通信侦察中的信号分选算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着通信技术的不断发展,日益密集的通信环境使得宽带通信侦察接收机捕获的宽频带数据中可能包含着许多具有不同特点的信号,如固定载频的常规通信信号、跳频信号、猝发信号、扫频信号、扩频信号、各种各样的人为和非人为的干扰信号等。如此多的信号交织在一起,使得感兴趣通信信号的监测难度越来越大,因此,研究如何对复杂通信环境中的各种通信信号进行分选,剔除干扰和噪声影响,发现感兴趣通信信号,并估计相应的特征参数,减轻通信侦察系统后续处理的负担,不但是一项很富有挑战性的课题,也已成为当前通信侦察领域紧迫而艰巨的任务之一。
     本文主要围绕载波频率固定的常规通信信号和跳频通信信号的分选问题进行研究,主要研究成果包括:
     首先,在推导多相DFT滤波器组的高效实现结构的基础上,讨论了原型低通滤波器对滤波器组输出噪声项的相关性影响。在噪声方差已知时,分别推导了考虑相关性的实际情况和不考虑相关性的理想情况下的虚警概率。当噪声方差未知时,提出采用单元平均(CA)、统计排序(OS)和前向连续均值删减(FCME-CA)算法进行频域检测,并推导了上述两种情况下的CA检测器的虚警概率。仿真实验表明两种不同情况下的检测性能非常接近。在实际应用中,可考虑忽略相关性对检测性能的影响。另外,上述三种检测算法的检测性能也通过仿真实验进行了比较。针对常规通信信号分选问题,提出了基于单天线接收或阵列接收的分选方法。这两种分选方法都主要由窄带信号检测、特征参数估计和窄带信号跟踪组成。在窄带信号检测中,为了降低原始双门限检测(LAD)算法的计算量,提出了一种改进的LAD算法;为了提高检测性能,将改进LAD算法与形态学处理相结合,提出了一种增强的LAD算法。在特征参数估计中,首先讨论了一种基于单天线接收的特征参数估计方法,然后考虑阵列接收情况,引入聚类分析的思想,提出了一种基于测量集分割的特征参数估计方法。在窄带信号跟踪中,首先分别讨论了基于单天线接收和阵列接收的窄带信号判决方法,然后给出了一种窄带信号库刷新方法。
     根据使用的时、频、空域信息的不同,分别提出了基于空频域信息、时频域信息和时频空域信息的跳频信号分选方法。基于空频域信息的信号分选与前述基于阵列接收的常规通信信号分选的流程非常相似,不同之处仅在于窄带信号跟踪方面。在此方法中研究了一种基于密度估计聚类的测量集分割算法和一种跳频信号跟踪方法。在基于时频域信息的信号分选中,首先提出一种基于形态学处理的时频域检测与干扰剔除算法,然后讨论了跳频信号的基本特征参数的估计方法。最后提出将基本特征参数集稀释后,采用累积差值直方图(CDIF)算法和中心时刻(CT)变换算法对每一子集中的中心时刻序列去交错,获得跳频周期的估计值。为了处理频率碰撞问题,引入空域信息,提出了基于时频空域信息的信号分选方法。这种方法与上一种分选方法仅在干扰剔除和特征参数估计中略有差异,它需首先对时频域中各连通区域对应的测量集进行分割,然后才能进行特征参数估计。在此研究了一种基于形态学分水岭聚类的测量集分割算法。
     因解决频率碰撞问题和基本特征参数集稀释问题,都可以看作是处理测量集分割问题,故提出了基于高斯混合模型的测量集分割算法。首先简单介绍了高斯混合模型和标准的期望均值最大化(EM)算法的概念,然后在基于正态性检验的EM算法基础之上,提出了一种竞争结束EM(CSEM)算法。该算法事先并不需要已知类别个数,对模型初始参数设置的稳健性,适合于分布形状为紧凑超椭球型的特征参数集。最后通过仿真实验验证了CSEM算法的有效性,并讨论了它在测量集分割中的应用。
     为了提高算法对特征参数形状和例外样本稳健性,提出了两种基于支持矢量聚类(SVC)的测量集分割算法。第一种算法是基于核参数估计的多球支持矢量聚类算法(KPMSVC),该算法是在分析扩展因子和惩罚因子对聚类结果的影响基础之上提出的。由于聚类标识在大样本情况下具有很高的运算量,故KPMSVC算法适合于小样本情况下的聚类分析。为了在大样本情况下应用SVC算法,提出了一种基于网格划分的多球支持矢量聚类算法。仿真实验验证了上述两种算法的有效性,并将它们分别应用于跳频特征参数集的稀释和解决频率碰撞问题。
With the continuous development of the communication technology, increasingly intensive communication environment makes the wideband data intercepted by wideband communication reconnaissance receiver possibly include various kinds of signals with different characteristics, such as fixed-frequency narrowband communication signal, frequency hopping signal, burst signal, sweeping frequency signal, spread spectrum signal and many kinds of artificial and non-artificial interference signals. So many interwined signals make it increasingly difficult to monitor these interested communication signals. Therefore, researching on how to sort all kinds of communication signals in complex communication environment, eliminate interference and noise, find interested communication signals, estimate the associated characteristic parameters, and reduce the further treatment burden of the communication reconnaissance system, not only is a very challenging issue, but also has become one of the urgent and difficult tasks for current communication reconnaissance area.
