激光雷达遥感森林叶面积指数提取方法研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林与大气之间碳、水及能量的生态交换过程受到森林冠层与林分结构的影响,因此,冠层与林分结构的定量提取技术在森林动态监测中显得尤为重要。同时,植被冠层是大气与陆地生物圈的重要接口,而叶面积指数(LAI)是植被冠层对全球环境变化响应过程模型的一个非常关键的参数。因此快速、精确、可靠和客观地评价LAI是研究大气与植被相互作用必不可少的过程。
     植被指数(Vegetation Index, VI)是光学遥感影像评价地表植被覆盖状况的关键参数。植被指数可用于反演叶面积指数(LAI),但主要缺陷是植被指数存在饱和问题。被动光学遥感多用于探测植被冠层水平结构信息,在植被生长茂盛的地区,植被指数达到饱和状态后,植被指数和LAI不再线性增加,导致LAI被低估。所以,光学遥感数据提取LAI具有一定的局限性,其反演精度受到一定的影响。如何提高LAI反演精度,并且同时能够使反演方法简单易用,是该领域的一个重要研究方向。
     激光雷达(Light DetectionAnd Ranging, LiDAR)是近年来国际上发展十分迅速的主动遥感技术,可快速获取目标的三维空间信息,能精确地估算森林垂直结构参数(如树高、冠层郁闭度和地上生物量等)。
     本文主要有四个目标:一是探索机载、星载LiDAR数据提取LAI的理论方法;二是通过LiDAR数据实现LAI反演并进行精度验证,三是对研究区进行基于LiDAR反演模型的LAI制图;四是用光学遥感数据反演LAI,并与LiDAR数据提取LAI的结果进行对比分析。具体主要开展了以下几个方面的研究工作:
     (1)对机载LiDAR数据进行了分类,计算出了不同空间尺度的激光穿透指数(LPI)。
     (2)研究了机载LiDAR数据提取LAI的理论和方法,并通过LPI实现LAI反演。
     (3)比较了不同空间尺度下机载LiDAR提取LAI的精度,获取机载LiDAR数据反演LAI的最优模型是采样半径为10 m空间尺度(R2=0.77),并对研究区进行LAI制图。
     (4)深入研究了星载LiDAR数据波形处理方法,并对GLAS波形数据进行了高斯分解,确定了波形特征参数,并计算了地面回波能量与总能量的比值。
     (5)探索了星载激光雷达提取LAI的方法,建立了星载LiDAR数据反演LAI的模型(R~2=0.80),并对研究区进行LAI制图。
     (6)确定光学遥感反演LAI的最优模型,并实现了研究区LAI制图。
     (7)对机载LiDAR数据和光学遥感数据提取大野口研究区的LAI结果进行了对比分析,并证明了机载LiDAR数据可提高LAI反演精度。
     (8)对星载LiDAR数据提取LAI和光学遥感提取西藏林芝地区的LAI进行了对比分析,结果表明星载LiDAR数据能提高LAI的反演精度。
     本文的创新研究成果包括以下几个方面:
     (1)提出了GLAS波形数据反演LAI的方法。
     (2)融合GLAS数据与TM影像,实现了研究区LAI反演及制图。
     (3)提出了基于机载LiDAR数据的简化LAI反演方法。
     本研究工作的结果表明LiDAR数据可实现LAI的高精度反演,特别是星载LiDAR数据为全球性高精度LAI估算提供了可能性。
Carbon, water, and energy ecological exchanged processes between forest and atmosphereare influenced by forest canopy and stand structure. Therefore, exploring the technique andmethod of quantizing canopy structure and stand structure to monitor the change of foreststructural parameters is very significant. Vegetation canopy is the important interface of theatmosphere and terrestrial biosphere. Since leaf area index (LAI) is very often a criticalparameter in process-based models of vegetation canopy response to global environmentalchange, for numerous studies of interaction of atmosphere and vegetation, rapid, reliable andobjective estimations of LAI are essential.
     Explaining vegetation cover of earth surface from the view of optical remote sensing,vegetation indices are the most valuable. However, when retrieving LAI by vegetation indices(VIs) derived from remotely sensed data, the main problem encountered is the saturation athigh levels of LAI. That is to say, optical remote sensing data only detect horizontal structureinformation of vegetation canopy. At high levels of LAI, the VIs related to LAI reachsaturation and the LAI doesn’t increase linearly with the VI, which will cause theunderestimation of LAI. Therefore, extraction LAI by optical remotely sensed data has acertain limitation and the accuracy of LAI inversion will be affected to some extent. How toimprove the accuracy of forest LAI inversion and make the inversion method simple and easyto use is a very important study area at home and abroad.
     Light Detection And Ranging (LiDAR) is a new emerging active remote sensingtechnology in recent years, which has developed very rapidly in the world. LiDAR canmeasure both the vertical and horizontal structure of forested areas effectively with highprecision and it can accurately estimate tree height, canopy closure and above-groundbiomass.
     The main purpose of this dissertation is to investigate the potential and feasibility ofderiving forest LAI from LiDAR data. The specific objectives of this study were:(1) Exploringtheories and methods of using airborne and spaceborne LiDAR data to extract forest LAI;(2)Establishing the forest LAI estimation model from LiDAR data and validating its accuracy;(3)Mapping forest LAI of the study area based on LiDAR data LAI inversion model;(4) Usingoptical remotely sensed data to extract forest LAI, and the comparison and analysis being carried out between the result of LAI LiDAR-derived and based on optical remotely senseddata. And specifically, this dissertation mainly conducted some research as follows:
     (1) Classifed the airborne LiDAR data and calculated the laser penetration index (LPI) ofdifferent spatial scales.
     (2) Studied the theory and method of using airborne LiDAR data to extract forest LAI,and inversed the forest LAI by the LPI.
     (3) Compared the accuracy of the airborne LiDAR-derived LAI inversion model withdifferent spatial scales. And then, the optimum model of LiDAR-derived LAI wasobtained and the determination coefficient (R2) was 0.77, where the samplingradius was 10 m. Finally, Mapped LAI of the study area based on the model.
