贻贝粉蛋白质酶解产物的动力学、表征和肽功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十年的研究表明,许多食物蛋白和多肽除了具有较好的营养价值外,还表现出特定的生物活性。在酶法蛋白水解产物和发酵乳制品中含有生物活性多肽,它们也有可能在蛋白的胃肠道消化过程中产生。研究表明,通过胃肠道的消化吸收,贻贝蛋白具有抗氧化活性。
     本论文研究了通过贻贝粉的蛋白提取物的水解获得相应蛋白和具有功能特性以及生物活性的多肽。
     首先,依据蛋白的不同种类确定蛋白提取的分离方法。提取物没有功能活性,但是通过碱性蛋白酶的部分水解改善了其功能活性,同时还比较了各种蛋白酶对提取物水解过程的不同作用。水解动力学表明,贻贝蛋白提取物具有显著的酶特异性,而且酶和水解活性具有相关性。同时我们还研究了在特定的DH和pH下三种不同的酶系统,而且提取物的成分不受初始酶浓度,底物浓度和温度的影响。
     因此,不管设定的参数值是多少,DH的发展变化都能预测控制目标蛋白多肽混合物的产生。为了模仿反应的水解动力学,建立了一个根据米氏函数反应曲线的模型。这样,水解中无法显现的各种现象(酶的抑制与失活,底物的改变)都能够明确。
A growing body of scientific evidence in the past decade has revealed that many food proteins and peptides exhibit specific biological activities in addition to their established nutritional value. Bioactive peptides have been found in enzymatic protein hydrolysates and fermented dairy products, but they can also be released during gastrointestinal digestion of proteins. Many studies have demonstrated that mussel protein have potent antioxidant activity. Isolated from gastrointestinal digest.
     This thesis made it possible to study obtaining protein content, functional properties or biologically active peptides with through the development of processes for the preparation and the hydrolysis of protein isolates resulting from mussel powder.
     First, a method of preparation of protein isolates being different by the type of proteins was developed. The isolates do not have good functional properties but their partial hydrolysis by Alcalase 2.4L improves some of them. Then, the hydrolytic action of commercial proteases (Alcalase 2.4L, Pronase SG, Neutrase 0.8L, Lypaine 6500) on the isolate of different process were compared. It was shown that the kinetics of hydrolysis is significantly influenced by the specificity of the enzyme and there is a relation enzyme/degree of hydrolysis (DH)/targeted activity. Lastly, we showed for three different enzyme/substrate systems that at given DH and pH, the composition of the hydrolysates is independent of the initial enzyme and substrate concentrations and of the temperature.
     Thus, the prediction of the temporal evolution of the DH, whatever the values of precedent parameters, allows to control the generation of a peptide mixture with targeted properties. A model based on the reaction pathway of Michaelis-Menten was then built in order to simulate the hydrolysis kinetics in batch reactor. For that, limiting phenomena implied in the hydrolysis (inhibition or inactivation of the enzyme, modification of the substrate) were highlighted.
引文
1. Fuentes, A et al., (2009). Comparison of physico-chemical parameters and composition of mussels (Mytilus galloprovincialis Lmk.) from different Spanish origins. Food Chem.112,295-302.
    2. Xtend-Life's Natural Product, (2008). Green Lipped Mussel Powder
    3. Luna-Acosta A, Le Floch S, Menguy M, Thomas-Guyon H (2009) Biological effects of a mixture of hydrocarbon-chemical dispersant in the Pacific oyster Crassostrea gigas and the blue mussel Mytilus edulis.36th Aquatic Toxicology Workshop, Quebec, Canada
    4. Hanna Leontowicz et al., (2008). Nutritional properties of mussels Mytilus galloprovincialis. Eur Food Res Technol 227:1251-1258
    5. Guipu Li et al., (2010), Seasonal Variation in Nutrient Composition of Mytilus coruscus from China. J. Agric. Food Chem.,58,7831-7837.
    6. D.A. Kreeger, A.J.S. Hawkins, B.L. Bayne, D. M. Lowe., (1995). Seasonal variation in the relative utilization of dietary protein for energy and biosynthesis by the mussel Mytilus edulis. Mar Rcol Prog Ser.126:177-184.
