铁路填石路堤的沉降与稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国铁路建设的快速发展,用碎石材料填筑路堤的情况越来越多,尤其在我国的西南山区。目前国内对铁路填石路堤的研究还比较少,具体的施工方法、沉降控制及质量检测标准等还不成熟、系统,主要是参考公路和水利堆石坝工程。填石路堤的沉降与稳定性是路堤安全中的重中之重,在施工过程中,影响填石路堤沉降与稳定性的因素很多,具体研究各工况和因素对填石路堤的影响十分必要,这对于控制路堤的工后沉降和保证列车的运营安全具有重要作用。
     本文主要依托“结合贵阳至广州铁路硬质岩石填料填筑路堤关键技术研究”课题,通过试验段现场填石路堤的填料选择标准、施工工序和质量控制等研究,并结合现场实测值与有限元模拟结果的对比分析,具体提出控制填石路堤沉降的施工工序要求以及施工过程应采取的措施。同时,借助于有限元分析软件建立了填石路堤的二维和三维计算模型,研究了各个因素和工况对填石路堤的受力、变形等力学特性的的影响大小和范围,并对路堤在列车动荷载作用下的应力和位移时程变化进行了分析,给出了一些供设计和施工参考的建议。本文取得的主要成果如下:
     1.在填石路堤的整个施工过程中,从最大限度的降低路堤工后沉降和满足安全稳定性角度出发,研究通过对填料选择、每一步施工工序的控制来满足路堤的质量要求。
     2.通过数值分析软件MIDAS/GTS建立了填石路堤的二维模型,模拟分析了五种不同粒径填料在列车荷载作用下路堤的稳定系数、各方向位移、最大应力应变。在相同的荷载、边界条件、施工条件下,SA、SB、SC这三种粒径较小的填料填筑的路堤处于较高稳定安全状态,位移较小。而SD、SE这两种较大粒径填筑的路堤虽然也处于稳定状态,但位移和应变较大,处于较低安全状态。
     3.填石路堤的稳定安全系数随着路堤边坡坡度的减小而增大,但幅度不大,路堤所受应力应变的变化也较小。在地基强度较小不满足受力要求时,进行地基处理是必要的,地下水位升降变化对填石路堤受力与变形几乎没有影响。
     4.通过对填石路堤填筑过程的分析,并对比实测值和有限元计算值,得到数值模拟的结果与试验所得结果是较为吻合的,说明有限元模拟填石路堤施工过程是可行的。
     5.列车动力荷载作用下的三维有限元模拟主要计算填石路堤在工后列车运行时,五种不同粒径填料路堤随列车行驶时间变化的受力、沉降及稳定性。主要进行路堤结构本身特征值和应力、位移时程分析。在填石路堤的动力分析中,不论是路堤某个部位的受力和变形,还是随时间变化的整个路堤的受力和变形,均能够满足列车运行的要求,路堤处于安全稳定状态。
With rapid development of China railway construction, crushed stone is used more and more in roadbed construction, especially in mountainous areas of southwest China. Currently, there is little domestic research on rock-filled embankment. At the same time, methods of specific construction and the control of settlement are not perfect. The standard of quality inspection has been not set up yet. Builders often refer to the highway and water conservancy rock-filled dam project. Settlement and stability are absolutly important to rock-filled embankment. There are many factors which will affect the stability and settlement of rocked-filled embankment. It is necessary to research each specific construction conditions influencing on embankment. Similarly, It will play an important roles to controlling the post-construction settlement of rocked-filled embankment and the train safe operation.
     The thesis is mainly based on the key railway technologies research subject of Guiyang to Guangzhou hard rock-filled embankment. According to the scene of the test section construction, we plan to carry out the research including the selection criteria of rockfill, construction procedures and the quailty control. Moreover, we will compare the actual measured value with the results of the finite element method analysis as well as propose the specific construction procedures to control the settlement of the rock-filled embankment and which measures should be taken to. Meanwhile, with the aid of the finite element analysis software, we established the2D and3D calculation model of the rock-filled embankment and research some factors and conditions which wil influence the deformation and the scope of mechanical properties. Under the effects of train load, we have analysised the time history of the displacement and stress and also put forward some advice for the design and construction. The main results of the paper are as follows:
     1. The choice of rock fill and each step of embankment construction have been strictly controlled in the whole course of construction to reduce the post-construction settlement and meet the safety stability.