     (4) Studied deeply processing methods of spaceborne LiDAR waveform data and the rawGLAS waveform data were decomposed into Gaussian peaks. And then, the ratiosof ground to the entire waveform return energy of satellite borne LiDAR.
     (5) Explored the method of LAI retrieval based on satellite borne LiDAR, andestablished the model (R2=0.80). Finally, Mapped LAI of the study area based onthe model.
     (6) Introduced the theory of optical remote sensing retrieving LAI and established theoptimum model of LAI inversion in the study area. And then, mapped LAI of thestudy area using the model.
     (7) Compared and analyzed the results between airborne LiDAR-derived LAI and basedon optical remotely sensed data in the Dayekou study area. The R2of based onoptical remote sensing was 0.63, while the R2of airborne attained to 0.77. Thisshowed that airborne LiDAR data could improve accuracy of LAI retrieval.
     (8) Compared and analyzed the results between satellite borne LiDAR-derived LAI andbased on optical remotely sensed data in the study area of Linzhi, Tibet. Themaximum R2of based on optical remote sensing was 0.65, while the R2ofGLAS-derived LAI attained to 0.80.The result showed that satellite borne LiDARdata could improve accuracy of LAI inversion.
     The main innovations in this dissertation included as followings:
     (1) The method of GLAS waveform data inversing forest LAI was put forward.
     (2) Reversed and mapped forest LAI of the study area by integrating GLAS and TM data.
     (3) The simple method of inversing LAI was developed based on airborne LiDAR data.
     By the research above, the dissertation found that LiDAR data offer a new way toaccurately estimate forest LAI. Especially, satellite borne LiDAR data open the possibility ofglobal forest LAI estimation with high accuracy.
引文
Aboelghar M, Arafat S, Saleh A, et al. Retrieving leaf area index from SPOT4 satellite data. The EgyptianJournal of Remote Sensing and Space Sciences, 2010, 13(2):121-127
    Andersen H E, McGaughey R J, Reutebuch S E. Estimating forest canopy fuel parameters using LiDARdata. Remote Sensing of Environment, 2005, 94(4):441-449
    Anderson J E, Plourde L C, Martin M E, et al. Integrating waveform LiDAR with hyperspectral imagery forinventory of a northern temperate forest. Remote Sensing of Environment, 2008, 112(4):1856-1870
    Anderson J, Martin M E, Smith M L, et al.The use of waveform lidar to measure northern temperate mixedconifer and deciduous forest structure in New Hampshire.Remote Sensing of Environment, 2006,105(3): 248-261
    Axelsson P. DEM generation from laser scanner data using adaptive TIN models. International Archives ofthe Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIII, 2000: 110-117
    Baltsavias E P. Airborne laser scanning: existing systems and firms and other resources. ISPRS Journal ofPhotogrammetry and Remote Sensing, 1999a, 54(2-3):164-198
    Baltsavias E P. Airborne laser scanning: Basic relations and formulas. ISPRS Journal of Photogrammetryand Remote Sensing, 1999b, 54(2-3):199-214
    Baret F, Guot G. Potential and limits of vegetation indices for LAI and APAR assessment. Remote Sensingof Environment, 1991, 35(2-3):162-173
    Barilotti A, Turco S, Alberti G. LAI determination in forestry ecosystem by lidar data analysis. In:Proceedings of Workshop on 3D Remote Sensing in Forestry. Vienna, Austria, February 14-15,2006:248-252
    Blair J B, Hofton M A. Modeling laser altimeter return waveforms over complex vegetation usinghigh-resolution elevation data. Geophysical Research Letters, 1999, 26(16):2509-2512
    Bonan G B. Importance of leaf area index and forest type when estimating photosynthesis in boreal forests.Remote Sensing of Environment, 1993, 43(3):303-31
    Botkin D B. Remote Sensing of the Biosphere, Washington, D.C., USA, National Academy of Sciences,Report of the Committee on Planetary Biology, 1986
    Boyd D S, Danson F M. Satellite remote sensing of forest resources: three decades of research development.Progress in Physical Geography, 2005, 29(1):1-26
    Brandtberg T, Warner T A, Landenberger R E, et al. Detection and analysis of individual leaf-off tree crownsin small footprint, high sampling density lidar data from the eastern deciduous forest in North America.Remote Sensing of Environment, 2003, 85(3):290-303
    Brenner A, Zwally H, Bentley C. Derivation of range and range distributions from laser pulse waveformanalysis for surface elevations, roughness, slope, and vegetation heights. Geoscience Laser AltimeterSystem (GLAS) Algorithm Theoretical Basis Document Version 4.1,2003
    Brovelli M, Crespib M, Fratarcangelib F, et al. Accuracy assessment of high resolution satellite imageryorientation by leave-one-out method. ISPRS Journal of Photogrammetry and Remote Sensing, 2008,63(4):427-440
    Campbell G S. Extinction coefficients for radiation in plant canopies calculated using an ellipsoidalinclination angle distribution. Agricultural and Forest Meteorology, 1986, 36(4):317-321
    CCFM (Canadian Council of Forest Ministers). Criteria and indicators of sustainable forest management inCanada: national status 2000.Canadian Forest Service, Natural Resources Canada, Ottawa, 2000