    7.7-
    8. Vioque J., Sanchez-Vioque R., Pedroche J., Millan F. (1999). Production of extensive chickpea (Cicer arietinum L.) protein hydrolysates with reduced antigenic activity. J. Agric. Food Chem.,47,3776-3781
    9. Y. Ma, Y. L. Xiong, J. Zhai, H. Zhu and T. Dziubla (2010).Fractionation and evaluation of radical-scavenging peptides from in vitro digests of buckwheat protein. Food Chemistry.118,3582-588.
    10. Jian Zhao (2006). Nutraceuticals, Nutritional Therapy, Phytonutrients, and Phytotherapy for mprovement of Human Health:A Perspective on Plant Biotechnology pplication. Recent Patents on Biotechnology 2007,1,75-97
    11. Silva S.V., Malcata F.X. (2004). Caseins as source of bioactive peptides. Int. Dairy J.,15,1,1-15.
    12. Adermann K., John H., Standker L., Forssmann W.-G. (2004). Exploiting natural peptide diversity:novel research tools and drug leads. Current Opinion Biotechnol.,15,599-606.
    13. Godon B. (1996). Proteines vegetales. Eds Lavoisier
    14. Clemente A. (2000). Enzymatic protein hydrolysates in human nutrition. Trends Food Sci. Technol.,11,254-262
    15. Nacer S.A., Sanchez C., Villaume C., Mejean L., Mouecoucou J. (2004). Interaction between β-lactoglobulin and pectins during in vitro gastric hydrolysis. J. Agric. Food Chem.,52,355-360.
    16. Vioque J., Sanchez-Vioque R., Clemente A., Pedroche J., Mar Yust M., Millan F. (2001). Alcalase rapeseed inhibitors:purification and partial characterization. J. Enz. Inhibition,16,81-87.
    17. Franek F., Hohenwarter O., Katinger H. (2000). Plant protein hydrolysates: preparation of defined peptide fractions promoting growth and production in animal cells cultures. Biotechnol. Prog.,16,688-692
    18. Gill I., Lopez-Fandino R., Jorba X., Vulfson E.N. (1996). Biologically active peptides and enzymatic approaches to their production. Enz. Microb. Technol.,18, 162-183.
    19. Maldonado J., Gil A., Narbona E., Molina J.A. (1998). Special formulas in infant nutrition:a review. Early Human Development,53 Suppl., S23-S32
    20. Pihlanto-Leppala A., Koskinen P., Piilola K., Tupasela T., Korhonen H. (2000). Angiotensin I-converting enzyme inhibitoty properties of whey protein digests:concentration and characterization of active peptides. J. Dairy Research, 67,53-64.
    21. Smyth M., FitzGerald R.J. (1997). Characterisation of a new chromatography matrix for peptide molecular mass determination. Int Dairy J.,7,571-577.
    22. Lahl W.J., Braun S.D. (1994). Enzymatic production of protein hydrolysates for food use. Food Technol.,68-71.
    23. Mahmoud M.I. (1994). Physicochemical and functional properties of protein hydrolysates in nutritional products. Food Technol.,89-95.
    24. Panyam D., Kilara A. (1996). Enhancing the functionality of food proteins by enzymatic modification. Trends Food Sci. Technol.,7,120-125
    25. H. Korhonen, A. Pihlanto. Food-derived bioactive peptides-opportunities for designing future foods. Curr. Pharm. Des.,9:1297-1308,2003.
    26. M. Yoshikawa, H. Fujita, N. Matoba,Y. Takenaka, T. Yamamoto, R. Yamauchi, H. Tsuruki H. K. Takahara. Bioactive peptides derived from food proteins preventing lifestyle-related diseases. Biofactors,12:143-146,2000.
    27. Blom W.R., Kunst A., Hakkaart M.J.J., Luli G.W., van Schie B.J. (1996). Peptides for tissue and cell culture media. PCT C12N 5/02, WO 96/26266.
    28. Reginald H. Garret, Charles M. Grisham (2005). Biochemistry, Third edition. High education press, a division of Thomson Learning Asia Pte Ltd
    29. A. aron A. Mc Nevin. Seafood watch, Seafood Report. Monterey Bay aquarium 2006.
    30. Kunst A. (2000). Enzymatic modification of soy proteins to improve their functional properties. Industrial Proteins,3,8,9-11.
    31. Brown, D., Van Landeghem, K. and Schuele, M.1997. Australian Aquaculture-Industry Profiles for Selected Species. ABARE Research Report, 97.3,102pp.
