcalase碱性蛋白酶水解厚壳贻贝蛋白[J].食品与发酵工业,2010,36(8):83-88.
    ·党亚丽,张中健,闫小伟,等.巴马火腿酶解物中呈味肽的分离纯化及其结构研究[J].食品科学,2010,31(13):127-131.
    ·丁重阳,陆兆新,吕凤霞,等.鸡腿蘑发酵液中抑制非酶糖糖基化反应活性物质的分离及分析[J].食品与生物技术学报,2008,27(6):77-81.
    ·董贝森,朱海涛,于跃芹.花生蛋白粉溶液流变学特性及功能性的研究[J].农业工程学报,1999,15(1):251-252.
    ·凡军民.毛头鬼伞菌丝体多糖的分离、纯化和化学结构鉴定及生物活性研究[D].南京农业大学,2006.
    ·冯娜,张劲松,唐庆九,等.毛头鬼伞子实体中甾类化合物的结构鉴定及其抑制肿瘤细胞增殖活性的研究[J].菌物学报,2010,29(2):249-253.
    ·冯小敏,杨锡洪,解万翠,等.响应面分析法优化复合酶酶解南美白对虾虾头的工艺条件[J].食品科学,2009,30(22):66-70.
    ·高珊,余晓斌.双酶法水解茶树菇工艺的研究[J].食品工业科技,2008,29(1):181-183.
    ·何飞,骆毅,邵超群,等.酸性蛋白酶和纤维素酶联合水解蘑菇柄蛋白的研究[J].中国调味品,2010,11(35):51-54.
    ·胡慰望,谢笔均.食品化学[M].北京:科学出版社,1992.
    ·胡筱波,徐明刚,刘志伟,等.响应面法优化油菜花粉谷蛋白酶解条件[J].食品科学,2007,28(7):117-121.
    ·胡仲秋,李百玲,李志成.木瓜蛋白酶水解羊乳酪蛋白的工艺研究[J].中国食品学报,2009,9(4):82-87.
    ·李艳红.鹰嘴豆蛋白酶解物的制备及其抗氧化性的研究[D].江南大学,2008.
    ·李学如.功能性肽及其应用[J].四川食品与发酵,1999(4):60-62.
    ·刘朝贵,邵坤,聂和平,等.不同培养料对鸡腿菇胞外酶活性影响的研究[J].西南师范大学学报,2008,33(1):40-42.
    ·罗晓妙,史碧波.鸡枞菌菌丝体复合调味料的研制[J].中国调味品,2010,12(35):80-82.
    ·苗建银,吉宏武,邵海艳,等.响应面法优化近江牡蛎肉酶解工艺参数[J].食品工业科技,2009,30(4):158-161.
    ·沈同,王镜岩.生物化学[M].北京:高等教育出版社,2002.
    ·涂宗财,王艳敏,迟海霞,等.响应面法优化豆豉蛋白酶解工艺[J].食品与发酵工业,2009,35(6):116-120.
    ·王大为,吴恩奇,图力古尔.蒙古口蘑多肽制取技术的研究[J].食品科学,2007,28(9):245-249.
    ·汪秋安.蛋白水解物的生产与应用[J].食品工业科技,1999,20(4):66-67.
    ·王学仁.担子菌毛头鬼伞的TMV抗性蛋白y3基因的分离、鉴定和表达[D].西北大学,2010.
    ·吴巧凤,刘敬娟,陈京,等.鸡腿菇营养成分的分析[J].食品工业科技,2005,26(8):161-163.
    ·沃尔什·G蛋白质生物化学与生物技术[M].北京:化学工艺出版社,2006.
    ·王会,郭立,谢文磊.抗氧化剂抗氧化活性的测定方法[J].食品与发酵工业,2006,32(2):92-98.
    ·Waters液相色谱通讯增刊-AccQ.Tag专集[C].Waters中国有限公司,1997.
    ·谢明勇,聂少平.天然产物活性多糖结构与功能研究进展[J].中国食品学报,2010,10(2):1-11.