    Chason J W, Baldocchi D D, Huston M A. Comparison of direct and indirect methods for estimating forestcanopy leaf area. Agricultural and Forest Meteorology, 1991, 57(1-3):107-128
    Chen J M, Black T A, Adams R S. Evaluation of hemispherical photography for determining plant areaindex and geometry of a forest stand. Agricultural and Forest Meteorology, 1991, 56(1-2):129-143
    Chen J M, Black T A. Defining leaf area index for non-flat leaves. Plant Cell and Environment, 1992,15(4):421-429
    Chen J M, Black T A. Measuring leaf-area index of plant canopies with branch architecture. Agriculturaland Forest Meteorology, 1991, 57(1-3):1-12
    Chen J M, Cihlar J. Retrieving leaf area index of boreal conifer forests using Landsat TM images. RemoteSensing of Environment, 1996, 55(2):153-162
    Chen J M, Pavlic G, Brown L, et al. Derivation and validation of Canada wide coarse resolution leaf areaindex maps using high resolution satellite imagery and ground measurements. Remote Sensing ofEnvironment, 2001, 80(1):165-184
    Chen J M, Rich P M, Gower S T, et al. Leaf area index of boreal forests: theory, techniques, andmeasurements. Journal of Geophysical Research, 1997, 102(24):29429-29443
    Chen J M. Optically-based methods for measuring seasonal variation of leaf area index in boreal coniferstands. Agricultural and Forest Meteorology, 1996, 80(2-4): 135-163
    Chen Q, Baldocchi D, Gong P, et al. Isolating individual trees in a savanna woodland using small footprintlidar data. Photogrammetric Engineering Remote Sensing, 2006, 72(8):923-93
    Chen Q, Laurin G V, Battles J J,et al.Integration of airborne lidar and vegetation types derived from aerialphotography for mapping aboveground live biomass.Remote Sensing of Environment,2012, 121:108-117
    Chen Q. Assessment of terrain elevation derived from satellite laser altimetry over mountainous forest areasusing airborne lidar data. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65(1):111-122
    Colombo R, Bellingeri D, Fasolini D, et al. Retrieval of leaf area index in different vegetation types usinghigh resolution satellite data. Remote Sensing of Environment, 2003, 86(1):120-131
    Coops N C, Hilker T, Wulder M, et al. Estimating canopy structure of Douglas-fir forest stands fromdiscrete-return LiDAR. Trees-Structure and Function, 2007, 21(3):295-310
    Couturier S, Gastellu-Etchegorry J, Pati o P, et al. A model-based performance test for forest classifiers onremote-sensing imagery. Forest Ecology and Management, 2009, 257(1):23-37
    Curtis R O, Marshall R O. Why quadratic mean diameter? Western Journal of Applied Forestry, 2000,15(3):137-139
    Cutini A, Matteucci G, Mugnozza G S. Estimation of leaf area index with the Li-Cor LAI 2000 in deciduousforests. Forest Ecology and Management, 1998, 105(1-3):55-65
    Danson F M, Curran P J. Factors affecting the remotely sensed response of coniferous forest canopies.Remote Sensing of Environment, 1993, 43(1):55-65.
    Dolan K A, Hurtt G C, Chambers J Q, et al. Using ICESat's Geoscience Laser Altimeter System (GLAS) toassess large-scale forest disturbance caused by hurricane Katrina. Remote Sensing of Environment,2011, 115(1): 86-96
    Donoghue D N M, Watt P J, Cox N J, et al. Remote sensing of species mixtures in conifer plantations usingLiDAR height and intensity data. Remote Sensing of Environment, 2007, 110(4):509-522
    Drake J B, Dubayah R O, Clark D B, et al. Estimation of tropical forest structural characteristics usinglarge-footprint LiDAR. Remote Sensing of Environment, 2002, 79(2-3):305-319
    Duong H, Pfeifer N, Lindenbergh R. Full waveform analysis: ICESat laser data for land cover classification.In Remote Sensing: From Pixels to Processes: Proceedings of the ISPRS Commission VII Mid-TermSymposium, 8-11 May 2006, Enschede, the Netherlands.
    Duong V H, Lindenbergh R, Pfeifer N, et al. Single and two epoch analysis of ICESat full waveform dataover forested areas, International Journal of Remote Sensing, 2008,29(5):1453-1473
    Durbha S S, King R L, Nicolas H, et al. Support vector machines regression for retrieval of leaf area indexfrom multiangle imaging spectroradiometer. Remote Sensing of Environment, 2007, 107(1-2): 348-361
    Eriksson H, Eklundh L, Kuusk A, et al. Impact of understory vegetation on forest canopy reflectance andremotely sensed LAI estimates. Remote Sensing of Environment, 2006, 103(4): 408-418
    Farid A, Goodrich D C, Bryant R, et al. Using airborne lidar to predict Leaf Area Index in cottonwood treesand refine riparian water-use estimates. Journal of Arid Environments, 2008, 72(1): 1-15
    Fassnacht K S, Gower S T, Norman J M, et al. A comparison of optical and direct methods for estimatingfoliage surface area index in forests. Agricultural and Forest Meteorology, 1994, 71(1-2):183-207
    Franklin S E. Remote sensing for sustainable forest management. Lewis Publishers, Boca Raton, Fla, 2001
    Gholz H L. Environmental limits on aboveground net primary production, leaf area, and biomass invegetation zones of the Pacific Northwest. Ecology, 1982, 63(2): 469-481
    Gong P, Pu R L, Greg S, et al. Estimation of forest leaf area index using vegetation indices derived fromHyperion hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(6):1355-1361