     This dissertation is focused on the problem of sorting fixed-frequency conventional communication signal (fixed frequency signal) and frequency hopping signal. The main achievements of this dissertation are given as follows:
     Firstly, the hardware-efficient architecture of polyphase DFT filter bank is derivated and when only white Gaussian noise is poured into the filter bank, the effect of the designed prototype low-pass filter on the correlation of the filter bank output is discussed in detail. When noise variance is known, the false alarm probabilities are obtained for two different conditions (practical condition and ideal condition), respectively. When noise variance unknown, some classical algorithms, such as cell-averaging(CA), order statistics(OS) and foreword consecutive mean excision(FCME) algorithm, are firstly proposed to performing detection in frequency domain, and then the false alarm probabilities of the CA detector are discussed under the above two different conditions. Simulated results show that the detection performance under the above two different conditions are very close to each other, which means that the correlation of the filter bank output can be ignored in practical application. Moreover, the detection performance of the above three detectors are compared by simulation.
     For the problem of sorting fixed frequency signal, two sorting methods are proposed, which are based on single antenna and array antennas, respectively. The proposed methods include three main parts: narrowband signal detection, characteristic parameter estimation, and narrowband signal tracking. In the aspect of narrowband signal detection, to reduce the computation complexity of the original localization algorithm based on double thresholding (LAD), a modified LAD algorithm is proposed. To impove the detection performance, combining the above modified LAD algorithm and morphological processing together, an enhanced LAD algorithm is proposed. For characteristic parameter estimation, a single antenna based estimation method is firstly discussed. When array antennas are used, the idea of clustering analysis is introduced and a new measurement set segmentation based estimation method is proposed. When it comes to narrowband signal tracking, two different narrowband signal decision methods are discussed and a narrowband signal library update method is studied.
     According to the time-domain, frequency-domain and spatial-domain information used in sorting methods, three frequency hopping signal sorting methods are proposed, which are based on frequency-spatial-domain(FSD), time-frequency-domain(TFD) and time-frequency-spatial-domain(TFSD) information, respectively. The FSD based signal sorting method is very similar to the above fixed frequency signal sorting method when array antennas are used. The difference between the above two methods is only in case of narrowband signal tracking. In this method, a density estimation clustering based measurement set segmentation algorithm and a frequency hopping signal tracking method are studied. For the TFD based signal sorting method, a morphological processing based time-frequency detection and interference eliminate algorihm is firstly proposed, and then a characteristic parameter estimation method is discussed. Finally, a frequency hopping period estimation method is investigated in detail, which dilutes the characteristic parameter set, and uses cumulative difference histogram (CDIF) and center time (CT) transform algorithm to deinterleave these CT sequences included in each diluted subset and estimate frequency hopping period. To solve frequency collision problem, the spatial information is introduced and a TFSD based sorting method is developed. Compared with TFD based method, the TFSD based sorting method only has small difference in the aspect of interference eliminate and characteristic parameter estimation. The last method need to segment the corresponding measurement set of each connected region in TFD, and then estimate characteristic parameters. In this method, a morphological watershed based clustering algorithm is studied.
     The problems of solving frequency collision and characteristic parameter set dilution can be regarded as processing measurement set segmentation problem. Hence, a Gaussian mixture model based measurement set segmentation algorithm is proposed. Firstly, the conception of Gaussian mixture model and standard
     expectation-maximization (EM) algorithm is simply introduced. A new competitive stop EM (CSEM) algorithm is proposed, which is on the basis of normality test based EM algorithm. The proposed algorithm does not know the model order in prior, is robust to the initialized parameters of model, and suitable for compact and hyperellipsoidal sets. At last, simulation results vertify the validity of the proposed CSEM algorithm; its application in measurement set segmentation is also discussed by simulation. To improve the robustness to outliers and the shape of characteristic parameter set, two new support vector clustering(SVC) based measurement set segmentation algorithm are developed. The first algorithm is a kernel parameter estimation based multi-sphere support vector clustering (KPMSVC) algorithm, which is proposed after carefully analyzing the effect of spread factor and penality factor on clustering results. Because of the computation complexity of cluster assignment for large sample set, the proposed KPMSVC algorithm is only suitable for small sample set. In order to apply SVC for large sample set, a statistical histogram based multi-sphere support vector clustering (SHMSVC) algorithm is proposed. Simulation results vertify the validity of the above two algorithms. The above two algorithms are also applied to solve frequency collision and characteristic parameter set dilution problems.
引文
[1]朱庆厚.无线电监测与通信侦察.北京:人民邮电出版社,2005.
    [2]楼财义,陈鼎鼎.通信电子战系统目标获取.北京:电子工业出版社, 2008.
    [3]Digital HF/VHF/UHF Monitoring direction finder R&S DDF 0xE data sheet. Rohde & Schwarz product, 2006.
    [4]Agilent E3238S signal intercept and collection system technical overview. Aligent product, 2005.
    [5]覃岭.无线电侦测中的阵列处理算法研究: [博士学位论文].成都:电子科技大学,2010.
    [6]尚海燕,水鹏朗,张守宏.基于时频形态学滤波的能量积累检测.电子与信息学报, 2007, 29(6):1416-1420.
    [7]岳喜才,张崇勋.基于Gabor谱的短波电报信号检测.数据采集与处理, 1999, 14(1):22-25.
    [8]李合生,赵明生,吴佑寿.基于小波与傅里叶变换的一类短波盲信道自适应分离算法研究,信息与控制, 2003, 32(4):331-338.
    [9]李合生,赵明生,吴佑寿.一种短波通信盲信道快速分离算法,通信学报, 2003, 24(7):59-65.
