水工混凝土受压疲劳性能及累积损伤研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受高应力循环荷载作用的水工建筑物,例如遭受高烈度地震的混凝土坝、大功率泄洪的泄洪建筑物、受迫于机组振动的混凝土机墩、受高速水流冲击的水垫塘等,其混凝土结构内部应力场会发生剧烈变化,极易引发疲劳损伤或破坏。水工混凝土是重要建筑物,一旦失事后果不堪设想。因此,研究水工混凝土疲劳特性,确保水工建筑物长周期安全稳定运行,是一个非常具有工程意义的课题。尤其是汶川地震后,也激起了众多学者对经受地震后的水工建筑物进行震损分析的浓厚兴趣。由于使用工况、使用环境以及配合比等的不同,水工混凝土的力学特性和疲劳性能,与普通混凝土相比有着自身独特的特点。国内外,有关水工混凝土疲劳损伤的研究报道很少。为此,本文在国家自然科学基金(编号:51009074)的资助下,针对水工混凝土开展了受压疲劳性能及累积损伤研究。本文的主要试验与理论研究工作包括以下几方面:
     (1)对120个水工混凝土试件开展了抗压试验、疲劳试验及低周疲劳试验。通过对试验数据的定性分析发现,水工混凝土抗压应力应变曲线较为平缓,韧性较好,有利于抗疲劳损伤;疲劳破坏与抗压破坏的损伤机理基本相同,只是在产生裂纹的数量、分布、走向等有所差异;在给定应力水平下的疲劳寿命非常离散,需借助可靠性原理进行分析处理;疲劳最大应变、疲劳变形模量、疲劳残余应变在疲劳过程中均呈三阶段发展规律。
     (2)应用概率统计方法对疲劳寿命数据进行分析处理发现,水工混凝土疲劳寿命既接受对数正态分布,也接受三参数Weibull分布,但无论是P-N图的拟合程度和柯尔莫哥洛夫检验的效果来看,均以三参数Weibull分布为佳,且随着应力水平降低,水工混凝土疲劳寿命离散性随之加大。
     (3)通过对疲劳寿命进行可靠性分析,得到了水工混凝土的S-N曲线和P-S-N曲线方程,及其相对应的疲劳极限强度;三参数Weibull分布和对数正态分布下的S-N曲线相差不大,而在高可靠度上却差别明显,对数正态分布相对保守,从材料自身特性和损伤机理分析,宜选用三参数Weibull分布下的S-N曲线和P-S-N曲线;通过对不同混凝土的疲劳特性进行归纳分析得出,水工混凝土的疲劳性能优于普通混凝土。
     (4)利用求解三参数Weibull分布置信限的方法,得到了水工混凝土疲劳寿命在不同应力水平下的三参数Weibull分布的置信限,进一步得到水工混凝土的γ-S-N曲线和γ-P-S-N曲线及其高置信度、高可靠度的疲劳极限强度和安全寿命,对水工结构疲劳可靠性设计有参考价值。
     (5)基于原始Miner准则,建立起疲劳累积损伤极限状态方程,并用蒙特卡罗法求解动态可靠度。通过算例发现,求解得到的动态可靠度,能合理评价水工建筑物疲劳累积损伤程度。
     (6)在三个假设的基础上,定义了描述混凝土在疲劳荷载作用下损伤与应变概率关系的P-D-ε曲线,证明了该曲线的一个重要性质,即其上任意一点疲劳应变的失效概率与相应损伤量的可靠度相等:通过对疲劳应变实测数据的分析处理,给定损伤量下的疲劳应变较好的服从三参数Weibull分布,得到了水工混凝土的P-D-ε曲线,可求得不同可靠度下的损伤阈值应变、极限应变以及给定疲劳应变的损伤量,可为疲劳损伤的定量评定提供理论基础。
     (7)基于抗压强度分布,通过原始S-N曲线方程,推导出一种新的疲劳寿命概率分布模型,并给出了求解该分布参数的方法;采用本文提出的新概率分布模型进行统计分析得出,低周疲劳寿命数据服从新的概率分布模型,并进一步得到水工混凝土低周疲劳S-N曲线方程。该方法充分利用了抗压强度的有关数据信息,所用试件少,精度较高,有一定的推广价值。
     (8)通过对疲劳过程中强度衰减变化的分析,提出了一个低周疲劳强度衰减模型和寿命预测方法,与实测的疲劳应变发展过程及Miner准则对比分析得出,本文提出的模型及方法适用于混凝土低周疲劳,能较好地反映出混凝土的低周疲劳损伤机理。
     (9)应用损伤力学理论,对疲劳变形模量试验数据进行分析处理,得到了低周疲劳变形模量发展规律公式,以及基于变形模量的累积损伤计算公式及其损伤破坏判据;综合以上研究成果,提出了一个水工结构受压低周疲劳累积损伤计算方法和流程,并对FLAC-3D软件进行二次开发,编制了基于有限元的水工结构低周疲劳累积损伤计算程序。通过算例表明,计算方法、流程及程序能够合理反映水工结构低周疲劳累积损伤过程和破坏形态。
     (10)应用未达到抗压强度前的应力应变曲线,提出了一个推求混凝土抗压强度和峰值应变的方法。经过试验验证,该方法适用于高应力循环荷载作用下的低周疲劳,并具有足够的精度,可进一步得到混凝土低周疲劳荷载下的真实应力水平,并在此基础上,得到了疲劳残余应变的发展规律公式,以及基于残余应变的疲劳失稳判据。通过对疲劳寿命的估算比较,残余应变发展规律公式及判据是较为合理的。
Many hydraulic structures may be subjected to the cyclic load of high stress, such as concrete dam under the high intensity earthquake, flood discharge structure with large-power discharge, machine foundation concrete in forced vibration, water cushion pool by the impact of high-speed flow, and so on. Because the inner stress field of these structures acutely changes, it is very possible to result in fatigue damage or failure. Hydraulic structures are very important structures. If these structures wreck, the consequences are unimaginable. Therefore, studying the fatigue property of hydraulic concrete is very meaningful in engineering in order to ensure hydraulic structures working safely and stably for long. Especially, earthquake disaster in Wenchuan excited many researchers to initiate seismic damage analysis of hydraulic structures. Because of the difference of use profile, use condition and mixing proportion, the hydraulic concrete has particular mechanics character and fatigue property by comparing with common concrete. As this research is seldom reported at home and abroad, research on fatigue damage of hydraulic concrete was specially carried out in this dissertation at the support of the National Natural Science Fundation (No.51009074). The experimental and theoretic research involves several aspects as follows:
     (1) The compressive experiment, fatigue experiment and low-cycle fatigue experiment on 120 specimens of hydraulic concrete were performed. The qualitative analysis of experimental data shows that the flexibility of hydraulic concrete is better because the compressive stress-strain curve is relatively flat, and it is beneficial to the resistance of fatigue damage; damage mechanism of compression failure and fatigue failure is basically same, but the quantity, direction and distribution of fracture is different; fatigue life at the given stress level is very discrete, so the reliability theory will be adopted to analyze this data; maximum strain, deformation modulus, and residual strain possess three separate development phases of all the fatigue life.