    Gougeon F A. The individual tree crown (ITC) suite. Canadian Forest Service, Victoria, 2005
    Gower S T, Kucharik C J, Norman J M. Direct and indirect estimation of leaf area index, fAPAR, and netprimary production of terrestrial ecosystems. Remote Sensing of Environment, 1999, 70(1):29-51
    Gray J, Song C.Mapping leaf area index using spatial, spectral, and temporal information from multiplesensors. Remote Sensing of Environment, 2012, 119: 173-183
    Grier C C, Running S W. Leaf area of mature Northwestern coniferous forests: relation to site water balance.Ecology, 1977, 58(4): 893-899
    Haboudane D, Miller J R, Elizabeth Pattey, et al. Hyperspectral vegetation indices and novel algorithm forpredicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture.Remote Sensing of Environment, 2004, 90(3): 337-352
    Harding D J, Carabajal C C. ICESat waveform measurements of within-footprint topographic relief andvegetation vertical structure. Geophysics Research Letter, 2005, 32, L21S10, doi:10.1029/2005GL023471
    Harding D J, Lefsky M A, Parker G G, et al. Laser altimeter canopy height profiles: Methods and validationfor deciduous, broadleaf forests. Remote Sensing of Environment, 2001, 76(3):283-297
    Heurich M. Automatic recognition and measurement of single trees based on data from airborne laserscanning over the richly structured natural forests of the Bavarian Forest National Park. Forest Ecologyand Management, 2008, 255(7):2416-2433
    Hofton M A, Minster J B, Blair J B. Decomposition of Laser altimeter waveforms. IEEE Transactions onGeoscience and Remote Sensing, 2000, 38(4):1989-1996
    Hollen B N, Tueker C J, Fan C J. Spectral assessment of soybean leaf area and leaf biomass.Photogrammetric Engineering and Remote Sensing, 1980, 46(5):651-656
    Holmgren J, Nilsson M, Olsson H. Estimation of tree height and stem volume on plots using airborne laserscanning. Forest Science, 2003, 49(3):419-428
    Holmgren J, Persson . Identifying species of individual trees using airborne laser scanner. Remote Sensingof Environment, 2004, 90(4):415-423
    Huete A R, Justice C, Liu H. Development of vegetation and soil indices for MODIS-EOS. Remote Sensingof Environment, 1994, 49(3):224-234
    Huete A R. A soil adjusted vegetation index (SAVI). Remote Sensing of Environment, 1988, 25(3): 295-309
    Hug C, Ullrich A, Grimm A. Litemapper-5600: a waveform-digitizing LiDAR terrain and vegetationmapping system. International Archives of Photogrammetry, Remote Sensing Spatial InformationSciences, XXXVI part 8/W2,2004: 24-29
    Hyde P, Dubayah R, Peterson B, et al. Mapping forest structure for wildlife habitat analysis using waveformlidar:validation of montane ecosystems. Remote Sensing of Environment, 2005, 96(3-4):427-437
    Hyyppa J, Hyyppa H, Leckie D, et al. Review of methods of small-footprint airborne laser scanning forextracting forest inventory data in boreal forests. International Journal of Remote Sensing, 2008,29(5):1339-1366
    Jonckheere I, Fleck S, Nackaerts K, et al. Review of methods for in situ leaf area index determination Part I.Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology, 2004,121(1-2):19-35
    Jordan C F. Derivation of leaf area index from quality of light on the forest floor. Ecology, 1969,50(4):663-666
    Kaufman Y J, TanréD. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEETransactions on Geoscience and Remote Sensing, 1992, 30(2):261-270
    King M D. EOS science plan, the state of science in the EOS program. USA:National Aeronautics andSpace Administration,1999:1-20
    Kirchhof M, Jutzi B, Stilla U. Iterative processing of laser scanning data by full waveform analysis. ISPRSJournal of Photogrammetry and Remote Sensing, 2008, 63(1):99-114
    Koch B. Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing datafor forest biomass assessment. ISPRS Journal of Photogrammetry and Remote Sensing, 2010,65(6):581-590
    Koetz B, Baret F, Poilve H, et al. Use of coupled canopy structure dynamic and radiative transfer models toestimate biophysical canopy characteristics. Remote Sensing of Environment, 2005, 95(1), 115-124.
    Kohl M. Inventory: Multipurpose resource invnetoris. In: Encyclopedia of forest science. Elsevier:2004:403-409
    Korhonen L Korpela I, Heiskanen J, et al. Airborne discrete-return LiDAR data in the estimation of verticalcanopy cover, angular canopy closure and leaf area index. Remote Sensing of Environment, 2011,115(4): 1065-1080.
    Kotchenova S Y, Song X, Shabanov N V, et al. Lidar remote sensing for modelling gross primary productionof deciduous forests. Remote Sensing of Environment, 2004, 92(2):158-172
    Kronsedera K, Ballhorna U, B hmc V,et al.Above ground biomass estimation across forest types at differentdegradation levels in Central Kalimantan using LiDAR data.International Journal of Applied EarthObservation and Geoinformation,2012,18:37-48
    Kussner R, Mosandl R. Comparison of direct and indirect estimation of leaf area index in mature Norwayspruce stands of eastern Germany. Canadian Journal of Forest Research, 2000, 30(3): 440-447
    Kwak D A, Lee W K, Menas K, et al. Estimation of effective plant area index for South Korean forestsusing LiDAR system. Science China Life Sciences, 2010, 53(7): 898-908