    [10]姜园.通信对抗中的现代信号处理技术应用研究:[博士学位论文].杭州:浙江大学,2004.
    [11]高倩,陈健.一种短波波段跳频信号的检测和识别新方法,电子元器件应用. 2008, 10(3):.73-78.
    [12]袁伟明,王敏,吴顺君,黄磊.一种新的LPI信号的截获方法,电波科学学报. 2005, 20(1): 73-76.
    [13]王国华,俞能海.基于快速折叠法和时频分析的LPI跳频信号截获,电子与信息学报, 2007, 29(7): 1569-1572.
    [14]张朝阳,曹千芊,陈文正.多跳频信号的盲分离与参数盲估计,浙江大学学报(工学版), 2005, 39(4): 465-470.
    [15]卢虎,史浩山,谢岩.估计跳频信号参数的多窗口迭代平滑伪WVD新算法,空军工程大学学报, 2008, 9(2): 52-55.
    [16]雷迎科,钟子发,吴彦华.基于RSPWVD高速跳频信号跳周期估计算法,系统工程与电子技术,2008, 30(5): 803-805.
    [17]Y. K. Lei, Z. F. Zhong, Y. H. Wu. A parameter estimation algorithm for high-speed frequency-hopping signals based on RSPWVD, IEEE international symposium on intelligent signal processing and communication systems, 2007, 392-395.
    [18]M. K. Xu, X. J. Ping, T. Y. Li, M. T. Xu. A new time-frequency spectrogram analysis of FH signals by image enhancement and mathematical morphology, IEEE the fourth international conference on image and graphics, 2007, 411-415,.
    [19] Z. J. Zhao, Y. Yao, J. N. Shang. Frequency hopping signals analysis based on image processing, IEEE international conference on Neural Networks and Signal processing, 2008, 560-564.
    [20]朱文贵,戴旭初,徐佩霞.一种跳频信号参数估计的方法,小型微型计算机系统,2008, 29(4):761-764.
    [21]S. Barbarossa. Parameter estimation of spread spectrum frequency hopping signals using time-frequency distributions. First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications, 1997, 4:213-216.
    [22]赵俊,张朝阳,赖利峰,曹千芊.一种基于时频分析的跳频信号参数估计方法,电路与系统学报, 2003, 8(3): 46-50.
    [23]郑文秀,赵国庆,罗勇江.跳频信号的跳速估计,系统工程与电子技术, 2006,28(10):1500-1502.
    [24]郭艺,张尔扬,沈荣骏.跳频信号时-频域分析与参数盲估计方法,信号处理, 2007, 23(2):210-213.
    [25] L. Stankovic. A method for time-frequency analysis, IEEE Transactions on Signal Processing, 1994, 42(1):225-229.
    [26]张曦,杜兴民.基于Gabor谱方法的跳频信号时频分析.数据采集与处理, 2007,22(6):150-155.
    [27]张曦,杜兴民,朱礼亚.基于重排SPWVD的跳频信号参数提取方法.计算机工程与应用,2007,43(15):144-147.
    [28] H. N. Fan, Y. Guo, F. Xin. Blind Parameter Estimation of Frequency Hopping Signals Based on Matching Pursuit. International conference on wireless information communication, networking and mobile computing, 2008, 1-5.
    [29]Y. Bin. Projection approximation subspace tracking. IEEE Transations on Signal Processing, 1995,43(1):95-107.
    [30]J. T. Guo, H. Y. Wang. Optimal kernel design and time-frequency analysis for frequency hopping signal using entropy measure, Proceedings of the 2008 IEEE international conference on Information and automation, 2008,1168-1171.
    [31]Y. Yuan, W. B. Mei, S. L. Wu. Hop period estimation for frequency hopping signals based on Hilbert-Huang transform, 2008 congress on image and signal processing,2008, 452-455.
    [32]陈旗,宋士琼,金嘉旺.低速短波非正交跳频网台信号分选技术研究,电子对抗技术, 2005,20(3): 7-21.
    [33]王玉虹,刘丽格.复杂环境下跳频网台模糊分选,无线电工程,2006, 36(4): 52-54.
    [34]王斌,陈秋华,王翠柏.基于聚类的跳频信号分选,北京邮电大学学报,2009, 32(2):80-84.
    [35]傅志中,鲜海滢.基于时频投影的跳频信号分选研究,电子测量与仪器学报,2009, 23(12): 38-43.
    [36]陈利虎,张尔扬,沈荣俊.基于优化初始聚类中心K-Mean算法的跳频信号分选,国防科技大学学报,2009, 31(2): 70-75.
    [37]邓伟,赵张宏.跳频侦察中测向技术应用探讨,通信对抗,2009,3:35-41.
    [38]王锐,徐祎.统计学习理论算法在跳频信号分选中的应用,空军工程大学学报,2010, 11(2): 67-72.
    [39]雷迎科,钟子发,郑大炜.一种短波非正交跳频网台信号分选方法研究,舰船电子工程,2006, 26(5):135-139.
    [40]陈硕,李天昀,葛临东.一种基于边缘检测的跳频检测算法研究,信息工程大学学报,2006,7(3):264-270.
    [41]翟海莹,杨小牛,王文勇.基于盲源分离的跳频网台分选,中国电子科学研究院学报, 2008, 3(4):398-402.
    [42]高峥.基于STFT的超短波跳频网台信号分选.电信技术研究,2004,3: 8-14.
    [43]杨宏娃.一种网台分选算法.通信对抗,1999,67(4):1-7.
