超声电机驱动的多指灵巧手及主从控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了适应日益复杂的柔性作业和远程灵巧操作的需要,具有和人手结构类似的机器人灵巧手的研究,一直是机器人研究领域的热点和难点。同时,由于人工智能理论、计算机控制技术、传感器等支撑技术发展的限制,要想使灵巧手在非结构化环境下实现完全自主的工作还是非常困难的。因此,利用主从控制技术实现灵巧手的遥操作也一直伴随着机器人灵巧手的研究。本文研究超声电机驱动的多指灵巧手及其主从控制系统,其主要研究成果如下:
     1、在综合分析国内外机器人灵巧手的研究现状和人手的生理结构基础上,采用超声电机作为驱动部件,设计了一种仿人灵巧手,实现了在尺寸、重量和自由度方面都接近人手的目标。
     2、采用机器人D-H参数建模方法建立了灵巧手的运动学模型。针对其单指具有冗余度的特点,参考人手指运动的耦合关系,提出一种解析法+数值法的快速运动学逆解算法,并进行了仿真验证。考虑到腱传动方式带来的关节运动之间的耦合问题,建立了关节空间与驱动空间之间的耦合方程,为实现灵巧手运动控制打下了基础。
     3、建立了人手示教方式下的多指抓取数学模型。参考人手抓取经验,提出接触稳定裕度的概念并将其引入到抓取内力规划中,实现了稳定、安全的抓取力规划。为了提高多指手的抓取性能,在关节空间建立了两个抓取性能指标,以物体位姿参数为优化变量,建立了多指手抓取物体的多目标优化抓取规划模型。利用多目标粒子群优化算法获得了规划模型的非劣解集前沿,通过三指手的仿真验证了本文所提方法的有效性。
     4、研制了两种不同类型的主操作手:穿戴型被动式力反馈主操作手和桌面型主动式力反馈主操作手,重点对前者进行了运动学和动力学的优化设计。基于DSP主控制器搭建了控制系统的硬件部分,并进行相关软件设计。此外,采用PID+Bang-Bang技术实现了灵巧手单指的关节空间与笛卡尔空间的轨迹跟踪控制,基于阻抗控制策略实现了手指的指尖接触力控制,并进行了频率响应实验。为了衡量两种主操作手的操作性能,分别进行了主从运动控制和力反馈的实验。
     5、时延以及不确定性等因素容易造成双边遥操作系统操作性能差,甚至不稳定等问题。为了解决这一问题,针对主、从端不同的任务特点,提出一种新的双边遥操作系统控制结构。由于主端在实现力反馈时易受扰动影响,设计一种非线性扰动观测器用于扰动的在线估计并进行补偿;从端采用基于滑模的阻抗控制以保证精确的位置跟踪和与环境的期望交互。利用莱威林绝对稳定准则推导出时延下保证系统稳定性的条件以及参数选取依据。最后在建立的单自由度遥操作系统实验平台上进行了实验研究,结果表明所提方法能够在保证系统鲁棒性的条件下有效提高操作性能。
In order to meet the increasingly complex requirement of flexible task and dexterous teleoperation,robot multi-fingered dexterous hand, which has similar structure with human, is always an importantresearch aspect of robot. Furthemore, due to the limitations of the development of artificial intelligencetheory, computer-controlled technology, sensors and other supporting technologies, it is too difficult tomake the dexterous hand completely autonomous work in unstructured environment. Therefore, theapplication of master-slave control technology to teleoperate dexterous hand has also been researched.This thesis researches multi-fingered dexterous hand driven by ultrasonic motors (USMs) and itsmaster-slave control system.To conclude, main contributions of this dissertation are as follows.
     1. On the basis of analyzing existing robot dexterous hands and physiological structure of humanhand, a humanoid multi-fingered dexterous hand driven by ultrasonic motors is designed which is closeto human hand in the aspects of size, weight and degree of freedom.
     2. The robot D-H parameter method is applied to build kinematics model of the dexterous hand. Byreferring to the joint quadratic coupling relation of human finger, a kind of fast inverse kinematicsalgorithm, which consists of analytical and numerical methods, is proposed to solve the redundancyproblem of single finger, and the simulation is conducted. Considering the joints motion couplingproblem brought of the tendon transmission mode, mapping equations between joint space and drivingspace is established to realize motion control of dexterous finger.