    Lang A R G, McMurtrie R E, Benson M L. Validity of surface area indices of Pinus radiata estimated fromtransmittance of the sun’s beam. Agricultural and Forest Meteorology, 1991, 57(1-3):157-170
    Le T T, Quegan S, Woodward I, et al. Relating radar remote sensing of biomass to modeling of forest carbonbudgets. Climatic Change, 2004, 67(2-3):379-402
    Lee A C, Lucas R M. A LiDAR-derived canopy density model for tree stem and crown mapping inAustralian forests. Remote Sensing of Environment, 2007, 111(4):493-5182
    Leeuwen M V, Coops N C, Wulder M A. Canopy surface reconstruction from a LiDAR point cloud usinghough transform.Remote Sensing Letters,2010, 1(3):125-132
    Leeuwen M, Nieuwenhuis M. Retrieval of forest structural parameters using LiDAR remote sensing.European Journal of Forest Research, 2010, 129(4): 749-770
    Lefsky M A, Cohen W B, Acker S A, et al. Lidar remote sensing of the canopy structure and biophysicalproperties of Douglas-fir western hemlock forests. Remote Sensing of Environment, 1999a,70(3):339-361
    Lefsky M A, Cohen W B, Harding D J, et al. Lidar remote sensing of above-ground biomass in three biomes.Global Ecology and Biogeography, 2002, 11:393-399
    Lefsky M A, Cohen W B, Parker G G, et al. LiDAR remote sensing for ecosystem studies, Bioscience, 2002,52(1), 19-30
    Lefsky M A, Cohen W B, Spies T A. An evaluation of alternate remote sensing products for forest inventory,monitoring, and mapping of Douglas-fir forest in Western Oregon. Canadian Journal of RemoteSensing, 2001, 31(1):78-87
    Lefsky M A, Harding D J, Keller M, et al. Estimates of forest canopy height and aboveground biomassusing ICESat. Geophysical Research Letters, 32, L22S02, doi: 10.1029/2005GL023971, 2005a
    Lefsky M A, Harding D, Cohen W B, et al. Surface lidar remote sensing of basal area and biomass indeciduous forests of eastern Maryland, USA. Remote Sensing of Environment, 1999b, 67(1):83-98
    Lefsky M A, Hudak A T, Cohen WB, et al. Geographic variability in LiDAR predictions of forest standstructure in the Pacific Northwest. Remote Sensing of Environment, 2005b, 95(4):532-548
    Lefsky M A, Keller M, Pang Y, et al. Revised method for forest canopy height estimation from geosciencelaser altimeter system waveforms. Journal of Applied Remote Sensing, 2007,1:1-18
    Lefsky M A. Application of Lidar Remote Sensing to the Estimation of Forest Canopy and StandStructure.Ph.D. Dissertation, University of Virginia, 1997
    Lewis P, Hancock S. LiDAR for vegetation applications. UCL, Gower St, London, UK, 2007
    Lim K, Treitz P, Baldwin K, et al. LiDAR remote sensing of biophysical properties of tolerant northernhardwood forests. Canadian Journal of Remote Sensing, 2003b, 29(5): 658-678
    Lim K, Treitz P, Wulder M, et al. LiDAR remote sensing of forest structure. Progress Physical Geography,2003a, 27(1):88-106
    Lovell J L, Jupp D L B, Newnham G J, et al. Simulation study for finding optimal LiDAR acquisitionparameters for forest height retrieval. Forest Ecology and Management, 2005, 214(1-3):398-412
    Maltamo M, Eerik inen K, Packalén P, et al. Estimation of stem volume using laser scanning-based canopyheight metrics. Forestry, 2006, 79(2):217-229
    Maltamo M, Eerik inen K, Pitk nen J, et al. Estimation of timber volume and stem density based onscanning laser altimetry and expected tree size distribution functions. Remote Sensing of Environment,2004, 90(3):319-330
    Maltamo M, Kangas A, Uuttera J, et al. Comparison of percentile based predicted methods and Weibulldistribution in describing diameter distribution of heterogeneous Scots pine stands. Forest Ecology andManagement, 2000, 133(3):263-274
    Markwardt C. Non-linear least squares fitting in IDL with MPFIT. Astronomical Data Analysis Softwareand Systems XVIII, 2008, 411:251
    McNaughton K G., Jarvis P G. Predicting effects of vegetation changes on transpiration and evaporation. InT.T. Kozlowski (Ed.) Water Deficits and Plant Growth. London, England, Academic Press, 1983:1-47
    Mishra K B, Gopal R. Detection of nickel-induced stress using laser-induced fluorescence signatures fromleaves of wheat seedlings. International Journal of Remote Sensing, 2008, 29(1): 157-173
    Monsi M, Saeki T.über den Lichtfaktor in den Pflanzengesellchaften und seine Bedeutung für dieStoffproduktion. Japanese Journal of Botany, 1953, 14:22-52
    Morsdorf F, Koetz B, Meier E, et al. Estimation of LAI and fractional cover from small footprint airbornelaser scanning data based on gap fraction. Remote Sensing of Environment, 2006, 104(1):50-61
    Morsdorf F, Meier E, Koetz B, et al. LiDAR-based geometric reconstruction of boreal type forest stands atsingle tree level for forest and wildland fire management. Remote Sensing of Environment, 2004,92(3):353-362
    Morsdorf F, Nichol C, Malthus T, et al. Assessing forest structural and physiological information content ofmultispectral LiDAR waveforms by radiative transfer modelling.Remote Sensing of Environment,2009,113(10):2152-2163
    Mutlu M, Popescu S C, Stripling C, et al. assessing surface fuel models using LiDAR and multispectral datafusion. Remote Sensing of Environment, 2008, 112(1), 274-285
    N sset E, Bollands s O M, Gobakken T. Comparing regression methods in estimation of biophysicalproperties of forest stands from two different inventories using laser scanner data. Remote Sensing ofEnvironment, 2005, 94(4):541-553