    32. Sidall SE.1980. A clarification of the genus Perna (Mytilidae). Bull Mar Sci 30:858-870.
    33. Huang ZG, Lee SY, Mak PMS.1985. The distribution and population structure of Perna viridis (Bivalvia:Mytilacea) in Hong Kong. In Morton BS, Dudgeon D, eds, Proceedings,2nd International Workshop on the Malacofauna of Hong Kong and South China,1983. Hong Kong University Press, Hong Kong, People's Republic of China, pp 465-472.
    34. Lee SY.1985. The population dynamics of the green mussel, Perna viridis (L.) in Victoria Harbor, Hong Kong—Dominance in a polluted environment. Asian Mar Biol 2:107-118.
    35. Wang, R. C.;Wang, Z. P. Mussel Aquaculture. In Science of Marine Shellfish Culture; Wang, R. C.; Wang, Z. P., Eds.; China Ocean University Press:Qingdao, China,2008; pp 224-225 (in Chinese).
    36. A. aron A. Mc Nevin. Seafood watch, Seafood Report. Monterey Bay aquarium 2006.
    37. Jeejeebhoy K.N. (2000). Vegetable proteins:are they nutritionally equivalent to animal protein? Eur. J. Gastroenterology Hepatology,12,1-2.
    38. G.M. Salaskar and V.N. Nayak (2011). Nutritional quality of bivalves, crassostrea madrasensis and perna viridis in the kali estuary, karnataka, india.
    39. Michele Turcott (2011), What Are the Benefits of Mussels? Article reviewed by Paula Martinac,http://www.livestrong.com/article/283267-what-are-the-benefits-of-mus sels/#ixzz
    40. Qian ZJ, Jung WK, Byun HG, Kim SK.2008. Protective effect of an antioxidative peptide purified from gastrointestinal digests of oyster, Crassostrea gigas, against free radical induced DNA damage. Bioresource Technol 99:3365-3371.
    41. wikipedia
    42. Rajapakse N, Mendis E, Jung WK, Je JY, Kim SK. (2005). Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Res Intl 38(2):175-182
    43. Rege JEO (1996). Biotechnology options for improving livestock production in developing countries, with special reference to Sub-Saharan Africa. In: Lebbie S.H.B.and Kagwini E.1996. Small Ruminant Research and Development in Africa. Proc. Of the Third Biennial Conf. of the African Small Ruminant Research Network, UICC, Kampala, Uganda,5th-9th Dec, 1994. ILRI, Nairobi, Kenya,p.322.
    44. Igile GO (1996). Phytochemical and Biological studies on some constituents of Vernonia amygdalina (compositae) leaves. Ph.D thesis, Department of Biochemistry, University of Ibadan, Nigeria. Jensen P (1990). Sorting and solution to waste source 2(2) United Nations Development Programme (UNDP), New York.
    45. Zenk HM (1991). Chasing the enzymes of secondary metabolism:Plan cell cultures as a pot of goal. Phytochemistry,30(12):3861-3863 Zess Nauk, UMK Tornu,13:253-256.
    46. Kersten GF, Spiekstra A, Beuvery EC, Crommelin DJ (1991). On the structure of immune-stimulating saponin-lipid complexes (iscoms). Biochimica et. Biophysica. Acta.,1062 (2):165-171.
    47. Sugano M, Goto S, Yaoshida K, Hashimoto Y, Matsno T, Kimoto M (1993). Cholesterol lowering activity of various undigested fractions of soybean protein in rats. J. Nutr.,20(9):977-985.
    48. Osagie AU (1998). Anti-nutritional factors. In:Nutritional Quality of plant foods. Pp.221-244.
    49. By B. J. F. Hudson (1994). New and developing sources of food proteins. Edited by B.J.F. Hudson. Published by Chapman and Hall.,109-111.
    50. El-Nockrashi A.S., Mukherjee K.D., Mangold H.K. (1977). Rapeseed protein isolates by countercurrent extraction and isoelectric precipitation. J. Agric. Food Chem.,25,1,193-197
    51. Thomas A. Wilding, Maeve S. Kelly, Kenneth D. Black (2006). Alternative marine sources of protein and oil for aquaculture feeds:State of the art and recommendations for future research. The Crown ESTATE. Marine Estate Research Report. SAMS Research Services Limited, Dunstaffnage Marine Laboratory, Oban, Argyll, Scotland. PA37 1QA.