     (2) According to the statistical analysis of fatigue life, the results show it follows both lognormal distribution and three-parameter Weibull distribution, but the latter is more suitable by the P-N figure fitting and kolmogorov test. With the decrease of stress level, the scatter of fatigue life increases.
     (3) By the reliability analysis of fatigue life, the S-N curve, P-S-N curve and fatigue limit strength are obtained. The S-N curve under lognormal distribution and three-parameter Weibull distribution are approximate, but at the interval of high reliability the two are different, and the former make the result pessimism. In the light of self character and damage mechanism, this paper suggests making use of the S-N curve and P-S-N curve under three-parameter Weibull distribution. By summarization and comparison, the fatigue property of hydraulic concrete has advantage over other concrete.
     (4) By making use of the calculative method of confidence limits of three-parameter Weibull distribution, the confidence limits of fatigue life of hydraulic concrete at the different stress level are calculated. Furthermore, theγ-S-N curve,γ-P-S-N curve, fatigue limit strength and safety life of high reliability and confidence are obtained. These results have reference value for the fatigue reliability design of hydraulic structure.
     (5) Based on original Miner rule, the limit state equation of fatigue cumulative damage is established, and the dynamic reliability by using Monte Carlo method can be computed. The computational example shows the calculative dynamic reliability can reasonably evaluate fatigue cumulative damage of hydraulic structure.
     (6) On the basis of three hypotheses, the P-D-εcurve which describes probabilistic relationship between damage and strain of concrete under fatigue load is defined. The important property of this curve that the failure probability of strain equals reliability of damage at every point has been proved. The analysis and treatment of test data indicates that fatigue strain in case of specified damage follows three-parameter Weibull distribution. The P-D-εcurve of hydraulic concrete was obtained. Furthermore, it is easy to calculate threshold strain, limit strain and fatigue damage at the given reliability. This research lays theoretical foundation for the quantitative evaluation of fatigue damage.
     (7) Based on the distribution of the static compressive strength, a new distribution which fatigue life follows is deduced by the equation model of the original S-N curve, and the solution approach of the new distribution parameters is given. By statistical analysis, low-cycle fatigue life follows this new distribution. Moreover, the S-N curve equation of low-cycle fatigue of hydraulic concrete can be put forward. Because of fully using the relevant data of compressive strength, this method spends fewer specimens, has the higher accuracy, and is of widespread usage.
     (8) By the process analysis of strength degradation, the new model of strength degradation and predictor method of life period for concrete under low-cycle fatigue load can be proposed. By comparison with the development process of actual strain and Miner criterion, the model and method are suitable to low-cycle fatigue of concrete, and can correctly reflect the damage mechanics of low-cycle fatigue of concrete.
     (9) With the aid of the theory of damage mechanics, by studying test data of fatigue deformation modulus, development model of fatigue deformation modulus, calculation formula of fatigue damage, and the instability criterion of fatigue damage are obtained for hydraulic concrete. By synthesizing the above research results, the calculative method and process of cumulative damage under low-cycle fatigue load are put forward for hydraulic structures. By means of the Further Development of FLAC-3D Software, based on the finite element method the computational program of cumulative damage under low-cycle fatigue load is given for hydraulic structures. According to computational example, the above method, process and program can rationally reflect the process of fatigue damage and failure mode of hydraulic structures.
     (10) The method is proposed, which could get compression strength and peak strain of concrete by using stress-strain curve before failure. It is verified by the tests that this method can apply to low-cycle fatigue, has sufficient accuracy, and can achieve actual stress level of fatigue test. On this basis, the development formula of fatigue residual strain and criterion of fatigue failure are obtained. By comparison with estimation of fatigue life, the above formula and criterion are reasonable.
引文
[1]休尔斯(Surey S.)著.材料的疲劳(第二版)[M].北京:国防工业出版社,2000.
    [2]Gazaud R.. Fatigue of metals[M]. Philosophical Liabray, New York,1953.
    [3]Considere M.. Influence des armatures metalligues sur les proprietes des mortiers et betons[J]. Compte Rendu I'academie Des Sciences,1898,127:992-995.
    [4]De Joly. La resistance et I'elastic des ciments porland[J], Annales Des Ponts et Chausses, Memoires,1898,16(7):198-244.
    [5]Van Ornum J. L.. Fatigue of cement products[J]. Transctions, ASCE,1903,51,443.
    [6]Clemmer H. E.. Fatigue of concrete[J]. proceedings, ASTM,1922,22(partⅡ):408-419.