    N sset E, Gobakken T. Estimation of above- and below-ground biomass across regions of the boreal forestzone using airborne laser. Remote Sensing of Environment, 2008, 112(6):3079-3090
    N sset E, kland T. Estimating tree height and tree crown properties using airborne scanning laser in aboreal nature reserve. Remote Sensing of Environment, 2002, 79(1):105-115
    N sset E. Effects of different sensors, flying altitudes, and pulse repetition frequencies on forest canopymetrics and biophysical stand properties derived from small-footprint airborne laser data. RemoteSensing of Environment, 2009, 113(1):148-159
    N sset E. Practical large-scale forest stand inventory using a small footprint airborne scanning laser.Scandinavian Journal of Forest Research, 2004, 19(2):164-179
    NASA:http://icesat.gsfc.nasa.gov/icesat2/,2012.2
    Nathalie J J, Bre da. Ground-based measurements of leaf area index: a review of methods, instruments andcurrent controversies. Journal of Experimental Botany, 2003, 54(392): 2403-2417
    Nelson R, Jimenez J, Schnell C E, et al. Canopy height models and airborne lasers to estimate forestbiomass: two problems. International Journal of Remote Sensing, 2000, 21(11):2153-2162
    Nelson R, Ranson R J, Sun G, et al. Estimating Siberian timber volume using MODIS andICESat/GLASlume.Remote Sensing of Environment, 2009, 113(3):691-701
    Nelson R. Modeling forest canopy heights: the effects of canopy shape. Remote sensing of Environment,1997, 60(3):327-334
    Neuenschwander A L, Urban T J, Gutierrez R, et al. Characterization of ICESat/GLAS waveforms overterrestrial ecosystems: Implications for vegetation mapping. Journal of Geophysical Research,113(G02S03).doi:10.1029/2007JG000557, 2008
    Nilson T. Inversion of gap frequency data in forest stands. Agricultural and Forest Meteorology, 1999,98/99:437-448
    Oke T R. Boundary layer climates.Routledge, London, 1995 rka H O, N sset E, Bollands s O M. Classifying species of individual trees by intensity and structurefeatures derived from airborne laser scanner data. Remote Sensing of Environment, 2009,113(6):1163-1174
    Pang Y, Li Zy, Sun Gq, et al. Model based terrain effect analyses on ICEsat GLAS waveforms. In:Proceedings of IEEE international conference on geoscience remote sensing symposium 2006, 31July-4 Aug. IEEE, Denver,2006,pp :3232-3235
    Peduzzi A, Wynne R H, Fox T R, et al.Estimating leaf area index in intensively managed pine plantationsusing airborne laser scanner data.Forest Ecology and Management, 2012, 270:54-65
    Pfeifer N, Briese C. Geometrical aspects of airborne and terrestrial laser scanning. International Archives ofthe Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVI part 3/W52, 2007:311-319
    Pieree L L, Running S W. Rapid estimation of coniferous forest leaf area index using a Portable integratingradiometer. Ecology, 1988, 69(6):1762-1767
    Pirotti F. IceSAT/GLAS waveform signal processing for ground cover classification: state of the art.ItalianJournal of Remote Sensing, 2010, 42(2):13-26
    Popescu S C, Wynne R H, Nelson R F. Estimating plot-level tree heights with LiDAR: local filtering with acanopy-height based variable window size. Computers and Electronics in Agriculture, 2002,37(1-3):71-95
    Popescu S C, Wynne R H, Nelson R F. Measuring individual tree crown diameter with LiDAR and assessingits influence on estimating forest volume and biomass. Canadian Journal of Remote Sensing, 2003,29(5):564-577
    Popescu S C, Zhao Kg, Neuenschwander A, et al. Retrieving vegetation height of forests and woodlandsover mountainous areas in the Pacific Coast region using satellite laser altimetry. Remote Sensing ofEnvironment, 2011, 115(11):2786-2797
    Popescu S, Wynne R H. Seeing the trees in the forest: using lidar and multispectral data fusion with localfiltering and variable window size for estimating tree height. ISPRS Journal of Photogrammetry andRemote Sensing, 2004, 70(5):589-604
    Prentice I C, Farquhar G D, Fasham M J R, et al. The Carbon Cycle and Atmospheric Carbon Dioxide, 2001
    Qi J, Kerr Y H, Moran M S, et al. Leaf Area Index estimates using remotely sensed data and BRDF modelsin a semiarid region. Remote Sensing of Environment, 2000, 73(1):18 -30
    Rahman M Z A, Gorte B G H. Tree crown delineation from high resolution airborne lidar based on densitiesof high points. International Archives of the Photogrammetry, Remote Sensing and Spatial InformationSciences, XXXVIII part 3/W8, 2009:123-128
    Ralph D, Robert K, Michelle H,et al.Land surface characterization using Lidar remote sensing. In: M Hilland R Asp inall. Spatial Information for Land Use Management. International PublishersDirect,Singapore, 2000
    Ranson K J, Kimes D, Sun G, et al. Using MODIS and GLAS data to develop timber volume estimates incentral Siberia. In: International Conference on Geoscience and Remote Sensing Symposium 2007,23-28 July.IEEE, Barcelona,2007: 2306-2309
    Ranson K J, Sun G, Kovacs K, et al. Landcover attributes from ICESat GLAS data in central Siberia. In:Proceedings of international geoscience and remote sensing symposium 2004, 20-24 September. IEEEInternational, Anchorage, 2004a: 753-756