     2. The two-dimensional model was established by the numerical analysis MIDAS/GTS. Under the train load, rock-filled embankments which are consist of five different particle size of rockfill was simulated to analysis the stable safety factor, all directions of displacement and maximum stress and strain. Compare the smaller particle size with the bigger, it can be concluded that embankment is relatively in a more safety state under the same load, boundary conditions and construction conditions.
     3. The safety stability factor of embankment increase modestly with the decrease of the embankment slope. This change is also suitable for the unit stress and strain. It is indispensable to foundation treatment when the strength of foundation does not meet the basic bearing capacity which is required in the norm. The underground water level at different height almostly has no effect on rock-filled embankment
     4. Through the construction stage analysis of rock-filled embankment and comparing the measured values with calculated values of finite element, we can get the result that the two values coincide. Engineering practice shows that the finite element simulation is feasible.
     5. During the period of the train operation, the three dimensional finite element simulation which was under the train dynamic load mainly computed the force, settlement and stability of rock-filled embankments which were composed by the five rockfill of different particles size. The purpose is to analysis the eigenvalue and the time history of stress and displacement. In general, according to the dynamic analysis of rock-filled embankment, whether the stress and deformation of nodes or the whole embankment both can satisfy the requirement during the train operation. The calculation results indicate that the rock-filled embankment is in a safe and stable state.
引文
[1]罗鸣,范海军.潭邵高速公路填石路堤施工体会及管理经验.公路,2003,1(1):80-82
    [2]沙爱民,贾侃.填石路基施工技术[M].北京:人民交通出版社,2007
    [3][日]日本土质工学会编,郭熙灵,文丹译.粗粒料的现场压实,北京:中国水利水电出版社,1999.4
    [4]郭庆国.粗粒土的工程特性及应用[M].郑州:黄河水利出版社,1999
    [5]柴贺军.土石混填路基修筑技术[M].北京:人民交通出版社,2009
    [6]铁路规程土工试验规程(TB10102-2010).中华人民共和国铁道部,2010.11.21
    [7]钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京:中国水利水电出版社,1996
    [8]Biot M.A.General theory of three-dimensional consolidation. J.of Applied Pgysics,1963. 12 (2):14-18
    [9]Sandhu R.S.E,E.L.Wilson.Finite element analysis of seepage in elastic media.Proc. ASCE,1969,95(3):26-29
    [10]Chriestian J.T, J.W.Boehmer. Plane strain consolidation by finite element.Proc.ASCE, 1969,95(3):26-29
    [11]沈珠江.应用有限元计算软土地基的固结变形.水利水运科技情况,1977,2(2):11-16
    [12]殷宗泽等.饱和软粘土平面固结问题有限元法.华东水利学院学报,1978,(1):43-47
    [13]曾国熙,龚晓南.软土地基固结有限元法分析.浙江大学学报,1983,17(2):21-26
    [14]陈正汉.非饱和固结的混合物理论—数学模型、试验研究、边值问题:[陕西机械学院硕士学位论文].西安:陕西机械学院,1991
    [15]杨代泉.非饱和土广义固结理论及其数值模拟与试验研究:[南京水利科学研究院硕士学位论文].南京:南京水利科学研究院,1990
    [16]董振华著.土石工程和地下工程施工,北京:中国电力出版社,1996
    [17]D.GFredlund, N.R.Morgenstren. Constitutive relations for volume change in unsaturated soils. Can.Geotech.J,1976,13(1):261-276