    [44]毛国华,王可人.一种基于阵列信号处理的短波跳频信号检测方法,通信对抗, 2007, 2: 43-50.
    [45]马捷,俞有光,钟子发.一种适用于复杂电磁环境下的跳频信号快速检测方法,通信对抗,2010, 1: 28-32.
    [46]范伟.跳频信号的盲检测和参数盲估计: [博士学位论文].合肥:中国科技大学, 2005.
    [47]朱文贵.基于阵列信号处理的短波跳频信号盲检测和参数盲估计: [博士学位论文].合肥:中国科技大学, 2007.
    [48]陈利虎.跳频信号的侦察技术研究: [博士学位论文].长沙:国防科学技术大学, 2009.
    [49] J. L. Janne, J. Markku. CFAR strategies for channelized radiometer. IEEE signal processing letters, 2005, 12(1), 13-16.
    [50] J. L. Janne, J. Markku, S. Harri. Detection of frequency hopping signals with a sweeping channelized radiometer. The thirty-eighth Asilomar conference on signals, systems and computers, 2004, 2, 2178-2182.
    [51]L. E. Miller, J. S. Lee, D. J. Torrieri. Frequnecy-Hopping signal detection Using Partial bandcoverage. IEEE transactions on aerospace and electronic systems, 1993, 29(2), 540-553.
    [52]N. C. Beaulieu, W. L. Hopkins, P. J. Mclane. Interception of frequency-hopped spread-spectrum signals. IEEE Journal on Selected Areas in Communications, 1990, 8(5):853-870.
    [53] C. D. Chung. Generalized likelihood-ratio detection of multiple-hop frequency hopping signals. 1991 IEEE Military communication conference, 1991, 2:527-531.
    [54] N. G. Waltz, N. C. Beaulieu. Noncoherent interception receivers for fast frequency-hopped spread spectrum signals. IEEE 1994 Canadian Conference on Electrical and Computer Engineering, 1994, 1:348-351.
    [55] J. J. Lehtomaki. Maximum based detection of slow frequency hopping signals[J]. IEEE Communications Letters, 2003, 7(5):201-203.
    [56] L. W. Nemsick, E. Geraniotis. Adaptive multichannel detection of frequency-hopping signals. IEEE Transactions on Communications, 1992, 40(9):1502-1511.
    [57] B. Levit, M. Simon, A. Polydoros. Partial-band detection of frequency-hopped signals. IEEE Global telecommunication conference, 1993, 4:70-76.
    [58] L. E. Miller, J. S. Lee, D. J. Torrieri. Frequency-hopping signal detection using partial band coverage. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(2):540-553.
    [59] A. Polydoros, K. T. Woo. LPI detection of frequency-hopping signals using autocorrelation techniques. IEEE Journal on Selected Areas in Communications, 1985, 3(5):714-726.
    [60] K. Kim, J. A. Lee. M-hop interception of FH/LPI signals using autocorrelation techniques. Fourth IEEE region 10 conference,TENCON’89 , 1989.266-269.
    [61]X. D. Pei, J. M. Kuang, Z. W. He. Detection of FH signals based on Sliced Instantaneous Higher-order Moment. IEEE International conference on signal processing, 2004, 89-92.
    [62]J. J. Lehtomaki, M. Juntti, H. Saarnisaari. Detection of frequency hopping signals with a sweeping channelized radiometer, IEEE the thirty-eighth International conference on signals systems and computers, 2004, 2:2178-2182.
    [63]H. N. Fan, Y. Guo, Y. H. Xu. A novel algorithm of blind detection of frequency hopping signal based on second-order cyclostationarity, 2008 Congress on Image and Signal processing, 2008, 5:399-402.
    [64]C. D. Chung, A. Polydoros. Detection and hop-rate estimation of random FH signals via autocorrelation technique. 1991 IEEE military communications conference,1991. 345-349.
    [65]C. D. Chung, A. Polydoros. Parameter estimation of random FH signals using autocorrelation techniques. IEEE Transactions on Communications, 1995, 43 (2) :1097-1106.
    [66]M. Janani, V. T. Vakili, H. Jamali. The modified autocorrelation technique for parameter estimation of random FH signals. International conference on signal processing proceeding, 1998,188-190.
    [67] X. Q. Liu, D. S. Nicholas, A. Swami. Blind High-Resolution Localization and Tracking of Multiple Frequency Hopped Signals. IEEE Transactions on Signal Processing, 2002, 50(4):889-901.
    [68] X. Q. Liu, D. S. Nicholas, A. Swami. Joint hop timing and DOA estimation for multiple noncoherent frequency hopped signals. IEEE Transactions on Signal Processing, 2002, Sensor Array and Multichannel Signal Processing Workshop Proceedings, 2002:164-168.
    [69] X. Q. Liu, D. S. Nicholas, A. Swami. Code-blind reception of frequency hopped signals over multipath fading channels. IEEE international conference on acoustics, speech, and signal processing, 2003, 4: 592-595.
    [70] X. Q. Liu, D. S. Nicholas, A. Swami. Joint signal parameter estimation of wideband frequency hopped transmissions using 2-D antenna arrays. IEEE workshop on signal processing advances in wireless communications, 2003, 624-628.
    [71] X. Q. Liu, D. S. Nicholas, A. Swami. Joint Hop Timing and Frequency Estimation for Collision Resolution in FH Networks. IEEE Transactions on Wireless Communications, 2005, 4(6):3063-3074.
    [72]X. Q. Liu, J. L. Li, X. L. Ma. An EM Algorithm for Blind Hop Timing Estimation of Multiple FH Signals Using an Array System with Bandwidth Mismatch,IEEE Transactions on Vehicular Technology, 2007,56(5): 2545-2554.