     3. Multifingered grasping model under the teaching mode is built. The concept of contact safetymargin is proposed according to the experience of human grasping, and the nonlinear optimizationmodel of internal force with contact safety margin is also built by modifying constraint condition offriction cone, and the corresponding contact force is also obtained. In order to improve the graspingperformance, by taking object pose parameters as variables, the multi-objective optimization model ofgrasping is built based on the performance indices including position-grade and relative loadingcapability in joint space of robot hand. Then, a three-fingered robot hand grasping object is calculatedand analyzed, and multi-objective particle swarm optimization algorithm is applied to plan the objectpose while a set of non-dominated solutions is also obtained. The results demonstrate the proposedmethod can efficiently improve grasping performance under the condition of safe grasping.
     4. Two different types of master hand: wearable passive force feedback master hand and desktopactive force feedback master hand are developed, and the former one is conducted on the kinematics and dynamics optimization design. Then, the control system including hardware and software is establishedbased on DSP host controller. Moreover, the PID+Bang-Bang technology is applied to achievetrajectory tracking control in joint space and Cartesian space, and the fingertip contact force control isimplemented based on impedance control strategy, and frequency response test is also carried out. Inorder to measure the performance of the two developed master hands, experiments about master-slavecontrol and force feedback are respectively conducted.
     5. The performance and stability of bilateral teleoperation system are easily degraded by time delayand uncertainty factors. In order to solve this problem, a new control structure is proposed concerningdifferent task characteristics of master and slave sides. Because the master-side is vulnerable todisturbance in the realization of force feedback, a kind of nonlinear disturbance observer is designed foronline estimate and compensation. At the slave-side, impedance control based on sliding mode isapplied to ensure precise position tracking and desired interacting with the environment. The Liewellynabsolute stability criterion is adopted to derive stability condition and parameter selection criteria undera time delay. Finally, the proposed method is validated by experiments with a single-DOF teleoperationplatform, and the results show that the proposed method can improve operational performance whilehaving good robustness.
引文
1. G.Hirziger, B.Brunner, K.Landzettel, et al. Space-Robotics:DLR’s telerobotic concepts,lightweight arms and articulated hands. Autonomous Robot,2003(14):127~145
    2. I.Yamano, T.Maeno. Five-fingered Robot Hand using Ultrasonic Motors and ElasticElements. Proceedings of the2005IEEE International Conference on Robotics andAutomation Barcelona, Spain, April2005:2684-2689.
    3. M.T.Mason, J.K.Salisbury. Robot Hands and the Mechanics of Manipulation. MIT Press,Cambridge, USA,1985:3~93
    4. S.C.Jacobsen, J.E.Wood, D.F.Knutti, et al. The UTAH/MIT Dexterous Hand: Work inProgress. The International Journal of Robotics Research.1984,3(4):21~50
    5. C. S. Lovchik, M. A. Difler. The Robonaut Hand: A Dextrous Robotic Hand for Space.Proceedings of the IEEE International Conference on Robotics and Automation. Detroit,Michigan.1999:907~912
    6. Shadow Robot Company. Developments in Dextrous Hands for Advanced Applications.Proceedings of the IEEE World Automation Congress.2004:123~128
    7. G. Hirzinger, M. Fischer, B. Brunner, et.al. Advances in Robotics: The DLR Experience.The International Journal of Robotics Research.1999,18(1):1064~1087
    8. S.Haidacher, J.Butterfass, M. Fischer, et al. DLR Hand II: Hard and Software Architecturefor Information Processing, Proceedings of the2003International Conference on Roboticsand Automation.2003:684~689
    9. T. Mouri, H. Kawasaki, K. Yoshikawa, et al. Anthropomorphic Robot Hand: Gifu hand III.Proceedings of the2002IEEE ICCA.2002:1288~1293
    10. Y. Zhang, Z. Han, H. Zhang, et al. Design and control of the BUAA four-fingered hand.Proceedings of the2001IEEE International Conference on Robotics&Automation,2001:2517~2522
    11. X. H. Gao, M. H. Jin, L. Jiang, et al. The HIT/DLR Dexterous Hand: Work in Progress.Proceeding of the2003IEEE International Conference on Robotics&Automation, Taipei.2003:3164~3168
    12.刘宏, G. Hirziger.智能机器人灵巧手的研究,西安交通大学学报,2003,37(4):331~337
    13. J. W. Jameson, L. J. Leifer. Automatic Grasping: An Optimization Approach. IEEE Trans.Systems, Man, and Cybernetics,1987, SMC-17(5):806-814.