    ·徐德峰,张卫明,孙晓明,等.响应曲面法在鸡骨架蛋白酶解工艺中的应用[J].食品与发酵工艺,2007,33(4):82-86.
    ·闫欲晓,粟桂娇.双酶法水解香菇蛋白的工艺研究[J].食品科技,2003(12):23-25.
    ·俞雅琼,于辉,高蕾.新疆甜杏仁分离蛋白提取工艺研究[J].新疆农业大学学报,2009,32(4):31-34.
    ·周雪松.鸡肉蛋白酶解及其产物抗氧化活性研究[D].华南理工大学,2006.
    ● Adler-Nissen J. Enzymatic hydrolysis of food protein[M]. London:Elsevier Applied Science Publishers,1986.
    ● Adler-Nissen J. Determination of degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid[J]. Journal of Agriculture and Food Chemistry,1979,27 (6): 1256-1262.
    ● Bhaskar N., Benila T., Radha C., et al. Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease[J]. Bioresource Technology,2008,99(2):335-343.
    ● Cacciuttoloa M. A., Trinha L., Lumpkina J. A. et al. Hyperoxia induces DNA damage in mammalian cells[J]. Free Radical Biological and Medicine,1993,14(3):267-276.
    ● Cao W. H., Zhang C. H., Hong P. Z., et al. Optimising the free radical scavenging activity of shrimp protein hydrolysate produced with alcalase using response surface methodology [J]. International Journal of Food Science and Technology,2009,44(8):1602-1608.
    ● Cao W. H., Zhang C. H., Hong P. Z., et al. Response surface methodology for autolysis parameters optimization of shrimp head and amino acids released during autolysis[J]. Food Chemistry,2008,109(1):176-183.
    ● Cervato G., Cazzola R., Cestaro B. Studies on the antioxidant activity of milk caseins[J]. International Journal of Food Science and Nutrition,1999,50(4):291-296.
    ● Cheung L. M., Cheung P. C. K., Ooi.V. E.C. Antioxidant activity and total phenolics of edible mushroom extracts[J]. Food Chemistry,2003,81(2):249-255.
    ● Clemente A., Vioque J., Millan F. Vegetable protein hydrolysates [J]. Nutriciony Obesidad, 1999,2:289-296.
    ● Decker E. A., Welch B. Role of ferritin as a lipid oxidation catalyst in muscle food[J]. Journal of Agriculture and Food Chemistry,1990,38(3):674-677.
    ● Ding Z. Y., Lu Y. J., Lu Z. X., et al. Hypoglycaemic effect of comatin, an antidiabetic substance separated from Coprinus comatus broth, on alloxan-induced-diabetic rats[J]. Food Chemistry,2010,121(1):39-43.
    ● Diniz F. M., Martin A. M. Influence of process variables on the hydrolysis of shark muscle protein[J]. Food science and technology international,1998,4(2):91-98.
    ● Draper N.R., Lin D.K.J. Small response-surface designs[J]. Technometrics,1990,32(2): 187-194.
    ● Dong S. Y., Zeng M. Y. Wang D. F. et al. Antioxidant and biochemical properties of protein hydrolysates prepared from Silver carp(Hypophthalmichthys molitrix)[J]. Food Chemstry,2008, 107(4):1485-1493.
    ● Ferreira S. H., Bartet D. C., Greene L. J. Isolation of bradykinin-potentiating peptides from bothopsjararaca venom[J]. Biochemistry,1970,9(13):2583-2590.
    ● Frokjaer S. Use of hydrolysates for protein supplementation[J]. Food Technology,1994, 48(10):86-88.
    ● Gauthier S. F., Paquin P., Pouliot Y., et al. Surface activity and related functional properties of peptides obtained from whey proteins[J]. Journal of Dairy Science,1993,76(1):321-328.
    ● Gill H. S., Dohll F., Rutherfurd K. J., et al. Immunoregulatory peptides in bovine milk[J]. British Journal of Nutrition,2000,84(1):111-117.