    [7]Graf O., and Brenner E.. Experiments for investigating the resistance of concrete under often repeated compression loads.1[J]. Bulletin, Deutscher Ausschuss fur Stahlbeton, Berlin,1934,1(76):17-25.
    [8]Graf O. and Brenner E.. Experiments for investigating the resistance of concrete under often repeated compression loads.2[J]. Bulletin, Deutscher Ausschuss fur Stahlbeton, Berlin,1936,2(83):45-53.
    [9]Nordby G. M.. Fatigue of concrete-A review of research[J]. ACI Journal,1958, 55(2):191-220.
    [10]Gray.W., Mclaughlin.J.F and Antrim.J.C. Fatigue properties of lightweight aggregate concrete[J].ACI Journal,1961:149-161.
    [11]Murdock J W.. A critical review of research on fatigue plain concrete[J]. Engineering Experiment Station Bulletin,1965, No.475:25.
    [12]Bennett E. W. and Muir S.E.J.. Some fatigue tests on high-strength concrete in axial compression[J]. Magazine of Concrete Research,1967,19(59):113-117.
    [13]中华人民共和国国家标准.GB50010-2002混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [14]宋玉普.多种混凝土材料的本构关系和破坏准则[M].北京:中国水利水电出版社,2002.
    [15]中华人民共和国行业标准.TB10002.3-2005铁路桥涵钢筋混凝土和预应力混凝土结构设计规范[S].北京:中国铁道出版社,2000.
    [16]Standard Specification for Highway Bridges[S]. AASHTO,1977.
    [17]CEB Bulletin D. Information No.196:CEB-FIP Model Code 1990(First Draft),1990.
    [18]林皋.混凝土大坝抗震安全评价的发展趋向[J].防灾减灾工程学报,2006,26(1):1-12.
    [19]陈厚群.混凝土大坝抗震中的力学问题[J].力学与实践,2006,28(2):1-8.
    [20]周建平,陈观福,党林才.我国高坝抗震安全评价的现状与挑战[J].水利学报,2007,10:54-59.
    [21]Cervera M., Oliver J.. Seismic evaluation of concrete dams via damage models[J]. Earthquake Engineering and Structural Dynamics,1995,24:1224-1245.
    [22]中华人民共和国电力行业标准.DL5073-2000水工混凝土抗震设计规范[S].北京:中国电力出版社,2000.
    [23]张俊芝,李桂青.服役重力坝系统可靠度及概率寿命探讨[J].水利学报,2000(4):40-45.
    [24]刘西拉,李田.工程结构可靠性鉴定标准的展望[J].建筑结构,1994(5):3-6.
    [25]王光远.工程软设计理论[M].北京:科学出版社,1992.
    [26]杜荣强,林皋,胡志强.混凝土重力坝动力弹塑性损伤安全评价[J].水利学报,2006,37(9):1056-1062.
    [27]林鹏,王仁坤,李庆斌等.汶川8.0级地震对典型高坝结构安全的影响分析[J].岩石力学与工程学报,2009,28(6):1261-1269.
    [28]郑声安,王仁坤,章建跃等.汶川地震对岷江上游水电工程的影响.水力发电,2008,34(11):5-9.
    [29]陈厚群,徐泽平,李敏.汶川大地震和大坝抗震安全.水利学报,2008,39(10):1158-1167.
    [30]林皋.汶川大地震中大震震害与大坝抗震安全性分析.大连理工大学学报,2009,49(5):657-666.
    [31]Asa-Jakobsen K.. Fatigue of concrete beams and columns[J]. Bulletin No.70-1. NTH Institute of Betonkonstruksjoner,1970.9.
    [32]Matsushita H. and Toskumitsu Y.. A study on compressive fatigue strength of concrete considered survival probability[J]. Proceeding of JSCE,1972,198:127-138.
    [33]C.P.Whaley and A.M.Neville. Non-elastic deformation of concrete under cyclic compression[J]. Magazine of Concrete Research,1973,25(84):145-154.
    [34]P.R.Sparks, and J.B.Menzies. The influence of rate of loading upon the static and fatigue strengths of plain concrete in compression[J]. Magazine of Concrete Research,1973, 25(83):73-80.
    [35]R.Tepfers and T.Kutti. Fatigue Strength of Plain, ordinary and lightweight concrete[J]. ACI Journal,1979,76(5):635-653.
    [36]Thomas T.C. Hsu. Fatigue of plain concrete[J]. ACI Journal,1981(2):292-305.
    [37]Jan Ove Holmen. Fatigue of concrete by constant and variable amplitude loading[J]. Fatigue Strength of Concrete Structures, ACI, SP-75,1982:71-110.
    [38]林燕清,欧进萍.混凝土多级等幅疲劳的变形发展规律试验研究[J].哈尔滨建筑大学学报,1999,32(1):11-17.
    [39]欧进萍,林燕清.混凝土高周疲劳损伤的性能劣化试验研究[J].土木工程学报,1999,32(5):15-21.
    [40]王瑞敏,赵国藩,宋玉普.混凝土的受压疲劳性能研究.土木工程学报,1991,24(4):38-47.
    [41]Chimamphant S.. Bond and fatigue characteristics of high-strength cement-based composites[D]. Ph.D Dissertation, New Jersey Institute of Technology, Newark, New jersey, 1989.
    [42]Petkovic G., Lendchow R., Stemland H., and Rosseland S.. Fatigue of high-strength concrete[J]. ACI, Special Publication, SP-121-25,1991:505-525.
    [43]吴佩刚,赵光仪,白利明.高强混凝土抗压疲劳性能研究[J].土木工程学报,1994,27(3):33-40.
    [44]Jin-keum Kim and Yun-Yong Kim. Experimental study of the fatigue behavior of high strength concrete[J]. Cement and Concrete Research,1996,26(10):1513-1523.