    14. M.R.Cutkosky. On Grasp Choice, Grasp Models, and the Design of Hands forManufacturing Tasks, IEEE Transactions on Robotics and Automation,1989,5(3):269-279.
    15. S.Stansfield. Robotic Grasping of a Unknown Objects: A Knowledge-based Approach, Int.Journal of Robotics Research,1991,10(4):314-326.
    16. T.H.Speeter. Primitive based control of the Utah/MIT dextrous hand, IEEEInternational Conference on Robotics and Automation, Sacramento, CA, USA,1991:866-877
    17. S.B.Kang, K. Ikeuchi. Toward Automatic Robot Instruction from Perception-TemporalSegmentation of Tasks from Human Hand Motion, IEEE Transactions on Robotics andautomation,1995, l l(5):670-681.
    18. Y. Uno, N. Fukumura, R. Suzuki, et al. A computational model for recognizing objects andplanning hand shapes in grasping movements. Neural Networks,1995,8(6):839-851.
    19.熊蔡华.机器人多指手的抓取规划及操作实验的研究,华中理工大学博士学位论文,1998.
    20.刘杰,张玉茹.基于高斯混合模型的机器人多指灵巧手抓持分类器的实现,机器人,2003,25(3):259-263.
    21. M. T. Mason, J. K. Salisbury. Robot hands and the mechanics of manipulationM.S.1.: MITPress,1985.
    22. B. Misra, N. Silver. Some discussion of static gripping and its stability. IEEE Trans. Sys.Man Cybernet.1989,19(4):783-796.
    23. T. Yoshikawa. Manipulability of robotic mechanisms. Int. J. Robot. Res.1985a.4(2):3-9.
    24. J. K.Salisbury, J. J. Craig. Articulated hands: Force control and kinematic issues. Int. J.Robot. Res.1982.1(1):4-17.
    25. Z. Li, S. S. Sastry. Task oriented optimal grasping by robot hand. Proc. IEEE Int. Conf.Robotics and Automation,1987:389-394.
    26. A. Liegeois. Automatic supervisory control for the configuration and behavior ofmultibody mechanism. IEEE Trans. Sys. Man Cybernet.1977. SMC-7(12):842-868.
    27. S. L.Chiu. Control of redundant manipulators for task compatibility. Proc. IEEE Int.Conf.Robotics Automation.1987:1718-1724.
    28. Z.Li, S. S. Sastry. Task oriented optimal grasping by multifingered robot hands. IEEETrans. Robot. Automation,1988. RA-4(1):32-44.
    29. S. L. Chiu. Task compatibility of manipulator postures. Int. J. Robot. Res.1988.7(5):13-21.
    30. T. Yoshikawa. Dynamic manipulability of robot manipulators. Int. J. Robot. Sys.1985b.2(1):113-124.
    31. J. Kerr, B.Roth. Analysis of multifingered hands. Int. J. Robot. Res.1986.4(4):3-17.
    32. W.Holzmann, J.M.McCarthy. Computing the friction forces associated with three-fingeredgrasps. IEEE Trans. Robot. Automation.1985, RA-1(4):206-210.
    33. V. Nguyen. Constructing stable grasps. Int. J.Robot. Res.1989.8(1):26-37.
    34. Z. Li, S. S. Sastry. Grasping and coordinated manipulation by a multifingered robot hand.Int. J. Robot. Res.1989.8(4):33-50.
    35. J. W. Jameson, L. J. Leifer. Quasi-static analysis: A method for predicting grasp stability.IEEE Int. Conf. Robotics and Automation, San Fran-cisco. April,1986:876-883.
    36. H. Hanafusa, H. Asada. Stable prehension by a robot hand with elastic fingers. Proc.7thISIR, Tokyo.1977a:361-368.
    37. V. Nguyen. Constructing stable grasps. Int. J. Robot. Res.1989.8(1):26-37.
    38.王国庆,张启先,李大寨等.基于抓持稳定度的多指灵巧手抓持控制.航空学报,1997,18(3):294-298.
    39.何永强.多指灵巧手控制研究.博士学位论文.北京:北京航空航天大学机械设计及理论,2002.