    [73]X. Q. Liu, Z. Li, X. L. Ma. An EM algorithm for hop timing estimation in FH networks with frequency collisions, 2004 IEEE military communication conference,2004, 1635-1639.
    [74]R&S AMMOS GX403DT firmware module-Automatic detection and Monitoring of fixed-frequency emissions HF/VHF/UHF data sheet. Rohde & Schwarz product, 2008.
    [75]ARS8000 automatic reconnaissance system date sheet, Medav GmbH product, 2009.
    [76]F. German, K. Martin, R. Jurgen. HF signal surveillance: signal detection, classification and parameter estimation. Military communication conference, 1994, 3: 755-759.
    [77]P. Ahlemann, M. Kueckenwaitz, F. Quint. An automated monitoring system for the HF band. Military communication conference, 2001, 1:139-142.
    [78]F. Quint, R. Jurgen, R. Holger. Emitter detection and tracking algorithm for a wide band multichannel direction finding system in the HF band. Military communication conferenceproceedings, 1999, 1: 212-216.
    [79]R. Frank, K. Kuno, Z. C. Hans. Feature extraction for HF band emitter location. MILCOM 2002. Proceedings, 2002, 1: 131-135.
    [80]R. Frank, K. Kuno, Z. C. Hans. HF-band emitter detection and segmentation based on image processing. Military communication conference proceedings, 2001, 1: 428-431.
    [81]F. J. Harris. On the use of windows for harmonic analysis with the discrete Fourier transform, Proc. IEEE, 1978, 66(1): 51-83.
    [82]何子述,夏威等.现代数字信号处理及其应用.北京:清华大学出版社,2009.
    [83]S. L. Lu. Application of DFT filter bank to power frequency harmonic measurement. IEE proceedings on Generation, Transmission and Distribution, 2005, 152(1):132-136.
    [84]G. L. Risueno, J. Grajal, A. S. Osorio. Digital channelized receiver based on time frequency analysis for signal interception. IEEE Transactions on aerospace and electronic systerms, 2005, 41(3): 879-898.
    [85]D. R. Zahirniak, D. L. Sharpin, T. W. Fields. A hardware-efficient, Multirate, Digital Channelized receiver architecture. IEEE transactions on aerospace and electronic systems, 1998, 34(1): 137-151.
    [86]Behrouz Farhang-Boroujeny. Filter bank spectrum sensing for cognitive radios. IEEE transactions on signal processing, 2008, 56(5): 1801-1811.
    [87]H. C. So, Y. T. Chan, Q. Ma, P. C. Ching. Comparison of various periodograms for detection and frequency estimation. IEEE transactions on aerospace and electronic systems, 1999, 35(3): 945- 952.
    [88] F. M. Ahmed, K. A. Elbarbary, A. R. H. Elbardawiny. Detection of sinusoidal signals in frequency. International conference on Radar, 2006, 1-5.
    [89] Y. T. Chan, Q. Ma, H. C. So, R. Inkol. Evaluation of various FFT methods for single tone detection and frequency estimation. IEEE 1997 Canadian conference on Electrical and Computer engineering, 1997, 1: 211-214.
    [90]J. R. Williams, G. G. Ricker. Signal detectability performance of optimum Fourier receivers. IEEE Transactions on audio and electroacoustics, 1972, 20(4):264-270.
    [91]B. H. Maranda. On the false alarm probability for an overlapped FFT processor. IEEE Transactions on aerospace and electronic systems, 1996, 32(4):1452-1456.
    [92]S. C. Wang, R. Inkol, S. Rajan, F. Patenaude. Detection of narrowband signals through the FFT and Polyphase FFT filter banks: Noncoherent versus coherent integration. IEEE transactions onInstrumentation and measurement, 2010, 59(5): 1424-1438.
    [93] S. C. Wang, R. Inkol, S. Rajan, F. Patenaude. Performance analysis of the FFT filter bank-based summation CFAR detector. In Proc. I2MTC, 2008, 452-456.
    [94]S. C. Wang, R. Inkol, S. Rajan, F. Patenaude. On the performance gain of the FFT-filter-bank-based summation and majority CFAR detectors. IEEE transactions on Instrumentation and measurement, 2009, 58(5): 1778-1788.
    [95] S. C. Wang, R. Inkol, S. Rajan, F. Patenaude. FFT filter-bank-based wideband detection: Coherent vs. non-coherent integration. In Proc. I2MTC, 2009, 1327-1331.
    [96]S. Wang, R. Inkol. Theoretical performance of the FFT filter bank-based summation detector. DRDC, Ottawa, ON, Canada, 2005, TR 2005-153.
    [97]S. Wang, R. Inkol, S. Rajan. A formula for the probability of false alarm for the FFT filter bank-based J-out-of- L CFAR detector. In Proc. MWSCAS, 2005, 728–731.
    [98]S.Wang, R. Inkol, S. Rajan, F. Patenaude. Threshold computation for the summation CFAR detector: Non-overlapped versus overlapped FFT processing. In Proc. 5th IASTED Int. Conf. Circuits, Signals, Syst., 2007, 115–119.
    [99]何友,关键,彭应宁等.雷达自动检测与恒虚警处理.北京:清华大学出版社,1999.
    [100]Y. D. Lue, C. He, J. S. Li. A new frequency domain CFAR algorithm in radar reconnaissance receiver. ICSP2008, 9th International conference on signal processing, 2008, 2388-2391.