    [45]Jeragh A. A.. Deformation behavior of concrete subjected to biaxial-cyclic loading[D]. PhD dissertation, New Mexico State University, University Park,1978.
    [46]Traina L.A. and Jeragh A.A.. Fatigue of plain concrete subjected to biaxial cyclical loading[J]. ACI Publications, SP-75,1982:217-234.
    [47]Oral Buyukozturk and Tsi-ming Tseng. Concrete in biaxial cyclic compression[J]. Journal of Structural Engineering,1984,110(3):461-476.
    [48]吕培印.混凝土单轴、双轴动态强度和变形试验研究[D].大连理工大学博士论文,2001,11.
    [49]朱劲松.混凝土双轴疲劳试验与破坏预测理论研究[D].大连理工大学博士论文,2003,9.
    [50]Eric C.M.Su and Thomas T.C.Hsu. Biaxial compression fatigue and discontinuity of concrete[J]. ACI Materials Journal,1988,85(5):178-188.
    [51]Weisu Yu and Thomas T.C.Hsu. Fatigue behavior of steel reinforced concrete in uniaxial and biaxial compression[J]. ACI Materials Journal,1995,92(1):71-81.
    [52]Erik L. Nelson and Ramon I. Carrasquillo. Behavior and failure of high-strength concrete subjected to biaxial-cyclic compression loading[J]. ACI Materials Journal,1988, 85(3):248-253.
    [53]Shengrui Lan and Zhenhai Guo. Biaxial compression behavior of concrete under repeated loading[J]. Journal of Materials in Civil Engineering,1999, 11(2):105-114.
    [54]过镇海,王传志.多轴应力下混凝土的强度和破坏准则研究[J].土木工程学报,1991,24(3):1-14.
    [55]揽生瑞,过镇海.定侧压下混凝土二轴受压变形特性的试验研究[J].土木工程学报,1996,29(2):28-35.
    [56]Kolluru V.Subtamaniam, John S.Popovics and Surendra P.Shah. Fatigue response of concrete subjected to biaxial stresses in the compression-tesion region[J]. ACI Materials Journal,1999, 96(6):663-669.
    [57]P.Desayi, K.T.Sundara Raja lyengar and T.sanjeeva Reddy. Stress-strain characteristics of concrete confined in steel spirals under repeated loading[J]. Materials of Structures,1969, 12(71):375-383.
    [58]Surendra P. Shah, Apostolos Fafitis and Richard Arnold. Cyclic loading of spirally reinforced concrete[J]. Journal of Structural Engineering,1983,109(7):1695-1710.
    [59]Tan Teng Hooi. Effects of passive confinement on fatigue properties of concrete[J]. Magazine of concrete Research,2000,52(1):7-15.
    [60]Taliercio A. and Gobbi E.. Experimental investigation on the triaxial fatigue behavior of plain concrete[J]. Magazine of Concrete Research,1996,48(176):151-172.
    [61]Taliercio A. and Gobbi E.. Effect of elevated triaxial cyclic and constant loads on the mechanical properties of plain concrete[J]. Magazine of Concrete Research,1998, 49(18):353-365.
    [62]Taliercio A. and Gobbi E.. Fatigue life and change in mechanical properties of plain concrete under triaxial deviatoric cyclic stresses[J]. Magazine of Concrete Research,1998, 50(3):247-255.
    [63]曹伟.定侧压下混凝土三轴疲劳性能试验与理论研究[D].大连理工大学博士论文,2004,3.
    [64]周新刚,吴江龙.高温后混凝土轴压疲劳性能初探[J].建筑技术开发,1996,5:27-29.
    [65]Miroslaw Grzybowski and Christian Meyer. Damage accumulation in concrete with and without fiber reinforcement[J]. ACI Materials Journal,1993,90(6):594-604.
    [66]Handong Yan, Wei Sun and Huisu Chen. The effect of silica fume and steel fiber on the dynamic mechanical performance of high-strength concrete[J]. Cement & Concrete Research, 1999,29:423-426.
    [67]鞠扬,樊承谋,循环荷载作用在钢纤维混凝土的损伤及演化行为的定量描述[J].工程力学,1998,15(1):94-104.
    [68]鞠扬,樊承谋,潘景龙.变幅疲劳荷载下钢纤维混凝土的损伤演化行为研究[J].实验力学,1997,12(1):99-118.
    [69]鞠扬,樊承谋,潘景龙.钢纤维混凝土疲劳损伤行为研究[J].工业建筑,1997,27(3):38-42.
    [70]Rafeeq A.S., Ashok G and Krishnamoorthy S.. Influence of steel fibers in fatigue resistance of concrete in direct compression[J]. Journal of Materials in Civil Engineering, 2000,12(2):172-179.
    [71]Paulo B.Cachin, Joaquim A.Figueiras and Paulo A.A. Pereira. Fatigue behavior of fiber-reinforced concrete in compression[J]. Cement & Concrete Composites,2002, 24:211-217.
    [72]Clemmer H.E.. Fatigue of concrete[J]. Proceedings, ASTM,1992,22(partⅡ):408-419.
    [73]Kesler C.E.. Effects of speed of testing on flexural fatigue strength of plain concrete[J]. Proceedings, Highway Research Board,1953,32:251-258.
    [74]Murdock J.W., and Kesler C.E.. Effect of range of strength of plain concrete beams[J]. ACI Journal,1958,55(4):221-231.
    [75]Byung Hwan Oh. Cumulative damage theory of concrete under variable-amplitude fatigue 521oading[J]. ACI Materials Journal,1991,88(1):41-48.
    [76]X.P.Shi, T.F.Fwa and S.A. Tan. Flexual fatigue of plain concrete[J]. ACI Materials Journal, 1993,90(5):435-440.
    [77]Bingsheng Zhang and Keru Wu. Residual fatigue strength and stiffness of ordinary concrete under bending[J]. Cement and Concrete Research,1997,27(1):115-126.