    52. Meinke, W.W., Finne, G., Nickelson, R. and Martin, R., (1982). Nutritive value of fillets and minced flesh from Alaska pollock and some underutilized finfish species from the Gulf of Mexico. J. Agric. Food Chem.30 477-480.
    53. Kroll J., Kujawa M., Schnaak W. (1991). Preparation of rapeseed proteins by extraction, ultrafiltration and diafiltration. Fat. Sci. Technol.,93,2,61-65.
    54. Blaicher F.M., Elstner F., Stein W., Mukherjee K.D. (1983). Rapeseed protein isolates:effect of processing on yield and composition of protein. J. Agric. Food Chem.,31,358-362.
    55. CHENGCHU LIU. (2009). Chemical Compositions and Functional Properties of Protein Isolated from By-Product of Triangle Shell Pearl Mussel Hyriopsis cumingii. Journal of Aquatic Food Product Technology,18:193-208.
    56. Goncalves N., Vioque J., Clemente A., Sanchez-Vioque R., Bautista J., Millan F. (1997). Obtencion y caracterizacion de aislados proteicos de colza. Grasas y Aceites,48,5,282-289.
    57. Savoie L., Parent G., Galibois I. (1991). Effects of alkali treatment on the in-vitro digestibility of proteins and the release of amino acids. J. Sci. Food Agric., 56,363-372.
    58. Klockeman D.M., Toledo R., Sims K.A. (1997). Isolation and characterization of defatted canola meal protein. Am. Chem. Soc.,45,3867-3870.
    59. SINDAYIKENGERA Severin, XIA Wen-shui., (2006). Nutritional evaluation of caseins and whey proteins and their hydrolysates from Protamex. J Zhejiang Univ SCIENCE B 7(2):90-98.
    60. Kousaku Ohkawa, Hiroyuki yamamoto (2005). Modifications of Proteins and Poly(amino acids) by Enzymatic and Chemical Methods.bpol7015.
    61. Liu J., Shi M., Diosady L.L., Rubin L. (1995). Three-phase extraction of Chinese rapeseed using the Karr column. J. Food Eng.,24,35-45.
    62. Chen M., Rohani S. (1992). Recovery of canola meal proteins by precipitation. Biotechnol. Bioeng.,40,63-68.
    63. P. Bourseaua, A. Chabeauda, L. Vandanjona, A. Masseb, P. Jaouenb, J. Fleurencec and J-P. Berged (2009). Enzymatic hydrolysis combined to membranes for upgrading seafood by-products. GEPEA, UMR CNRS 6144, bd de l'Universite, BP406,44602 Saint-Nazaire Cedex, France.
    64. Siong H. Tan, Rodney J. Mailer, Christopher L. Blanchard, and Samson O. Agboola (2001). Canola Proteins for Human Consumption:Extraction, Profile, and Functional Properties. Journal of Food Science.10.1111/j.1750-3841
    65. Tzeng Y.M., Diosady L.L., Rubin L.J. (1990). Production of canola protein materials by alkaline extraction, precipitation and membrane processing. J. Food Sci.,55,4,1147-1156.
    66. Dalgalarrondo M. (1986). Contribution a 1'etude des caracteristiques physico-chimiques des graines de tournesol (Helianthus annuus L.) et de colza (Brassica napus L.). These Universite de Bordeaux.
    67. Monsalve R.I., Rodriguez R. (1990). Purification and characterization of proteins from the 2S fraction from seeds of the Brassicae family. J. Exp. Bot.,41, 89-94.
    68. Simard C., Dupont Y., Boulet M. (1977). Proprietes physicochimiques et composition en acides amines des fractions de proteines de soja, de feverole, de colza et de feuille de luzerne. Can. Inst. Food Sci. Technol.,10,326-330
    69. Hyung Joon Cha Professor, Dong Soo Hwang, Seonghye Lim (2008). Development of bioadhesives from marine mussels. Journal of Biotechnology.10, 631-638.