    40. Y. C. Park, G. P. Starr. Grasp Synthesis of Polygonal Objects Using a Three-Fingeredhand, Int. Journal of Robotics Research,1992,11(3):163-184.
    41. K. Woelfl, F. Pfeiffer. Grasp Strategies for a Dexterous Robotic Hand, Proc. of theIEEE Int. Con. On Robotics and Automation,1992:366-373.
    42.李继婷,张玉茹,郭卫东.机器人多指手灵巧抓持规划.机器人,2003,25(5):409-413.
    43.熊蔡华,戴广宏,张传立等.机器人多指手抓取的布局规划及其性能指标.江汉石油学院学报,1997,19(1):85-88.
    44.杨洋,张启先.多指灵巧手基于广义力椭球的最优抓持规划.机械科学与技术,2001,20(4):547-549.
    45.秦志强,机器人多指操作的理论和实践研究,华中理工大学博士学位论文,1998.
    46. S.B.Kang, K.Ikeuchi. Toward Automatic Robot Instruction from Perception-Temporal Segmentation of Tasks from Human Hand Motion, IEEE Transactions onRobotics and automation,1995, l l(5):670-681.
    47. M. Fischer, V. D. P. Smagt, G. Hirzinger. Learning Techniques in a Dataglove BasedTelemanipulation System for the DLR hand, IEEE International Conference onRobotics and Automation, Leuven, Belgium,1998:1603-1608.
    48. C.Lee. Learning Reduced-Dimension Models of Human Actions, PhD DissertationCMU-RI-TR-00-17, Pittsburgh, PA, Robotics Institute, Carnegie Melon University,2000
    49. W. B. Griffin. Sharing control for dexterous telemanipulation with haptic feedback. PhDDissertation, Stanford university,2003.
    50.李继婷,张玉茹,张启先.人手抓持识别与灵巧手的抓持规划.机器人,2002,24(6):530-534
    51.刘杰.基于数据手套的灵巧手抓持规划与仿真,北京航空航天大学博士学位论文,2003.
    52.高松海.遥控机器人.北京:原子能出版社,1981
    53. C. A. Avizzano, F. Bargagli, A. Frisoli, et al. The Hand Force Feedback: Analysis andControl of a Haptic Device for the Human Hand. IEEE International Conference onSystems, Man and Cybernetics,2000, vol.2:989-994
    54. http://www.percro.org/index.php?pageId=HFF&PHPSESSID=e5c577ebb8687a3293a2f74d6145866d&page=desc_0
    55. S. Nakagawara, H. Kajimoto, N. Kawakami, et al. An Encounter-Type Multi-FingeredMaster Hand Using Circuitous Joints. IEEE International Conference on Robotics andAutomation,2005:2667-2672
    56. H. Kawasaki, K. Nakayama, G. Parker. Teaching for multi-fingered robots based onmotion intention in virtual reality. IEEE International Conference on IndustrialElectronics, Control and Instrumentation,2000, vol.1:428-433.
    57. L.R.P. Force Feedback Data Glove EB/OL.2008-08-03. http://www. caip. rutgers. Edu/~bouzit/lrp/glove.html
    58. M. Bouzit, G. Burdea, G. Popescu, et al. The Rutgers Master II—New designforce-feedback glove. IEEE/ASME Transactions on Mechatronics,2002,vol.7:256-263
    59. W. Chou, T. Wang, L. Hu. Design of data glove and arm type haptic interface. Proceedings11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems,2003:422-427
    60.高龙琴.力反馈数据手套与遥操作机器人系统研究.东南大学博士学位论文.2006.
    61.孙中圣,包钢,李小宁.影响数据手套力反馈的因素分析.第五届全国流体传动与控制学术会议中国航空学会与气动学术会议,沈阳,2008:112-115.
    62.原魁,朱海兵,杜秀清.一种虚拟现实系统接触交互接口.中国体视学与图像分析.2001,6(3):153-156.
    63. T. H. Massie, J. K. Salisbury. The PHANToM haptic interface: a device for probing virtualobjects.Proceedings of the ASME Dynamic Systems and Control Division.Chicago:ASME,1994:295-301.