    [78]B.Zhang, D.V.Phillips and K.Wu. Further research on fatigue properties of plain concrete[J]. Magazine of Concrete Research,1997,49(180):241-252.
    [79]B.Zhang. Relationship between pore structure and mechanical properties of ordinary concrete under bending fatigue[J]. Cement and Concrete Research,1998,28(5):699-711.
    [80]A.E.Naamam and H.Hammoud. Fatigue characterisitics of high performance fiber-reinforced concrete[J]. Cement and Concrete Research,1998,20:353-363.
    [81]Seol-Goo Youn and Sung-Pil Chang. Behavior of composite bridge decks subjected to static and fatigue loading[J]. ACI Structural Journal,1998,95(3):249-258.
    [82]李永强,车惠民.混凝土弯曲疲劳累积损伤性能研究[J].中国铁道科学,1998,19(2):52-58.
    [83]Kamal Tawfiq, Jamshid Armaghani and Rodolfo Ruiz. Fatigue cracking of polypropylene fiber reinforced concrete[J]. ACI Structural Journal,1999,96(2):226-233.
    [84]W.Ahn and D.V.Reddy. Galvanostatic testing for the durability of marine concrete under fatigue loading[J]. ACI Structural Journal,2001,31:343-349.
    [85]Linger D.A. and Gillespie H.A.. A study of the mechanism of concrete fatigue and fracture[J]. HRB research news,1966, No.22.
    [86]Tefers Ralejs. Tensile fatigue strength of plain concrete[J]. ACI Journal,1979,76(8):919-933.
    [87]H.A.W.Cornelissen and H.W.Reinhardt. Fatigue of plain concrete in uniaxial tension and in alternating tension compression loading[J]. Fatigue of steel and Concrete Structures, IABSE colloguium,1982,273-282.
    [88]H.A.W.Cornelissen and H.W.Reinhardt. Uniaxial tensile fatigue failure of concrete under constant-amplitude and programme loading[J]. Magazine of Concrete Research,1984, 36(129):216-226.
    [89]Saito.M and Imai.S.. Direct tensile fatigue of concrete by the use of friction grips[J]. ACI Journal, Proceeding,1983,80(5):431-438.
    [90]Saito.M.. Tensile fatigue of strength of lightweight concrete[J]. International Journal of Cement Composites and Lightweight concrete,1984,6(3):143-149.
    [91]赵光仪,吴佩刚,詹巍巍.高强混凝土的抗拉疲劳性能[J].土木工程学报,1993,26(6):13-19.
    [92]赵东拂.混凝土多轴疲劳破坏准则研究[D].大连理工大学博士论文,2002,12.
    [93]杨健辉.侧压下混凝土静态受拉和受拉疲劳性能研究[D].大连理工大学博士论文,2003,4.
    [94]Tepfers R. Fatigue of plain concrete subjected to stress reversals[J]. ACI J., Special Publication, 1982,75(9):195-215.
    [95]宋玉普,吕培印.混凝土轴心拉-压疲劳性能研究[J].建筑结构学报,2002,23(4):36-41.
    [96]J. T. McCall. Probability of fatigue failure of plain concrete[J]. Journal of the American Concrete Institution,1958,30(2):233-244.
    [97]杨德滋,车惠民.混凝土在重复荷载作用下疲劳分布的概率方法研究[J].铁道学报,1990,12(12):56-65.
    [98]Erique Castillo and Alfonso Fernandez-Canteli. A general regression model for lifetime evaluation and prediction[J]. International Journal of Fracture,2001,107:117-137.
    [99]李靖华,李果,刘刚.混凝土疲劳寿命规律预测新方法[J].大连理工大学学报,1997,37(1增刊):115-121.
    [100]董聪.疲劳寿命分布模型的统一描述[J].强度与环境,1996,3:1-3.
    [101]伍石生,武建民.水泥混凝土疲劳试验数据中含非破坏数据的处理方法[J].重庆交通学院学报,2002,21(1):34-36.
    [102]宋玉普,赵东拂.混凝土强度与疲劳寿命试验样本容量分析[J].大连理工大学学报,2002,42(4):464-466.
    [103]孙凌寒,邵国建,黄俊.短纤维局部增强混凝土疲劳性能实验研究[J].实验力学,2009,10(5):445-452.
    [104]刘凯,罗仁安等.混凝土高频疲劳加速寿命试验[J].上海大学学报,2009,15(2):205-210.
    [105]季天剑,肖鹏,高玉峰.掺粉煤灰再生混凝土疲劳性能试验研究[J].河海大学学报,2010,38(3):274-277.
    [106]陈猛,郭莎等.混杂纤维混凝土疲劳性能试验研究[J].混凝土,2010,251(9):46-48.
    [107]谢里阳,林文强.疲劳剩余寿命分布的当量关系及可靠性计算方法[J].东北大学学报,1995,16(6):598-602.
    [108]杨伟军,赵传智,郭在林.钢筋混凝土吊车梁的混凝土疲劳概率分析[J].工程力学,1999,16(3):140-144.
    [109]姜海波,车惠民.既有铁路混凝土梁疲劳与承载力可靠性评估[J].土木工程学报,2000,33(1):27-31.
    [110]Petryna Y. S., Pfanner D., Stangenberg F., Kratzig W. B.. Reliability of reinforced concrete structures under fatigue[J]. Reliability Engineering and System Safety,2002,77:253-261.
    [111]贡金鑫,赵国藩.腐蚀环境下钢筋混凝土结构疲劳可靠性的分析方法[J].土木工程学报,2000,33(6):50-56.
    [112]周详.同时考虑结构抗力模糊性与随机性的结构可靠性计算模型[J].武汉工业大学学报,1995,17(1):60-64.
    [113]李云贵,赵国藩.基于模糊随机概率理论的可靠度分析模型[J].大连理工大学学报,1995,35(4):528-531.