    Ranson K J, Sun G, Kovacs K, et al. Use of ICESat GLAS data for forest disturbance studies in centralSiberia. In: Proceedings of international geoscience and remote sensing symposium 2004, 20-24September. IEEE International, Anchorage, 2004b:1936-1939
    Reitberger J, Krzystek P, Stilla U. Analysis of full waveform LiDAR data for the classification of deciduousand coniferous trees. International Journal Remote Sensing, 2008, 29(5):1407-1431
    Reitberger J, Schn rr C, Krzystek P,et al. 3D segmentation of single trees exploiting full waveform LiDARdata. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(6):561-574
    Ria o D, Meier E, Allgoewer B, et al. Modeling airborne laser scanning data for the spatial generation ofcritical forest parameters in fire behavior modeling. Remote Sensing of Environment, 2003,86(2):177-186
    Ria o D, Valladares F, Condés S, et al. Estimation of leaf area index and covered ground from airborne laserscanner (Lidar) in two contrasting forests. Agricultural and Forest Meteorology, 2004,124(3-4):269-275
    Richardson J J, Moskal L M, Kim S H, et al. Modeling approaches to estimate effective leaf area index fromaerial discrete-return LiDAR. Agricultural and Forest Meteorology, 2009, 149(6-7): 1152-1160
    Rosette J A B, North P R J, Suárez J C, et al. A comparison of biophysical parameter retrieval for forestryusing airborne and satellite LiDAR. International Journal of Remote Sensing, 2009, 30(19): 5229-5237
    Rosette J A B, North P R J, Suárez J C. Vegetation height estimates for a mixed temperate forest usingsatellite laser altimetry. International Journal Remote Sensing, 2008, 29(5):1475-1493
    Rouse J W, Haas R H. Monitoring vegetation systems in the great plain with ERTS. Third ERTSSymposium, Washington, DC: NASA, 1973, 1:309-317
    Sasaki T, Imanishi J, Ioki K, et al. Estimation of leaf area index and canopy openness in broadleaved forestusing an airborne laser scanner in comparison with high-resolution near-infrared digital photography.Landscape Ecological Engineering, 2008, 4(1):47-55
    Schroeder P E, McCandish B, Waring R H, et al. The relationship of maximum canopy leaf area to forestgrowth in eastern Washington. Northwest Science, 1982, 56(2): 120-130
    Schutz B E, Zwally H J, Shuman C A, et al.Overview of the ICESat Mission. Geophysical Research Letters,32, L21S01, doi: 10.1029/2005GL024009, 2005
    Simard M, Rivera-Monroy V H, Mancera-Pineda J E, et al. A systematic method for 3D mapping ofmangrove forests based on shuttle radar topography mission elevation data, ICEsat/GLAS waveformsand field data: application to Cie′naga Grande de Santa Marta, Colombia. Remote Sensing ofEnvironment, 2008, 112(5):2131-2144
    Solberg S, Brunner A, Hanssen K H, et al. Mapping LAI in a Norway spruce forest using airborne laserscanning.Remote Sensing of Environment ,2009,113(11): 2317-2327
    Solberg S, Nasset E, Hanssen K H,et al.Mapping defoliation during a severe insect attack on Scots pineusing airborne laser scanning. Remote Sensing of Environment, 2006, 102(3-4): 364-376
    Solberg S,Eklundh L, Gjertsen A, et al. Testing remote sensing techniques for monitoring large scale insectdefoliation.ForestSat 2007, Montpellier, France ,2007
    Solberg S. Mapping gap fraction, LAI and defoliation using various ALS penetration variables. InternationalJournal of Remote Sensing, 2010, 31(5): 1227-1244
    Soudani K, Fran ois C, Maire L, et al.Comparative analysis of IKONOS, SPOT, and ETM+ data for leafarea index estimation in temperate coniferous and deciduous forest stands. Remote Sensing ofEnvironment, 2006, 102(1-2):161-175
    Spanner M A, Pierce L L, Running S W, et al. Remote sensing of temperate coniferous forest leaf areaindex:the influence of canopy closure,understory vegetation,and background spectralresponse.International Journal of Remote Sensing,1990,11(1):95-111
    Stenberg P, Linder S, Smolander H, et al. Performance of the LAI-2000 plant canopy analyzer in estimatingleaf-area index of some scots pine stands. Tree Physiology, 1994, 14:981-995
    Sun G, Ranson K J, Kimes D S, et al.Forest vertical structure from GLAS: An evaluation using LVIS andSRTM data. Remote Sensing of Environment, 2008, 112(1):107-117
    Tian Q, Luo Z, Chen J M, et al. Retrieving leaf area index for coniferous forest in Xingguo County, Chinawith Landsat ETM+ images. Journal of Environmental Management, 2007, 85(3): 624-627.
    Tian Y H, Woodcock C E, Wang Y J et al. Multi-scale analysis and validation of the MODIS LAI product, I.Uncertainty assessment.Remote Sensing of Environment, 2002,83(3):414-430
    Turner D P, Cohen W B, Kennedy R E, et al. Relationships between leaf area index and Landsat TM spectralvegetation indices across three temperate zone sites.Remote Sensing of Environment, 1999, 70(1):52-68
    Verhoef W. Light scattering by leaf layers with applications to canopy reflectance modeling: The SAILmodel. Remote Sensing of Environment, 1984, 16(2): 125-141
    Wagner W, Hollaus M, Briese C,et al. 3D vegetation mapping using small-footprint full-waveform airbornelaserscanners. International Journal of Remote Sensing, 2008, 29(3):1433-1452