    ● Gonzalez-Perez S., Vereijken J. M. Sunflower proteins:overview of their physicochemical, structural and functional properties[J]. Journal of the Science of Food and Agriculture,2009, 87(12):2172-2191.
    ● Guerard F., Dufosse L., Broise D. L., et al. Enzymatic hydrolysis of proteins from yellowfin tuna(Thunnus albacares)wastes using alcalase[J]. Journal of Molecular Catalysis B:Enzymatic, 2001,11(4):1051-1059.
    ● Hedwig S. C., Renato A. Analysis of Taste-Active Compounds in an Enzymatic Hydrolysate of Deamidated Wheat Gluten[J]. Journal of Agricultural and Food Chemistry,2002,50 (6): 1515-1522.
    ● Jamdar S. N., Rajalakshmi,V., Pednekar M. D., et al. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate[J]. Food Chemistry,2010,121(1):178-184.
    ● Kim E. K., Lee S. J., Jeon B. T., et al. Purification and characterisation of antioxidative peptides from enzymatic hydrolysates of venison protein[J]. Food Chemistry,2009,114(4): 1365-1370.
    ● Klompong V., Benjakul S., Kantachote D. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally(Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type[J]. Food Chemistry,2007,102(4):1317-1327.
    ● Kristinsson H. G., Rasco B. A. Hydrolysis of salmon muscle proteins by an enzyme mixture extracted from atlantic salmon(Salmonsalar)[J]. Journal of Food Biochemistry,2000,24(3): 177-187.
    ● Laemmli U. K. Cleavage and structural proteins during assembly of the head of bacteriophage T4[J]. Nature,1970,227(15):680-685.
    ● Lee J. Y., Lee H. D., Lee C. H. Characterization of hydrolysates produced by mild-acid treatment and enzymatic hydrolysis of defatted soybean flour[J]. Food Research International, 2001,34(2-3):217-222.
    ● Li B., Chen F., Wang X., et al. Isolation and identification of antioxidative peptides from porcine collagen hydrolysate by consecutive chromatography and electrospray ionization-mass spectrometry[J]. Food Chemistry,2007,102(4):1135-1143.
    ● Li Y. H., Jiang B., Zhang T., et al. Antioxidant and free radical scavenging activities of chickpea protein hydrolysate (CPH)[J]. Food Chemistry,2008,106(2):444-450.
    ● Linares E., Larre C., Lemeste M., et al. Emulsifying and foaming properties of gluten hydrolysates with an increasing degree of hydrolysis:Role of soluble and insoluble fractions[J]. Cereal Chemistry,2000,77(4):414-420.
    ● Lu X., Ding S. Effect of Cu2+, Mn2+ and aromatic compounds on the production of laccase isoforms by Coprinus comatus[J]. Mycoscience,2010,51(1):68-74.
    ● Luo H., Liu Y. Y., Fang L., et al. Coprinus comatus damages nematode cuticles mechanically with spiny balls and produces potent toxins to immobilize nematodes[J]. Applied and Environmental Microbiology,2007,73(12):3916-3923.
    ● Matusfuji H., Matsui T. Agiotensin I-converting enzyme inhibitory peptides in an alkaline protease hydrolyzate derived from sardine muscle[J]. Bioscience Biotechnology and Biochemistry,1994,58(12):2244-2245.
    ● Noguchi M., Arai S.,Yamashita M., et al. Isolation and Identification of Acidic Oligopeptides Occurring in a Flavor Potentiating Fraction from a Fish Protein Hydrolysate[J]. Journal of Agriculture and Food Chemistry,1975,23(1):49-53.
    ● Oyaizu M. Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography [J]. Nippon Shokuhin Kogyo Gakkaishi,1988, 35(11):771-775.
    ● Panyam D., Kilara A. Enhancing the functionality of food proteins by enzymatic modification[J].Trends in Food Science & Technology,1996,7(4):120-125.
    ● Parrado J., Bautista J., Machado A. Production of soluble enzymatic protein hydrolysate from industrially defatted nondehulled sunflower meal[J]. Journal of Agriculture of Food Chemistry, 1991,39(3):447-450.