    70. Yun-Jian Lin et al (2010). Antioxidative Peptides Derived from Enzyme Hydrolysis of Bone Collagen after Microwave Assisted Acid Pre-Treatment and Nitrogen Protection. Int. J. Mol. Sci.11,4297-4308;
    71. Schwenke K.D., Raab B., Linow K.-J., Pahtz W., Uhlig J. (1981). Isolation of the 12S globulin from rapeseed (Brassica napus L.) and characterization as a "neutral" protein. Die Narrung,25,3,271-280.
    72. ZHI-YUAN DAI (2010). Preparation And Characterization Of Mussel (Mytilus Edulis) Protein Hydrolysates With Angiotensin-I-Converting Enzyme (Ace) Inhibitory Activity By Enzymatic Hydrolysis. Journal of Food Biochemistry 0145-8884.
    73. Dong Soo Hwang (2004). Expression of Functional Recombinant Mussel Adhesive Protein Mgfp-5 in Escherichia coli. Applied and Environmental Microbiology.10.1128/AEM.70.6.3352-3359.
    74. ZHANG QIAN (2007). Functional properties and storage stability of alkali soluble chicken meat Protein and modified waxy corn starch blend system. Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy.
    75. Panyam D., Kilara A. (1996). Enhancing the functionality of food proteins by enzymatic modification.Trends Food Sci. Technol.,7,120-125.
    76. Fr(?)kjaer S. (1994). Use of hydrolysate for protein supplementation. Food Technol.,86-88.
    77. Korhonen H, Pihlanto A.2003. Food derived bioactive peptides opportunities for designing future foods. Cur Pharm Design 9:1297-1308.
    78. Fisher, C., Morris, T.R. and Jennings, R.C. (1973) A model for the description and prediction of theresponse of laying hens to amino acid intake. British Poultry Science 14,469-484.
    79. Linder, M.C. (1991) Nutritional Biochemistry and Metabolism with Clinical Applications. Elsevier,Amsterdam, pp.89-109.
    80. Dua S., Mahajan A., Mahajan A. (1996). Improvement of functional properties of rapeseed (Brassica campestris var. Toria) preparations by chemical modification. J. Agric. Food Chem.,44,706-710.
    81. Blom W.R., Kunst A., Hakkaart M.J.J., Luli G.W., van Schie B.J. (1996). Peptides for tissue and cell culture media. PCT C12N 5/02, WO 96/26266.
    82. Adler-Nissen J. (1987). Enzymatic hydrolysis of proteins in food. A-5901-GB, Novo-Nordisk A/S Novo Alle DK-2880 Bagsvaerd. Saha B.C., K. Hayashi K. (2001). Debittering of protein hydrolyzates. Biotechnol. Adv.,19, 255-370.
    83. Pedersen B. (1994). Removing bitterness from protein hydrolysates. Food Technol.,96-98.
    84. Lalasidis G., Sjoberg L.-B. (1978). Two new methods of debittering protein hydrolysates and a fraction of hydrolysates with exceptionally high content of essential amino acids. J. Agric. Food Chem.,26,3,742-749.
    85. Rao M.B., Tanksale A.M., Ghatge M.S., Deshpande V.V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev., 62,3,597-635.
    86. Aubes-Dufau I., Seris J.-L., Combes D. (1995). Production of peptic hemoglobin hydrolysates:bitterness demonstration and characterization. J. Agric. Food Chem.,43,1982-1988.
    87. Lahl W.J., Braun S.D. (1994). Enzymatic production of protein hydrolysates for food use. Food Technol.,68-71.
    88. M.B.K. Foh, M.T. Kamara, I. Amadou, B.M. Foh (2011). Chemical and Physicochemical Properties of Tilapia (Oreochromis niloticus) Fish Protein Hydrolysate and Concentrate. International Journal of Biological Chemistry,5: 21-36.
    89. Doucet D., Otter D.E., Gauthier S., Foegeding E.A. (2003). Enzyme-induced gelation of extensively hydrolyzed whey proteins by Alcalase:Peptide identification and determination of enzyme specificity. J. Agric. Food Chem., 51,6300-6308.
    90. Bombara N., Anon M.C., Pilosol A.M.R. (1997). Functional properties of protease modified wheat flours. Lebensm.-Wiss. U.-Technol.,30,441-447.
    91. Kristinsson H.G., Rasco B.A. (2000a). Kinetics of the hydrolysis of Atlantic salmon (Salmo salar) muscle proteins by alkaline proteases and visceral serine protease mixture. Process Biochem.,36,131-139.