    [101]G. M. Dillard, B. F. Summers. Mean-level detection in the frequency domain. IEE proceeding on Radar, Sonar navigation, 1996, 143(5): 307-312.
    [102]S. Kay. Adaptive detection for unknown noise power spectral densities. IEEE transactions on signal processing, 1999, 47(1): 10-21.
    [103]陈良均,朱庆棠.随机过程及应用.北京:高等教育出版社, 2003.
    [104]廖雨宇,贾可新,何子述.噪声响应相关性对CA-CFAR检测器的影响.计算机工程与应用. 2011,已录用.
    [105]J. J. Lehtomaki, M. Juntti, H. Saarnisaari. CFAR strategies for channelized radiometer, IEEE signal processing letters,2005, 12(1): 13-16.
    [106]R. J. Kenefic. An algorithm to Partition DFT data into sections of constant variance. IEEE transactions on aerospace and electronic systems, 1998, 34(3):789-795.
    [107]Z. Wang, P. Willett, R. Streit. Detection of long-duration Narrowband processes.IEEE transactions on aerospace and electronic systems, 2002, 38(1): 211-227.
    [108]Steven M. Kay著,罗鹏飞,张文明等译.统计信号处理基础——估计与检测理论.北京:电子工业出版社, 2003.
    [109]J. A. Young, J. S. Lehnert. Analysis of DFT based frequency excision algorithms for direct- sequence spread spectrum communications. IEEE transactions on communications, 1998, 46(8): 1078-1087.
    [110]P. T. Capozza, B. J. Holland, T. M. Hopkinson. A single-chip narrow-band frequency domain excisor for a Global Positioning System (GPS) receiver. IEEE Journal of Solid-State Circuits, 2000, 35(3): 401-411.
    [111]P. Henttu, S. Aromma. Consecutive Mean Excision algorithm. IEEE 7th International symposium on spread spectrum technology and application,2002, 450-454.
    [112]H. Saamisaari, P. Henttu. Impulse detection and rejection methods for radio systems. In proceedings of the IEEE Military communications conference, 2003, 1126-1131.
    [113]H. Saamisaari. Consecutive Mean excision algorithms in narrowband or short time interference mitigation. In position location and Navigation symposium PLNS 2004, Monterey, CA, USA, 2004, 447-454.
    [114]J. Vartiainen, M. Alatossava, J. Lehtomaki, H. Saarnisaari. Interference suppression for measured radio channel data at 2.45GHz. IEEE 17th international symposium on personal, indoor and Mobile radio communication, 2006.
    [115] J. Vartiainen, J. Lehtomaki, H. Saarnisaari, P. Henttu. Estimation of signal detection threshold by CME algorithms. IEEE 59th Vehicular Tecnology conference, 2004, 3:1654-1658.
    [116]B. Shen, C. S. Zhao, L. Y. Huang. Wideband primary user signal identification approaches for cognitive MB-OFDM UWB systems. IEEE 3rd international conference on Convergence and Hybrid Information Technology, 2008, 848-853.
    [117]J. Vartiainen, J. J. lehtomaki, H. Saarnisaari. Double threshold based narrowband signal extraction. IEEE 61st international conference on vehicular technology, 2005, 2: 1288-1292.
    [118]J. Vartiainen, H. Saarnisaari, J. J. lehtomaki. A blind signal localization and SNR estimation method. In proceedings of the IEEE Military communications conference, 2006, 1: 23-25.
    [119]C. J. Xia, J. P. An, Y. Z. Guo. Improved suppression algorithm of digital narrowband interference in FFT domain. IEEE international conference on Wireless Communications, Networking and Mobile Computing, 2007, 1036-1039.
    [120]J. Vartiainen, H. Sarvanko, J. Lehtomaki. Spectrum sensing with LAD-based method. IEEE 18th international symposium on Personal, Indoor and Mobile Radio Communications,2007,1-5.
    [121]J. Lehtomaki, J. Vartiainen, M. Juntti, H. Saarnisaari. Analysis of the LAD methods. IEEEsignal processing letters , 2008, 15, 237-240.
    [122]J. Lehtomaki, J. Vartiainen, M. Juntti. Combined wideband and narrowband signal detection for spectrum sensing. IEEE 2nd international workshop on Cognitive Radio and Advanced Spectrum Management, 2009, 91-95.
    [123]J. Lehtomaki, S. Salmenkaita, J. Vartiainen. Measurement studies of a spectrum sensing algorithm based on double thresholding, IEEE 2nd international workshop on Cognitive Radio and Advanced Spectrum Management, 2009 , 69-73.
    [124]P. Soille. Morphological image analysis: principles and applications. Springer, New York, USA, 2nd edition, 2002.
    [125]K. X. Jia, Z. S. He. Narrowband signal localization based on enhanced LAD method. Journal of communications and networks, 2011, 13(1): 6-11.
    [126]S. Theodoridis, K. Koutroumbas. Pattern recognition (Third edition).北京:机械工业出版社, 2006.
    [127]贾可新,蒋林鸿,何子述.基于聚类分析的常规通信信号自动分选方法,计算机应用研究,28(2): 661-664, 2011.
    [128]贾可新,何子述.复杂电磁环境中的常规通信信号的实时分选,计算机工程与应用,已录用, 2011.
    [129] R. R. Yager, D. P. Filev. Approximate clustering via the mountain method. IEEE Transactions on Systems, Man and Cybernetics, 1994, 24(8):1279-1284.