    [114]王恒.疲劳破坏随机预测模型的研究及应用[J].土木工程学报,1999,32(2):71-74.
    [115]过镇海.混凝土的强度和本构关系—原理与应用[M].北京:中国建筑工业出版社,2004.
    [116]Slate F.O. and Olsefski S.. X-ray for study of internal structure and micro cracking of concrete[J]. ACI,1974,65:575-578.
    [117]W.Suaris, V.Femando. Ultrasonic pulse attenuation as a measure of damage growth during cyclic loading of concrete[J]. ACI materials journal,1987,84(3):185-193.
    [118]严碧歌,袁益民,李泉臻.混凝土材料超声波检测[J].西北大学学报,2002,32(1):20-22.
    [119]刘学文,林吉中,袁祖贻.应用声发射技术评价材料疲劳损伤的研究[J].中国铁道科学,1997,18(4):74-81.
    [120]杜云,张春明,尾崎韧.混凝土疲劳试验的AE特性研究[J].辽宁工程技术大学学报,2001,29(1):46-49.
    [121]Saito M.. Characteristics of micro cracking in concrete under static and repeated tensile loading[J]. Cement and Concrete Research,1987,17:211-218.
    [122]鞠扬,潘景龙,樊承谋.钢纤维混凝土疲劳损伤机理初探[J].哈尔滨建筑大学学报,1997,30(3):34-40.
    [123]B. P. Sinha, Hurt H. Gerstle and Leonard G. Tulin. Stress-strain relations for concrete under cyclic loading[J]. Journal of the American Concrete Institute,1964,195-211.
    [124]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [125]L.M.卡恰诺夫著,杜善义,王殿富译.连续介质损伤力学引论[M].哈尔滨:哈尔滨工业大学出版社,1989.
    [126]J. Lemaitre著,倪金刚,陶春虎译.损伤力学教程[M].北京:科学出版社,1996.
    [127]余天庆,钱济成.损伤理论及应用[M].北京:国防工业出版社,1993.
    [128]张滨生,吴科如.水泥混凝土疲劳破坏的损伤力学分析[J].同济大学学报,1989,17(1):59-69.
    [129]Ju Yang and Xie Heping. Application of damage definition based on hypothesis of strain equivalence[J]. Journal of Science & Engineering,2000,6(2):9-14.
    [130]Wei Jun, Wu Xinghao, Zhao Xiaolong. A damage model of concrete under freeze-thaw cycles[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed.2003,18(3):40-42.
    [131]欧进萍,林燕清.混凝土疲劳损伤的强度和刚度衰减试验研究[J].哈尔滨建筑大学学报,1998,31(4):1-8.
    [132]杨健辉,赵东拂,宋玉普,邹小理.多向侧压下混凝土受拉变幅疲劳试验及损伤研究[J].土木工程学报,2005,38(9):37-44.
    [133]Ravindra Gettu, Antonio Aguado and Marcel O.F.Olivrira. Damage in high-strength concrete due to mono tonic and cyclic compression-a study based on spitting tensile strength[J]. ACI Materials Journal,1996,93(6):519-523.
    [134]赵永利,孙伟.混凝土材料疲劳损伤方程的建立[J].重庆交通学院学报,1999,18(1):17-22.
    [135]逯静洲.三轴受压混凝土损伤特性理论与试验研究[D].大连理工大学博士论文,2001,10.
    [136]孟宪宏.混凝土剩余强度试验及理论研究[D].大连理工大学博士论文,2006,10.
    [137]孟宪宏,宋玉普.混凝土抗拉疲劳剩余强度损伤模型[J].大连理工大学学报,2007,47(4):563-566.
    [138]孟宪宏,宋玉普.混凝土抗压疲劳剩余强度损伤模型[J].沈阳建筑大学学报,2009,25(1):12-16.
    [139]李朝阳,宋玉普,车轶.混凝土的单轴抗压疲劳损伤累积性能研究[J].土木工程学报,2002,35(2):38-40.
    [140]李朝阳,宋玉普,赵国藩.混凝土疲劳残余应变性能研究[J].大连理工大学学报,2001,41(3):355-358.
    [141]王瑞敏,宋玉普,赵国藩.混凝土疲劳累积损伤准则[J].水利学报,1992,5(5):72-76.
    [142]杨健辉,方坤河,赵东拂等.基于残余应变的多侧压下混凝土受拉疲劳损伤研究[J].工程力学,2006,23(6):169-176.
    [143]安明喆,余自若,贾方方等.考虑存活率的RPC损伤-残余应变曲线[J].等温建筑技术,2010,139(1):5-7.
    [144]易成,范永魁等.基于韧性的混凝土轴压疲劳损伤演化研究[J].工程力学,2010,27(8):113-119.
    [145]K.K.Phoon et al. Development of statistical quality assurance criterion for concrete using ultrasonic pulse velocity method[J]. ACI Materials Journal,1999,96(5):568-573.
    [146]朱劲松,宋玉普.混凝土双轴抗压疲劳损伤特性的超声波速法研究[J].岩石力学与工程学报,2004,23(13):2230-2234.
    [147]S.Yuyama, Z.-W.Li, M.Yoshizawa, T.Tomokiyo and T.Uomoto. Evaluation of fatigue damage in reinforce slab by acoustic emission[J]. NDT & International,2001,381-387.
    [148]王立燕,王超等.运用声发射技术研究橡胶混凝土疲劳损伤过程[J].东南大学学报,2009,39(3):574-579.
    [149]M. A. Miner. Cumulative fatigue damage[J]. Journal of the applied mechanics,1945, 67(12):159-164.
    [150]李朝阳,宋玉普.混凝土海洋平台疲劳损伤累积Miner准则适用性研究[J].中国海洋平台,2001,16(3):1-4.