    92. Chobert J.M., Briand L., Gueguen J., Popineau Y., Larre C., Haertle T. (1996). Recent advances inenzymatic modifications of food proteins for improving their functional properties. Nahrung,40,4, S.177-182.
    93. Pihlanto-Leppala A. (2001). Bioactive peptides derived from bovine whey proteins:opioid and ace-inhibitory peptides. Trends Food Sci. Technol.,11, 347-356.
    94. Meisel H. (1998). Overview on milk protein-derived peptides. Int. Dairy Journal,8,363-373.
    95. Li G.-H., Le G.-W., Shi Y.-H., Shrestha S. (2004). Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutr. Research,24,469-486.
    96. Aalbersberg W.I.J. (1999). Peptides derived from industrial proteins and bioactivity. Industrial Proteins,2,7,3-5
    97. Fukudome S., Yoshikawa M. (1992). Opioid peptides derived from wheat gluten:their isolation and characterization. FEBS Lett.,296,1,107-111.
    98. Guerard F., Dufosse L., De La Broise D., Binet A. (2001). Enzymatic hydrolysis of proteins from yellowfin tuna (Thunnus alcabares) wastes using Alcalase. J. Mol. Cat. B:Enz.,11,1051-1059.
    99. Amiot J., Germain L., Turgeon S., Lemay M., Ory-Salam C., Auger F.A. (2005). Peptides from milk protein hydrolysates to improve the growth of human keratinocytes in culture. Int. Dairy J.,14,7,619-626.
    100. Schlaeger E.-J. (1996). The protein hydrolysate, Primatone RL, is a cost-effective multiple growth promoter of mammalian cell culture in serum-containing and serum-free media and displays anti-apoptosis properties. J. Immunological Methods,194,191-199.
    101. Driou A., Saint-Paul F., Paquet D., Le Deaut J.Y., Linder G. (1985). Les proteases non coagulantes dans les industries agro-alimentaires:proprietes biochimiques et applications technologiques. IAA,311-320.
    102. Cheryan M., Deeslie D. (1983). Soy protein hydrolysis in membrane reactors. J. Am. Oil Chem. Soc.,60,6,1112-1115.
    103. Bjurlin M.A., Bloomer S., Nelson C.J. (2002). Characterization of proteolytic activity of proteases. Biotechnol. Lett.,24,191-195
    104. Mullally M.M., O'Callaghan D.M., FitzGerald R.J., Donnelly W.J., Dalton J.P. (1994). Proteolytic and peptidolytic activities in commercial pancreatic protease preparations and their relationship to some whey protein hydrolysate characteristics. J. Agric. Food Chem.,42,2973-2981.
    105. Bordenave B.S., Sannier F., Ricart G., Piot J.M. (2000). Characterization of a goat whey peptic hydrolysate produced by an ultrafiltration membrane enzymatic reactor. J. Dairy Res.,67,4,551-559.
    106. Bordenave S., Fruitier I., Ballandier I., Sannier F., Gildberg A., Batista I., Piot J.M. (2002). HPLC preparation of fish waste hydrolysate fractions. Effect on guinea pig ileum and ACE activity. Prep. Biochem. Biotechnol.,32,1,65-77.
    107. Guerard F., Guimas L., Binet A. (2002). Production of tuna waste hydrolysates by a commercial neutral protease preparation. J. Mol. Cat. B:Enz., 19-20,489-498.
    108. Constantinides A., Adu-Amankwa B. (1980). Enzymatic modification of vegetable protein:mechanism, kinetics, and production of soluble and partially soluble protein in a batch reactor. Biotechnol. Bioeng.,22,1543-1565.
    109. Adler-Nissen J. (1982). Limited enzymatic degradation of proteins:a new approach in the industrial application of hydrolases. J. Chem. Tech. Biotechnol.,32,138-156.
    110. Gonzalez-Tello P., Camacho F., Jurado E., Paez M.P., Guadix E.M. (1994a). Enzymatic hydrolysis of whey proteins:Ⅰ. Kinetics models. Biotechnol. Bioeng.,44,523-528.
    111. Juffs H.S. (1975). Proteolysis detection in milk. Ⅳ. Starch gel electrophoresis and formol titration. J. Dairy Research,42,277-283.
    112. Doi E., Shibata D., Matoba T. (1981). Modified colorimetric ninhydrin methods for peptidase assay. An. Biochem.,118,173-184.