    64. S. Walairacht, Y. Koike, M. Sato. A new haptic display for both-hands-operation:SPIDAR-8. IEEE International Symposium on Intelligent Signal Processing andCommunication Systems,1999:569-572
    65. H. Kawasaki, T. Mouri, et al. Development of five-fingered haptic interface: HIRO-II.Proceedings of the2005international conference on Augmented tele-existence,2005:209-214
    66. A. K. Wright, M. M. Stanisic. Kinematic mapping between the EXOS Handmasterexoskeleton and the Utah/MIT dextrous hand. IEEE International Conference on SystemsEngineering, Pittsburgh, PA, USA,1990:101-104.
    67. G. Casiez, P. Plenacoste, C. Chaillou, et al. The DigiHaptic, a New Three Degrees ofFreedom Multi-finger Haptic Device. In Proceedings of Virtual Reality InternationalConference,2003:35–39
    68. http://www.forcedimension.com./products#omega.x
    69. B. Hannaford. Stability and performance tradeoffs in bilateral telemanipulation. IEEEInternational Conference on Robotics and Automation,1989:1764-1767.
    70. R. J. Anderson, M. W. Spong. Bilateral control of teleoperators with time delay. IEEETransactions on Automatic control,1989,34(5):494-501.
    71.王永,谢圆,周建亮.空间机器人大时延遥操作技术研究综述.宇航学报,2010,31(2):299-306.
    72. G. Niemeyer, J. J. E. Slotine. Stable adaptive teleoperation. Oceanic Engineering, IEEEJournal of,1991,16(1):152-162.
    73. N. A. Tanner, G. Niemeyer. Online tuning of wave impedance in telerobotics. IEEEInternational Conference on Robotics, Automation and Mechatronics,2004.
    74. C. Benedetti, M. Franchini, P. Fiorini. Stable tracking in variable time-delay teleoperation.Proceedings of the IEEE/RSJ International Conference on Intelligent Robots andsystems,2001.
    75. D. A. Lawrence. Stability and transparency in bilateral teleoperation. IEEE Transactionson Robotics and Automation,1993,9(5):624-637.
    76. G. M. H. Leung, B. A. Francis, J. Apkarian. Bilateral controller for teleoperators with timedelay via μ-synthesis. IEEE Transactions on Robotics and Automation,1995,11(1):105-116.
    77.宋爱国,黄惟一.空间遥控作业系统的自适应无源控制.宇航学报,1997,18(3):26-32.
    78. H. C. Cho, J. H. Park. Stable bilateral teleoperation under a time delay using a robustimpedance control. Mechatronics,2005,15(5):611-625.
    79. T. B. Sheridan.Space teleoperation through time delay:Review and prognosis.IEEETransactions on Robotics and Automation,1993,9(5):592-606.
    80.张立彬等,机器人多指灵巧手及其驱动系统研究的现状,农业工程学报,2004,20(3):271~275
    81.赵淳生.面向21世纪的超声电机技术.中国工程科学,2002,4(2):86-91
    82. D. J. Sturman, D. Zeltzer. A Survey of Glove-based Input. IEEE Computer Graphics&Applications, Media Lab. Massachusetts Institute of Technology, Cambridge, Mass.Jan.1994:30~39.
    83. A. Hollister, W. L. Buford, L. M. Myers, et al, The axes of rotation of the thumbcarpometacarpal joint. Journal of Orthopaedic Research,1992:454-460
    84.邢仁涛,孙志峻,赵淳生.应用超声电机的多关节机器人的设计与分析,振动、测试与诊断,2005,25(3):1-4
    85.熊有伦.机器人技术基础.华中科技大学出版社,1996:89~92
    86. R. Dubey, J. Y. S. Luh. Performance measures and their improvement for redundantrobots. robotics: theory and application, edit by Paul and Toumi, California, Dec.1986
    87. C. S. Lin, P. R. Chang. Joint Trajectory of Mechanical Manipulators for Cartesian PathApproxination. IEEE Transactoins on Systems, Man. And Cybernetics. Vol. SMC-13,1983:1094-1102.
    88.郭立新,赵明扬,张国忠.空间冗余度机器人最小关节力矩的轨迹规划.东北大学学报(自然科学版),2000,21(5):512-515
    89. J. M. Hollerbach, K. C. Suh. Redundancy resolution of manipulator through torqueoptimization. IEEE J. of Robotics and Automation,1987,3(4):308-316
    90. Y. Ueda,T. Maeno.Development of a mouse-shaped haptic device with multiple fingerinputs. IEEE/RSJ International Conference on Intelligent Robots and Systems.,Japan,2004:2886-2891.