    [151]王瑞敏,宋玉普,赵国藩.混凝土疲劳累积损伤准则[J].水利学报,1992,5:72-76.
    [152]鞠扬,樊承谋.疲劳累积损伤理论研究[J].哈尔滨建筑工程学院学报,1994,27(5):115-119.
    [153]S.S.Manson. Application of a double linear damage rule to cumulative fatigue[J]. ASTM STP415,1967.
    [154]S.M.Marco and W.J. Starkey. A concept of fatigue damage[J]. Trans ASME,1954, 76:627-632.
    [155]D.L.Henry. A theory of fatigue damage accumulation in steel[J]. Trans ASME,1955, 77:913-918.
    [156]S. Subramanyan. A cumulative damage rule based on the knee point of the S-N curve[J]. J. of Eng. Mats.and Mech,1976.
    [157]H.T.Corten and T.L.Dolan. Cumulative fatigue damage[J]. Proceed.of the Inter. Confer. on Fatigue of Metals, IME and ASME,1956.
    [158]S.P.Shah. Predictions of cumulative damage for concrete and reinforced concrete[J]. Materials and Constructions,1984,17(97):65-68.
    [159]倪侃,高镇同.疲劳可靠性二维概率Miner准则[J].固体力学学报,1996,17(4):365-371.
    [160]倪侃,张圣坤,高镇同.二维概率准则的实验数据验证[J].机械强度,1997,19(3):52-56.
    [161]倪侃.随机疲劳累积损伤理论研究进展[J].力学进展,1999,29(1):43-65.
    [162]Kachanov L M. On the creep fracture time[J]. Izv ANNSSR,1958,8:23-31.
    [163]Rabotanov Y N. On the equations of state for creep[M]. Progress in Applied Mechanics, 1963,307-315.
    [164]Janson J and Hult J. Fracture mechanics and damage mechanics, a combined approach[J]. Journal of Mechanics Apllication,1977,1(1):59-64.
    [165]沈为,彭立华.疲劳损伤演变方程与寿命估算—连续损伤力学的应用[J].机械强度,1994,16(2):52-57.
    [166]Chaboche J. L. and Lesne P. M.. A nonlinear continuous fatigue damage model[J]. Fatigue and Fracture of Engineering Materials and Structures,1988,11(1):1-7.
    [167]李庆斌,吕培印,张立翔.混凝土受压疲劳特性及损伤本构模型[J].水利学报,2004,4(4):21-26.
    [168]Paris P.C., et. al.. A rational analytic theory of fatigue[J]. Tread in Engineering,1961, 1,9-14.
    [169]Paris P.C. and Endercan F.. A critical analysis of crack propagation laws[J]. Transaction of ASME, Journal of Basic Engineering,1963,85(3):528-534.
    [170]Forman R.C., et. al.. Numerical analysis of crack propagation in cyclic-loaded structure[J]. Journal of Basic Engineering,1967,89(2):459-464.
    []71]吴智敏,赵国藩,黄承逵.混凝土疲劳断裂特性研究[J].土木工程学报,1995,28(3):59-65.
    [172]吴智敏,赵国藩,黄承逵等.疲劳荷载作用下混凝土裂纹扩展过程[J].大连理工大学学报,1997,37(S1):545-548.
    [173]丁生根,候景鹏,卢经喜.混凝土疲劳断裂机理及其尺寸效应[J].东北电力学院学报,2001,21(3):14-18.
    [174]Ramsamooj D. V.. Analytical model for fatigue crack propagation in concrete[J]. Journal of Testing and Evaluation,2002,30(4):340-349.
    [175]Jun Zhang, et. al.. Size effect on fatigue in bending of concrete[J]. Journal of Materials in Civil Engineering, ASCE,2001,13(6):446-453.
    [176]蔡敏,蔡四维.混凝土与纤维混凝土的疲劳裂纹扩展分析[J].东南大学学报,1998,28(5):108-111.
    [177]Kolluru V.Subtamaniam, John S.Popovics and Surendra P.Shah. Fatigue fracture of concrete subjected to biaxial stresses in the tensile C-T region[J]. Journal of Engineering Mechanics, 2002,128(6):668-676.
    [178]Toumi A. and Bascoui A.. Mode I crack propagation in concrete under fatigue: Microscopic observations and modeling[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2002,26(13):1299-1312.
    [179]易成,沈士钊.疲劳裂纹扩展理论及其在混凝土疲劳性能研究中的应用[J].哈尔滨建筑大学学报,2000,33(5):20-24.
    [180]易成.局部高密度钢纤维混凝土疲劳、断裂性能及结构应用研究[D].哈尔滨建筑大学博士论文,2000.
    [181]朱劲松.基于能量等效的混凝土结构疲劳断裂仿真分析方法[J].混凝上,2010,245(3):29-32.
    [182]董毓利,谢和平,赵鹏.不同应变率下混凝土受压全过程的实验研究及其本构模型[J].水利学报,1997,7(7):72-77.
    [183]董毓利,谢和平,李世平.砼受压损伤力学本构模型的研究[J].工程力学,1996,13(1):44-53.
    [184]Karsan I.K. and Jirsa J.O.. Behavior of concrete under compressive loadings[J]. Journal of Structures Division, ASCE,1969,95(12):2543-2563.
    [185]Maher A. and Darwin D.. Mortar constituent of concrete in compression[J]. ACI Journal, 1982,79(2):100-109.
    [186]David Z. Yankelevsky and Hans W. Reinhardt. Model for cyclic compressive behavior of concrete[J]. Journal of Structural Engineering, ASCE 1987,113(2):228-240.
    [187]David Z. Yankelevsky and Hans W. Reinhardt. Uniaxial cyclic behavior of concrete in tension[J]. Journal of Structural Engineering, ASCE,1989,115(1):169-176.