    [130]M. S. Yang, K. L. Wu. A similarity-based robust clustering method. IEEE transactions on pattern analysis and machine intelligence, 2004, 26(4):434-448.
    [131]S. Marchand-Maillet, Y. M. Sharaiha. Binary digital image processing: A discrete approach. Academic press, London, 2000.
    [132]何明浩.雷达对抗信息处理.北京:清华大学出版社, 2010.
    [133]普运伟.复杂体制雷达辐射源信号分选模型与算法研究: [博士学位论文].成都:西南交通大学, 2007.
    [134]何炜.雷达信号分选关键算法研究: [硕士学位论文].成都:电子科技大学, 2007.
    [135]H. K. Mardia. New techniques for the deinterleaving of repetitive sequences. IEE proceedings, Pt F,1989, 136(4): 149-154.
    [136]N. Kenichi, K. Masacki. Improved algorithm for estimating pulse repetition intervals. IEEE transactions on aerospace and electronic systems, 2000,36(2):409-421.
    [137]A. Mahdavi, A. M. Pezeshk. A fast enhanced algorithm of PRI transform. 2011 sixthinternational symposium on parallel computing in electronic engineering. 2011, 179-184.
    [138]梅文华,王淑波,邱永红等.跳频通信.北京:国防工业出版社, 2005.
    [139]G. Mclachlan, D. Peel. Finite Mixture Models. New York: John Wiley & Sons, 2000.
    [140]L. Xu, M. Jordan. On Convergence Properties of the EM algorithm for Gaussian Mixtures. Neural Computation, 1996, 8: 129-151.
    [141]M. A. Figueiredo, A. K. Jain. Unsupervised learning of finite mixture models. IEEE transactions on pattern analysis and Machine intelligence, 2002, 24(3): 381-396.
    [142]M. Figueiredo, J. Leitao, A. Jain. On fitting mixture models. Lecture notes in computer science, Berlin, Germany: Springer-Verlag, 1999, 1654: 54-69.
    [143]M. A. Figueiredo, A. K. Jain. Unsupervised selection and estimation of finite mixture models. Proceeding of IEEE international conference on pattern recognition, 2000: 87-90.
    [144]A. M. Martinez, J. Vitria. Learning mixture models using a genetic version of the EM algorithm.Pattern recognition letter. 2000, 21(1): 759-769.
    [145]F. Pernkopf, D. Bouchaffra. Genetic-based EM algorithm for learning Gaussian mixture models. IEEE transactions on pattern analysis and Machine intelligence, 2006, 27(8): 1344-1348.
    [146]N. Ueda, R. Nakano, Z. Ghahramani, G. Hinton. SMEM algorithm for mixture models. Neural computation, 2000, 12(9): 2109-2128.
    [147]Y. Li, L. Li. A novel Split and Merge EM algorithm for Gaussian mixture model. IEEE fifth international conference on Natural computation, Tianjin, 2009: 479-483.
    [148]N. Vlassis, A. Likas. A kurtosis-based dynamic approach to Gaussian mixture modeling. IEEE transactions on systems, man, and cybernetics-part A: systems and humans, 1999, 29(4):393-399.
    [149]N. Vlassis, A. Likas, B. Krosc. A multivariate kurtosis-based dynamic approach to Gaussian mixture modeling, intelligent autonomous systems. Comput. Sci. inst., Faculty Sci., Univ. Amsterdam, Amsterdam, The Netherlands, 2000.
    [150]C. Constantinopoulos, A. Likas. Unsupervised learning of Gaussian mixtures based on variational component splitting. IEEE transactions on Neural Networks, 2007, 18(3):745-755.
    [151]D. Ververidis, C. Kotropoulos. Gaussian mixture modeling by exploiting the Mahalanobis distance. IEEE transaction on signal processing, 2008, 56(7): 2797-2811.
    [152]A. P. Benavent, F. E. Ruiz, J. M. Saez. Learning Gaussian mixture models with entropy-based criteria. IEEE transactions on neural networks, 2009, 20(11): 1756-1771.
    [153]C. K. Reddy, H. D. Chiang, B. Rajaratnam. TRUST-TECH-Based Expectation Maximizationfor learning finite mixture models. IEEE transactions on pattern analysis and machine intelligence, 2008, 30(7): 1146-1157.
    [154]J. Liu, P. Y. Jim, L. J. Li, Z. Q. Luo. Online clustering algorithms for radar emitter classification. IEEE transactions on pattern analysis and machine intelligence, 2005, 27(8): 1185-1196.
    [155]梁小筠.正态性检验.北京:中国统计出版社, 1997.
    [156]W. J. Conover著,崔恒建译.实用非参数统计(第三版).北京:人民邮电出版社,2004.
    [157]D. Wei, C. Y. Chen. Goodness-of-fit test statistics on Gaussian and exponential reliability data. IEEE transactions on reliability, 1983, 32(5):492-495.
    [158]C. M. Jarque, A. K. Bera. A test for normality of observations and regression residuals. International Statistical Review, 1987, 55(2):163-172.
    [159]P. Deb, M. Sefton. The distribution of a Lagrange multiplier test of normality. Economics Letters, 1996, 51:123-130.
    [161]H.W. Lilliefors. On the Komogorov-Smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association. 1967, 62: 399-402.
    [162] H.W. Lilliefors. On the Kolmogorov-Smirnov test for the exponential distribution with mean unknown. Journal of the American Statistical Association, 1969, 64: 387-389.
    [163]M. S. Weiss. Testing correlated“EEG-Like”data for normality using a modified Kolmogorov-Smirnov statistic. IEEE transactions on biomedical engineering, 1986, 33(12): 1114-1120.