    [18]Change C S, Duncan J M. Consolidation analysis of partly saturated clay using elastic-plastic effective strain model.Int J for Numerical and Analytical Methods in Geomechanics,1993, (7):39-55
    [19]Yin Z Z, Sun C L, Miao L C. Consolidation of unsaturated exjpansive soils from 2nd Int Conf on Unsaturated Soils. Beijing:International Academic Press,1998,533-537
    [20]Casagrand.A. The determination of the preconsolidation load its pratical significance, Proc. 1st Int Conf on S.M and R.E,1936, (3):60-60
    [21]赵明华,王贻荪等.压缩曲线的公式化及其应用.湖南大学学报,1990,11(2):29-34
    [22]黄文熙.土的工程性质.北京:水利水电出版社,1984
    [23]Skempton, A.W, Bjerrum.L.A. Contribution to the settlement analysis of foundation on clay. Geotechnique,1957, (2):35-40
    [24]Roscoe K.H, Burland J.B. On the generalized stress-strain behavior of wet clay in HeymanLechie engineering plasticity.Cambridge:Cambridge Univ Press,1968
    [25]Duncan J.M, CY.Chang. Nonlinear analysis of stress and strain in soil. J.of Soil Mechanics and Foundation Division Proc.ASCE,1970, (5):145-149
    [26]殷宗泽.土力学学科发展的现状与展望.河海大学学报,1999,27(1):1-5
    [27]S.B.Tan. An empirical method for estimating secondary and total settlement.Pro of the eighth inter conference on soil mechanics and foundation Eng,1973, (3):68-73
    [28]Thurner, HeinzandSandstrom, Ake.Continuous Compaetion Control, CCC.compation of soil and Granular Materials.Modelling and Properties of ompacted materials.Paris, 2000,237-245
    [29]Hernan R.Henrique, Claudio Cuevas, Stabilization of distributed control systems withdely. Systems & Control Letters, (2011) 675-685
    [30]Lame, T.W. Method for estimating settlement. PASCE,1964,90(4):915-926
    [31]R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim.26 (1988) 697-713
    [32]郭庆国著,粗粒土的工程特性及应用,郑州:黄河水利出版社,1998
    [33]王康臣,填石路堤修筑技术的发展,公路交通技术,1999(2)
    [34]李希元等,山区高等级公路填石路堤修筑技术,广东公路交通
    [35]余超等,填石路基试验段施工技术,中南公路工程,2001(3)
    [36]金国强等,浅谈石渣路堤的压实质量控制,西北公路,1997(3)
    [37]王佩秀等,填石路堤的质量控制,高等级公路,1999(2)
    [38]杨荫华著,土石料压实和质量控制,北京:水利电力出版社,1992
    [39][瑞典]L.福斯布拉德著,甘杰贤等译,土石填方的振动压实,北京:人民交通出版社,1984
    [40]马松林等,土石混合料室内振动压实特性,中国公路学报,2001(4)
    [41]董惠云等,填石路堤施工质量控制技术总结,山西建筑,2001(2)
    [42]交通部部级科技项目,公路填石路堤压实标准与检测方法总报告,交通部 公路科学研究所等
    [43]刘广信等,碎石土路基施工质量管理及检测方法,国外公路,1996(8)
    [44]刘宇等,粗粒径石料填筑高路堤的施工质量控制与检测,路基工程,2002(3)
    [45]刘汉龙.堆石粗粒料颗粒破碎试验研究.岩土力学.2005,4(26):562-566
    [46]吴志雄.高速公路填石路堤的施工及质量控制.中外公路,2003,23(1):32-35
    [47]徐译道,不同材料的压实方法和对压路机的选用,筑路机械与施工机械化,1996(6)
    [48]韩玉芳,刘得辅,董胜.边坡整体稳定的可靠性分析方法.海岸工程,2001年12月第20卷第4期
    [49]赵尚毅,时卫明,郑颖人.边坡稳定分析的有限元法.地下空间,2001年12月第21卷第5期
    [50]李军世,李克训.高速铁路路基动力反应的有限元分析[J].铁道学报1995,17(1):66-75
    [51]陈谦应等,土石混合填方压实参数的试验研究,公路,1994(12)
    [52]吴世明.土动力学.北京:中国建筑工业出版社,2000
    [53]Hardin.Crushing of Soil Particles Journal of Geotechnical Engineering, American Society of Civil Engineers,1985,111(10):1177-1192
    [54]谢婉丽.土石粗粒料的强度和变形特性的试验研究.岩土力学与工程学报,2005,3(2):430-437
    [55]贾革续.粗粒土工程特性的试验研究:[大连理工大学博士学位论文].大连:2005
    [56]刘保健,谢定义.随机荷载下土动力特性测试分析法.北京:人民交通出版社,2001
    [57]郭庆国.粗粒土的工程特性及应用.郑州:黄河水利出版社,1996
    [58]刘延柱,陈文良,陈立群.振动力学.北京:高等教育出版社,2002
    [59]杨灿文,龚亚丽.列车通过时路基的动应力和振动[J].土木工程学报,1963,9(2):49—57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700