    91.姜力,刘宏.具有连杆耦合机构的灵巧手指逆运动学.哈尔滨工业大学学报,2007,39(3):394-397.
    92.蒋金山,何春雄,潘少华.最优化计算方法.广州:华南理工大学出版社,2007.
    93.周双林,邹慧君,郭为忠,等.平面闭链五杆机构柔性工作空间的研究.机械工程学报,2000,36(11):10-l5.
    94.张立杰,宗家富.球面3自由度串联机器人工作空间的研究.机械工程学报,2000,36(10):104-107.
    95. M. Ceccarelli, A. Vinciguerra. On the workspace of general4R manipulators.InternationalJournal of Robotics Research,1995,4(2):152-160.
    96.刘成良,张凯,付庄,等.其于计算机图形学的机器人臂部构型分析及工作空间仿真研究.机电工程,2002,19(3):44-48.
    97.曹毅,于心俊,杨冠英.应用数值解析结合法求解机器人工作空间体积.机械传动,2007,31(3):10-12.
    98. M.理查德,李泽湘.机器人操作的数学导论.北京:机械工业出版社,1998.
    99. C. H. Xiong, Y. L. Xiong. Stability index and contact configuration planning formultifingered grasp. Robotic Systems.1998,15(4):183-190
    100.熊有伦.点接触约束理论与机器人抓取的定性分析.中国科学(E辑),1994,24(8):874-883.
    101. A. Bicchi, V. Kumar. Robotic grasping and contact: A review. In proc. of2000IEEE Int.Conf. on Robotics and Automation,2000:348-353.
    102.莫海军,黄平.基于最大力螺旋多指手抓取规划.机械工程学报,2009,45(3):258-262.
    103.吴玉光,戚海永.多边形对象四指抓取规划方法.中国机械工程,2006(zl):82-85.
    104.李家炜,胡海鹰,王滨,等.多指抓取内力的简单算法.自然科学进展,2005,15(6):733-738.
    105.刘庆运,岑豫皖,谢能刚,等.基于抓取稳定性的手指接触力规划算法.机械工程学报,2010,46(7):57-62.
    106.王滨,李家炜,刘宏.机器人多指手的优化抓取力计算.吉林大学学报:工学版,2008,38(1):178-182.
    107. R. S. Johansson, R. Riso, C. Hager, et al. Somatosensory control of precision grip duringunpredictable pulling loads-I. Changes in load force amplitude. Experimental BrainResearch,1992,89(1):181-191.
    108. A. Bicchi. On the closure properties of robotic grasping. The International Journal ofRobotics Research,1995,14(4):319-334.
    109.李国顺,张永德.基于抓取接近方向的机器人多指手的优化抓取.电机与控制学报,2003,7(1):62-66.
    110.李继婷.机器人灵巧手的抓持规划.北京:北京航空航天大学,2004.
    111. J. Kennedy, R. Eberhart. Particle swarm optimization. Proceedings of IEEE InremationalConference on Neural Networks, Perth, WA,1995:1942-1948.
    112. K. E. Parsopoulos, M. N. Varhatis. Particle swarm optimization method in multiobjectiveproblems. Proc. of ACM Symp.on Applied Computing, Madrid: ACM Press,2002:603-607.
    113. X. Hu,R. C. Eberhart.Multiobjective using dynamic neighborhood particle swarmoptimization. Proc.of Congress Evolutionary Computation,Honolulu,Hawaii,USA,Piscataway, NJ:IEEE Press.2002:1677-1681
    114.金欣磊.基于PSO的多目标粒子群优化算法研究及应用.杭州:浙江大学,2006.
    115. E. Masehian, D. Sedighizadeh. Multi-objective robot motion planning using a particleswarm optimization model. Journal of Zhejiang University-SCIENCE C (Computers&Electronics),2010,11(8):607-619.
    116.孙光永,李光耀,陈涛,等.多目标粒子群优化算法在薄板冲压成形中的应用.机械工程学报,2009,45(5):153-159.
    117. M. S. Reyes, C. A. Coello Coello. Improving PSO-based multi-objective optimizationusing crowding, mutation and ε-dominance. The Third International Conference onEvolutionary Multi-Criterion Optimization, Guanajuato, Mexico,2005:505–519.
    118.贾兵.超声离合器的设计及应用.南京:南京航空航天大学,2009.