    ● Pearce K. N., Kinsella J. E. Emulsifying properties of proteins:evaluation of a turbidimetric technique[J]. Journal of Agricultural and Food Chemistry,1978,26(3):716-723.
    ● Pericin D., Radulovia-Popovic L. J. Z., Vastag, S. Enzymatic hydrolysis of protein isolate from hull-less pumpkin oil cake:Application of response surface methodology [J]. Food Chemistry,2009,115(2):753-757.
    ● Qian Z. J., Jung W. K., Kim S. K. Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw[J]. Bioresource Technology,2008,99(6):1690-1698.
    ● Rizzello C. G., Losito I., Gobbetti M., et al. Antibacterial activities of peptides from the water soluble extracts of Italian cheese varieties[J]. Journal of Dairy Science,2005,88(7):2348-2360.
    ● Siemensma A. D., Weijer W. J., Bak H. J. The importance of peptide lengths in hypoallergenic infant formulae[J]. Trends of Food Science and Technology,1993,4(1):16-21.
    ● Shen L. Q., Wang X. Y., Wang Z. Y., et al. Studies on tea protein extraction using alkaline and enzyme methods[J]. Food Chemistry,2008,107(2):929-938.
    ● Shimada K., Fujikawa K., Yahara K. Antioxidative properties of xanthan on the antioxidation of soybean oil in cyclodextrin emulsion[J]. Journal of Agricultural and Food Chemistry,1992, 40(6),945-948.
    ● Silvestre M. P. C. Review of methods for the analysis of protein hydrolysis[J]. Food Chemistry,1997,60(2):263-271.
    ● Song W., Leo V. G. Pro-and Antioxidative Properties of Medicinal Mushroom Extracts[J]. International Journal of Medicinal Mushrooms,2008,10(4):315-324.
    ● Vanessa M. S., Kil J. P., Miriamd H. Optimization of the Enzymatic Hydrolysis of Mussel Meat[J]. Journal of Food Science,2010,75(1):C36-C43.
    ● Vaz J. A., Barros L., Martins A., et al. Chemical composition of wild edible mushrooms and antioxidant properties of their water soluble polysaccharidic and ethanolic fractions[J]. Food Chemistry,2011,126(2):610-616.
    ● Vermeesch G, Briffaud J., Joyeux J. Sunflower proteins in human food[J]. Revue Francaise Des Corps Gras,1987,7(8):333-344.
    ● Wani A. A., Sogi D. S., Grover L., et al. Effect of temperature, alkali concentration, mixing time and meal/solvent ratio on the extraction of water-melon seed proteins—a response surface approach[J]. Biosystems Engineering,2006,94(1):67-73.
    ● Wu H., Wang Q., Ma T. Comparative studies on the functional properties of various protein concentrate preparations of peanut protein[J]. Food Research International,2009,42(3): 343-348.
    ● Wu L. P., Wu Z. J., Lin D., et al. Characterization and amino acid sequence of y3, an antiviral protein from mushroom Coprinus comatus[J]. Chinese Journal of Biochemistry and Molecular Biology,2008,24(7):597-603.
    ● Yamasaki Y., Makeawa K. A peptide with delicious taste[J]. Agricultural and Biological Chemistry,1978,42(9):1761-1765.
    ● Yano S., Suzuki K., Funatsu G. Isolation from a thermolysin peptides with angiotensin I-converting enzyme inhibitory activity. Bioscience Biotechnology and Biochemistry,1996,60(4):661-663.
    ● Yoshiyukin H., Hanagata E. Angiotensin I converting enzyme inhibitory activities of various fermented foods[J]. Bioscience Biotechnology and Biochemistry,1995,59(6):1147-1149.
    ● Zaidman B. Z., Wasser S. P., Nevo E., et al. Coprinus comatus and Ganoderma lucidum interfere with androgen receptor function in LNCaP prostate cancer cells[J]. Molecular Biology Reports,2008,35(2):107-117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700