    [188]Duane E. Otter and Antoine E. Naaman. Model for response of concrete to random compressive loads[J]. Journal of Structural Engineering,1989,115(11):2794-2809.
    [189]Martinea-Rueda, J. Enrique and Elnashai A.S.. Confined concrete model under cyclic load[J]. Materials and Structures,1997,30(197):139-147.
    [190]Bahn Byong Youl and Hsu Cheng-Tzu Thomas. Steee-strain behavior of concrete under cyclic load[J]. ACI Materials Journal,1998,95(2):178-193.
    [191]K.Gylltoft. A fracture mechanics model for fatigue in concrete[J]. Materials and Constructions,1984,97(17):55-58.
    [192]Enrico Papa. A damage model for concrete subjected to fatigue loading[J]. European Journal of Mechanics,1993,12(3):429-440.
    [193]Enrico Papa and Alberto Tailercio. Anisotropic damage model for the multiaxial static and fatigue behavior of plain concrete[J]. Engineering Fracture Mechanics,1996,55(2): 163-179.
    [194]Josko Ozbolt and Zdenek P.Bazant. Micro-plane model for cyclic triaxial behavior of concrete[J]. Journal of Engineering Mechanics,1992,118(7):1365-1386.
    [195]Wimal Suaris, Chengsheng Ouyang and Viraj M.Fernando. Damage model for cyclic loading of concrete[J]. Journal of Engineering Mechanics,1990,116(5):1020-1034.
    [196]Michael N Fardis, Bunu Alibe and John L. Tassoulas. Monotonic and cyclic constitutive law for concrete[J]. Journal of Engineering Mechanics,1983,109(2):516-536.
    [197]Anna Pandolfi and Alberto Taliercio. Bounding surface models applied to fatigue of plain concrete[J]. Journal of Engineering Mechanics,1998,124(5):556-564.
    [198]曹伟,宋玉普.混凝土弹塑性藕合疲劳本构模型[J].混凝土,2003,159(1):7-9.
    [199]潘华,邱洪兴.基于损伤力学的混凝土疲劳损伤模型[J].东南大学学报,2006,36(4):7-9.
    [200]朱劲松,宋玉普,肖汝诚.混凝土疲劳特性与疲劳损伤后等效单轴本构关系[J].建筑材料学报,2005,8(6):609-614.
    [201]曹伟,宋玉普,刘海成.应变空间表述的混凝土疲劳塑性/损伤双面本构模型[J].大连理工大学学报,2004,44(3):431-436.
    [202]宋玉普,朱劲松.疲劳荷载作用下混凝土的边界面模型研究[J].哈尔滨工业大学学报,2005,37(1):74-79.
    [203]中华人民共和国电力行业标准.DL/T 5057-2009水工混凝土结构设计规范[S].北京:中国电力出版社,2009.
    [204]中华人民共和国电力行业标准.DL/T 5330-2005水工混凝土配合比设计规程[S].北京:中国电力出版社,2006.
    [205]中华人民共和国电力行业标准.DL/T 5397-2007水电工程施工组织设计规范[S].北京:中国电力出版社,2008.
    [206]中华人民共和国电力行业标准.DL/T 5144-2001水工混凝土施工规范[S].北京:中国电力出版社,2002.
    [207]陈文耀,李文伟.三峡工程混凝土试验研究及实践[M].北京:中国电力出版社,2005.
    [208]谢凯军,王永,贾德霞等.水工混凝土及土工试验[M].北京:中国电力出版社,2010.
    [209]马洪琪.小湾水电站建设中的几个技术难题[J].水力发电,2009,35(9):17-21.
    [210]孔瑞莲.航空发动机可靠性工程[M].北京:航空工业出版社,1996.
    [2]1]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2006.
    [212]K. Asa-Jakosen. Behavior of reinforced columns subjects to fatigue loadings[J]. ACI, 1973(5):635-652.
    [213]鞠扬,樊承谋.等幅循环载荷下钢纤维混凝土疲劳寿命分析[J].哈尔滨建筑工程学院学报,1995,28(4):64-71.
    [214]陈瑜海.用Weibull理论研究脆性材料的损伤概率[J].水利学报,1996(6):45-48.
    [215]高镇同,傅惠民,梁美训.S-N曲线拟合法[J].北京航空学院院报.1987,1(1):115-118.
    [216]傅惠民,高镇同.确定威布尔分布三参数的相关系数优化法[J].航空学报,1990,11(7):A323-A327.
    [217]林燕清,欧进萍.混凝土疲劳损伤试验中初始极限强度的推测方法[J].哈尔滨建筑大学学报,1997,30(6):9-20.
    [218]韦来生.数理统计[M].北京:科学出版社,2010.
    [219]Raju.N.K..comparative study of the fatigue behavior of concrete mortar and paste in uniaxial compression[J]. Jour.of ACI,1970(67):461-463.
    [220]宋玉普.混凝土结构的疲劳性能及设计原理[M].北京:机械工业出版社,2006.
    [221]傅惠民,高镇同,徐人平.三参数威布尔分布的置信限[J].航空学报,1992,13(3):A153-A162.
    [222]Fu Huimin and Gao Zhentong. Confidence limits of three-parameter Weibull population percentiles[J]. APCS-91 Proceedings, International Academic Publisher,1991:1116-1123.
    [223]徐人平,傅惠民,高镇同.可靠度置信限曲线等同性原理及其参数估计[J].工程数学学报,1996,13(1):23-29.
    [224]Spooner D C, et al. A quantitative assessment of damage sustained in concrete during Compressive Loading[J]. Mag Concr Res,1975,27(92):151-166.
    [225]董毓利,谢和平,赵鹏.受压混凝土理想弹塑性损伤本构模型[J].力学与实践,1996,18(6):14-16.
    [226]易成,谢和平,孙华飞.钢纤维混凝土疲劳断裂性能与工程应用[M].北京:科学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700