    119. K. Fukusumi, M. Sakagnchi, J. Fmusbo. Basic Study on Passive Force Display.Proceedings of the43nd Annual Conference of the Institute of Systems, Control andInformation Engineers, ISCIE,1999:305-306.
    120. O. Saito, K. Komoriya, R. Mwta,“Passive Force Display with Powder Clutch”, Proc. ofthe1998JSME Conference on Robotics and Mechamnics, No.984, pp.2AII-6,1998
    121.张永德,刘廷荣.机器人多指灵巧手的结构参数优化设计.机器人,1999,21(3):234-240.
    122.张永德,刘廷荣.四自由度冗余手指的结构参数优化设计.哈尔滨工业大学学报,1999,31(6):119-122.
    123.陆富生,郝春杰,姚震.中原地区大学生手指长度的测量.河南科技大学学报:医学版,2003,21(3):185-186.
    124.郭卫东,国欣,张玉茹.2自由度触觉交互装置驱动性能分析.机械工程学报,2005,41(8):75-78.
    125.苏奎峰,吕强,耿庆锋,陈圣俭.TMS320F2812原理与开发.北京,电子工业出版社,2005
    126.赵淳生.超声电机技术与应用.北京:科学出版社,2007.
    127. M. W. Spong, S. Hutchinson. Robot Modeling and Control. John Wiley&Sons Inc,2005.
    128.杨磊.基于指尖传感器的DLR/HIT机器人灵巧手阻抗控制的研究.哈尔滨:哈尔滨工业大学,2005.
    129. H. Seraji, R. Colbaugh. Force tracking in impedance control. The International Journal ofRobotics Research,1997,16(1):97-117.
    130.李杰,韦庆,常文森,等.基于阻抗控制的自适应力跟踪方法.机器人,1999,21(1):23-29.
    131. Y. Yasuyoshi, Y. Tsuneo. Bilateral Control of Master-Slave Manipulators for IdealKinesthetic Coupling-Formulation and Experiment. IEEE Transaction on Robotics andAutomation.1994,10(5):605-620.
    132. W. H. Zhu, S. Salcudean. Stability guaranteed teleoperation: an adaptive motion/forcecontrol approach. IEEE Transactions on Automatic Control.2000,45(11):1951–1969.
    133. H. Olsson, K. J. Astrom, C. Canudas, et al. Friction models and friction compensation.European Journal of Control,1998,4(3):176-195.
    134. R. J. Anderson, M. W. Spong. Bilateral control of teleoperators with time delay. IEEETransactions on Automatic Control,1989,34(5):494-501.
    135. G. Niemeyer, J. J. E. Slotine. Using wave variables for system analysis and robot control.Proceedings of the IEEE International Conference on Robotics and Automation.Piscataway, NJ, USA: IEEE,1997:1619-1625.
    136. N. A. Tanner, G. Niemeyer. Stabilization through gyration: a wave variable approach tohigh frequency force feedback in telerobotics. Symposium on Haptic Interfaces for VirtualEnvironment and Teleoperator Systems. Alexandria, Virginia, USA,2006:153-159.
    137. Y. J. Pana, H. J. Marquez,T. Chen. Stabilization of remote control systems with unknowntime varying delays by LMI techniques. International Journal of Control,2007,79(7):752-763.
    138. Y. J. Cho, T. Kotoku, K. Tanie. Discrete-event-based planning and control of teleroboticpart-mating process with communication delay and geometric uncertainty. Proceedings ofIEEE/RSJ International Conference on Intelligent Robots and Systems, Pittsburgh, PA,USA,1995:1-6.
    139. H. C. Cho, J. H. Park. Stable bilateral teleoperation under a time delay using a robustimpedance control. Mechatronics,2005,15(5):611-625.
    140. W. H. Chen, D. J. Balance, P. J. Gawthrop, et al. A nonlinear disturbance observer forrobotic manipulators. IEEE Transaction on Industrial Electronics,2000,47(4):932-938.
    141.陈惠开,吴新余,吴叔美.现代网络分析.北京:人民邮电出版社,1992.
    142.孙志峻,黄卫清.超声电机驱动多关节机器人的类PID小波神经网络控制.机械工程学报,2009,45(3):215-221.
    143. N. Hogan. Impedance control: an approach to manipulation: parts I-III. ASME Journal ofDynamic System, Measurement and Control.1985,107(11):1-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700