    [164]B. Guner, M. T. Frankford, J. T. Johnson. A study of the Shapiro-Wilk Test for the detection of pulsed sinusoidal radio frequency interference. IEEE transactions on Geoscience and Remote sensing, 2009, 47(6):1745-1750.
    [165]P. Royston. Approximating the Shapiro-Wilk W-test for non-normality. Statistics and computing, 1992, 2:117-119.
    [166]H. E. T. Holgersson. A graphical method for assessing multivariate normality. Computational statistics, 2006, 21:141-149.
    [167]S. P. Smith, A. K. Jain. A test to determine the Multivariate Normality of data set. IEEE Transactions on pattern analysis and machine intelligence, 1988, 10(5):757-761.
    [168]A. B. Hur, D. Horn, H. T. Siegelmann, V. Vapnik. Support vector clustering. Journal of Machine Learning Research, 2001, 2:125-137.
    [169]J. C. Platt. Sequential minimal optimization: A fast algorithm for training support vectormachines, 1998.
    [170]朱雪芳.改进支持向量聚类算法的研究.计算机测量与控制, 2006, 14(12): 1732-1735.
    [171]吕常魁,姜澄宇,王宁生.一种支持向量聚类的快速算法,华南理工大学学报(自然科学版), 2005, 33(1): 6-9.
    [172]J. H. Yang, C. V. Estivill, S. K. Chalup. Support vector clustering through proximity graph modeling, Proceeding of 9th international conference on neural information processing. Singapore, 2002 :898-903.
    [173]J. Lee, D. Lee. An improved cluster labeling method for support vector clustering. IEEE transactions on pattern analysis and machine intelligence, 2005, 27(3): 461-464.
    [174]J. Lee, D. Lee. Dynamic Characterization of cluster structures for robust and inductive support vector clustering, IEEE transactions on pattern analysis and machine intelligence, 2006, 28(11): 1869-1874.
    [175]D. Lee, J. Lee. Dynamic dissimilarity measure for support-based clustering, IEEE transactions on knowledge and data engineering, 2010, 22(6):900-905.
    [176]国强,王常虹,李铮.支持向量聚类联合类型熵识别的雷达信号分选方法.西安交通大学学报. 2010, 44(8):63-67.
    [177]J. S. Wang, J. C. Chiang. A cluster validity measure with outlier detection for support vector clustering. IEEE transactions on systems, man, and cybernetics-part B: cybernetics, 2008, 38(1): 78-89.
    [178]J. C. Chiang, J. S. Wang. A validity-guided support vector clustering algorithm for identification of optimal cluster configuration. IEEE international conference on systems, man and cybernetics, 2004:3613-3618.
    [179]J. H. Chiang, P. Y. Hao. A new kernel-based fuzzy clustering approach: support vector clustering with cell growing. IEEE transactions on fuzzy systems, 2003, 11(4): 518-527.
    [180]凌萍,周春光,王喆.一种新的最小二乘支持向量聚类.计算机工程, 2009, 35(7):14-16.
    [181]L. Sun, S. Yoshida, Y. C. Liang. A novel support vector and K-means based Hybrid clustering algorithm. Proceedings of the 2010 IEEE international conference on information and automation, 2010:126-130.
    [182]F. Camastra, A. Verri. A novel kernel method for clustering. IEEE transactions on pattern analysis and machine intelligence, 2005, 27(5):801-805.
    [183]R. N. Dave, R. Krishnapuram. Robust clustering methods: A unified view. IEEE transactions on fuzzy systems, 1997, 5(2): 270-292.
    [184]A. G. Bors, N. Nasios. Kernel bandwidth estimation for nonparametric modeling. IEEE transaction on systems, man, and cybernetics-part B: cybernetics, 2009, 39(6):1543-1555.
    [185]Y. Fukuyama, M. Sugeno. A new method of choosing the number of clusters for fuzzy c-means method. Proceeding of fifth fuzzy systems symposium, 1989: 247-250.
    [186]U. Maulik, S. Bandyopadhyay. Performance evaluation of some clustering algorithm and validity indices, IEEE transactions on pattern analysis and machine intelligence, 2002, 24(12): 1650-1654.
    [187]A. M. Bensaid. Validity-guided (re)clustering with applications to image segmentation. IEEE transactions on fuzzy systems. 1996, 4(2): 112-123.
    [188]S. H. Kwon. Cluster validity index for fuzzy clustering. Electronic letters, 1998, 34(22): 2176-2177.
    [189]Y. G. Tang, F. C. Sun, Z. Q. Sun. Improved validation index for fuzzy clustering. American control conference, June 8-10,2005, Portland, USA.
    [190]K. L. Wu, M. S. Yang. A validity index for fuzzy clustering. Pattern recognition letters, 2005, 26: 1275-1291.
    [191]M. K. Pakhira, S. Bandyopadhyay, U. Maulik. Validity index for crisp and fuzzy clusters. Pattern recognition, 2004, 37:481-501.
    [192]N. Zahid, M. Limouri, A. Essaid. A new cluster-validity for fuzzy cluster. Pattern recognition, 1999, 32:1089-1097.
    [193]S. B. Cho, S. H. Yoo. Fuzzy Bayesian validation for cluster analysis of yeast cell-cycle data. Pattern recognition, 2005.
    [194]M. S. Yang, C. Y. Lai. A robust automatic merging possibilistic clustering method. IEEE transactions on fuzzy systems, 2011, 19(1): 26-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700