    113. Spellman D., McEvoy E., O'Cuinn G., FitzGerald R.J. (2003). Proteinase and exopeptidase hydrolysis of whey protein:comparaison of the TNBS, OPA and pH stat methods for quantification of degree of hydrolysis. Int. Dairy J.,13,447-453.
    114. Panasiuk R., Amarowicz R., Kostyra H., Sijtsma L. (1998). Determination of a-amino nitrogen in pea protein hydrolysates:a comparison of three analytical methods. Food Chem.,62,3,363-367.
    115. Mutilangi W.A.M., Panyam D., Kilara A. (1995). Hydrolysates from proteolysis of heat-denatured whey proteins. J. Food Sci.,60,5,1104-1109.
    116. Silvestre M.P.C. (1997). Review of methods for the analysis of protein hydrolysates. Food Chem.,60,2,263-271.
    117. Novozymes (1979). Determination of Neutrase using the Anson haemoglobin method. Analytical method. EB-SM-0348.02/01.
    118. Diniz F.M., Martin A.M. (1996). Use of response surface methodology to describe the combined effects of pH, temperature and E/S ratio on the hydrolysis of dogfish (Squalus acanthias) muscle. Int. J. Food Sci. Technol.,31, 419-426.
    119. Jang A., Lee M. (2004). Purification and identification of angiotensin converting enzyme inhibitory peptides from beef hydrolysates. Meat Sci.,69,4, 653-661.
    120. Huhmer A.F.R., Aced G.I., Perkins M.D., Gursoy R.N., Jois D.S.S., Larive C., Siahaan T.J., Schoneich C. (1997). Separation and analysis of peptides and proteins. Anal. Chem.,69,29R-57R.
    121. Van der Ven C., Gruppen H., de Bont D.B.A., Voragen A.G.J. (2001). Reversed phase and size exclusion chromatography of milk protein hydrolysates: relation between elution from reversed phase column and apparent molecular weight distribution. Int. Dairy J.,11,83-92.
    122. Schweizer M. (2002). Fractionnement et identification de petits peptides issus de l'hydrolyse enzymatique des proteines de colza. These de l'Institut National Polytechnique de Lorraine, Nancy.
    123. Froidevaux R., Lignot B., Nedjar-Arroume N., Guillochon D., Coddville B., Ricart G. (2000). Kinetics of appearance of hemorphins from bovine hemoglobin peptic hydrolysates by a direct coupling of reversed-phase high-performance liquid chromatography and electrospray ionization mass spectrometry. J. Chromatogr. A,873,185-194.
    124. Leonil J., Gagnaire V., Molle D., Pezennec S., Bouhallab S. (2000). Application of chromatography and mass spectrometry to the characterization of food proteins and derived peptides. J. Chromatogr. A,881,1-21.
    125. Gilmartin L., Jervis L. (2002). Production of cod (Gadus morhua) muscle hydrolysates. Influence of combinations of commercial enzyme preparations on hydrolysates peptide size range. J. Agric. Food Chem.,50, 5417-5423.
    126. Laemmli U.K. (1970). Cleavage of structural proteins during the assembly of the head of the bacteriophage T4, Nature,227,680-686.
    127. Novozymes (1979). Determination of Neutrase using the Anson haemoglobin method. Analytical method. EB-SM-0348.02/01.
    128. GB/T 5003
    129. Vinson JA, Su X, Zubic L, Bose PJ (2001) J Agric Food Chem 49:5315-5321
    130. Tessier M., Viollet B., Egly J.M. (1992). La precipitation des proteines. Le technoscope de biofutur,54,3-14.
    131. VANESSA M. SILVA,KIL J. PARK, AND M'IRIAM D. HUBINGER (2010). Optimization of the Enzymatic Hydrolysis of Mussel Meat. Journal of Food Science.10.1111/j.1750-3841
    132. Rozan P. (1997). Traitements technologiques et prise alimentaire (exemple du tourteau de colza industriel). These de l'Universite Henri Poincare, Nancy I.
    133. Yoshida N., Tsuruyama S., Nagata K., Hirayama K., Noda K., Makisumi S. (1988). Purification and characterization of an acidic amino acid specific endopeptidase of Streptomyces griseus obtained from a commercial preparation (Pronase). J. Biochem.,104,451-456

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700