    Wagner W, Ullrich A, Ducic V, et al. Gaussian decomposition and calibration of a novel small-footprintfull-waveform digitizing airborne laser scanner. ISPRS Journal of Photogrammetry and RemoteSensing, 2006, 60(2):100-112
    Wang C, Glenn N F. A linear regression method for tree canopy height estimation using airborne lidardata.Canadian Journal of Remote Sensing, 2008, 34(2):217-227
    Wang C, Glenn N F. Estimation of fire severity using pre-and post-fire LiDAR data in sagebrush stepperangelands.International Journal of Wildland Fire,2009,18(7):848-856
    Wang Q, Adiku S, Tenhunen J, et al.On the relationship of NDVI with leaf area index in a deciduous forestsite. Remote Sensing of Environment, 2005, 94(2):244-255
    Waring R H, Running S W. Forest Ecosystems:Analysis at Multiple Scales.Academic Press,San Diego,1998
    Wehr A, Lohr U. Airborne laser scanning-an introduction and overview.ISPRS Journal of Photogrammetryand Remote Sensing, 1999, 54(2-3): 68-82
    Weinacker H, Koch B, Heyder U, et al. Development of filtering, segmentation and modelling modules forLiDAR and multispectral data as a fundament of an automatic forest inventory system. InternationalArchives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVI part8/W2, 2004:50-55
    Weishampel J F, Ranson K J, Harding D J. Remote sensing of forest canopies. Selbyana, 1996 17:6-14
    Wezyk P, Tompalski P, Szostak M, et al. Describing the selected canopy layer parameters of the Scots pinestands using ALS data. SilviLaser 2008, Edinburgh, Sept 17-19
    Wittwer S. Land related global habitability science issues, Washington, D.C., National Aeronautics andSpace Administration, 1983:93-97
    Wulder M A, LeDrew E F, Franklin S E,et al. Aerial image texture information in the estimation of northerndeciduous and mixed wood forest leaf area index(LAI).Remote Sensing ofEnvironment,1998,64(1):64-76
    Yu X, Hyypp J, Kaartinen H, et al. Obtaining plotwise mean height and volume growth in boreal forestsusing multi-temporal laser surveys and various change detection techniques. International JournalRemote Sensing, 2008, 29(5):1367-1386
    Zhao K, Popescu S, Nelson R. LiDAR remote sensing of forest biomass: a scale invariant estimationapproach using airborne lasers. Remote Sensing of Environment, 2009, 113(1):182-196
    Zhao K, Popescu S. Lidar-based mapping of leaf area index and its use for validating GLOBCARBONsatellite LAI product in a temperate forest of the southern USA. Remote Sensing of Environment, 2009,113(8): 1628-1645
    Zimble D A, Evans D L. Carlson G C, et al. Characterizing vertical forest structure using small-footprintairborne LiDAR. Remote Sensing of Environment, 2003(2-3), 87:171-182
    Zwally H J,Schutz B, Abdalati W, et al. ICESat’s laser measurements of polar ice,atmosphere,ocean,andland.Journal of Geodynamics,2002, 34(3-4):405-445
    常学向,赵文智,赵爱芬.黑河中游二白杨叶面积指数动态变化及其与耗水量的关系.冰川冻土,2006,28 (1): 85- 901
    陈瀚阅,牛铮,黄文江,等.基于热点植被指数的冬小麦叶面积指数估算.农业工程学报,2012,28(1):167-172
    程武学,潘开志,杨存建.叶面积指数(LAI)测定方法研究进展.四川林业科技,2010,31(3):51-54
    戴永江.激光雷达原理.北京:国防工业出版社,2002
    董立新,吴炳方,唐世浩.激光雷达GLAS与ETM联合反演森林地上生物量研究.北京大学学报(自然科学版),2011,47(4):703-710
    范春波,李建成,王丹,等.激光高度计卫星ICESAT在地学研究中的应用.大地测量与地球动力学,2005,25(2):94-97
    方秀琴,张万昌.叶面积指数( LAI)的遥感定量方法综述.国土资源遥感,2003,14(3): 58-62
    冯仲科,杨伯钢,罗旭,等.应用Lidar技术预测林分蓄积量.北京林业大学学报,2007,29(增2):45-51
    韩桂华,王强,刘丹丹.基于多角度遥感物理模型的叶面积指数反演.测绘科学,2010,35(3):77-79
    黄华兵.激光雷达森林结构参数提取:[博士学位论文].北京:中国科学院遥感应用研究所,2008
    姬剑锋,焦文海,胡国军.卫星激光测高原理及其测距精度估算.测绘技术装备,2005,7(2):46-49
    赖旭东.机载激光雷达基础原理与应用.北京:电子工业出版社,2010
    李然,王成,苏国中,等.星载激光雷达的发展与应用.科技导报,2007,25(14):58-63
    李树楷,薛永祺.高效三维遥感集成技术系统.北京:科学出版社,2000
    李轩然,刘琪,蔡哲,等.千烟洲针叶林的比叶面积和叶面积指数.植物生态学报,2007,31 (1):93-101
    林文鹏,赵敏,张翼飞,等.基于SPOT5遥感影像的城市森林叶面积指数反演.测绘科学,2008,33(2):57-60.
    刘东起,范文义,李明泽.利用小光斑激光雷达估测林分参数和生物量.东北林业大学学报,2012,40(1):39-43
    刘峰,杨志高,龚健雅.利用机载激光雷达的林木识别与参数反演.中国农学通报,2012,28(1):80-84
    刘琪,沼田洋一,金田真一.航空激光雷达用于森林测量的数据处理方法研究.遥感学报,2008,12(1):104-110
    刘清旺,李增元,陈尔学,等.利用机载激光雷达提取单株木树高和树冠.北京林业大学学报,2008,30(6):83-89
    刘清旺.机载激光雷达森林参数估测方法研究:[博士学位论文].北京:中国林业科学研究院,2009
    刘晓臣,范闻捷,田庆久,等.不同叶面积指数反演方法比较研究.北京大学学报(自然科学版),2008,44(5):826-834
    马燕.机载激光的应用与发展.科教文汇,2006,11:193-194
    蒙继华,吴炳方,李强子.全国农作物叶面积指数遥感估算方法.农业工程学报,2007,23(2):161-167
    孟好军,刘建泉,刘贤德,等.祁连山青海云杉群落物种组成及α多样性垂直分布.生态环境学报,2011,20(3): 435-440
    庞勇,李增元,Sun Guoqing,等.地形对大光斑激光雷达森林回波影响研究.林业科学研究,2007,20(4),464-468
    庞勇,李增元,陈尔学,等.激光雷达技术及其在林业上的应用.林业科学,2005,41(3):129-136
    庞勇,于信芳,李增元,等.星载激光雷达波形长度提取与林业应用潜力分析.林业科学,2006,42(7):137-140
    庞勇,赵峰,李增元,等.机载激光雷达平均树高提取研究.遥感学报,2008,12(1):152-158
    任海,彭少麟.鼎湖山森林群落的几种叶面积指数测定方法的比较.生态学报,1997,17 (2) : 220-223
    谭一波,赵仲辉.叶面积指数的主要测定方法.林业调查规划,2008,33(3):45-48
    王成,程峰.基于ICESat GLAS和MODIS数据的植被平均高度反演—以东北三省为例.第一届全国激光雷达对地观测高级学术研讨会论文集,2010,426-432
    王金亮,程峰,王成,等.基于ICESat-GLAS数据估算复杂地形区域森林蓄积量潜力初探—以云南香格里拉县为例.遥感技术与应用,2012,27 (1): 45-50
    王希群,马履一,贾忠奎,等.叶面积指数的研究和应用进展.生态学杂志,2005,24(5):537-541
    邢艳秋,王立海.基于ICESat-GLAS完整波形的坡地森林冠层高度反演研究一一以吉林长白山林区为例.武汉大学学报(信息科学版),2009,34(6):696-700
    徐柏林,王金叶,葛双兰.祁连山(北坡)水源涵养林类型划分与组成结构分析.甘肃林业科技,2001,26(3):16-19
    徐全芝,张万昌,刘三超,等.黑河流域叶面积指数的遥感反演.干旱区研究,2003,20(4):281-285
    杨帆,温家洪,Weili Wang.ICESat与ICESat-2应用进展与展望.极地研究,2011,23(2):138-148
    张佳华,延晓冬,池宏康.植被碳通化估测与遥感信息的关系研究.中国生态农业学报.2003,11(3):5-8
    张靖,高伟.LAS格式解析及其扩展域的应用.测绘科学,2008,33(3):154-155
    张小红.机载激光雷达测量技术理论与方法.武汉:武汉大学出版社,2007
    张正杨,马新明,贾方方,等.烟草叶面积指数的高光谱估算模型.生态学报,2012,32(1):168-175
    赵峰,庞勇,李增元,等.机载激光雷达和航空数码影像单木树高提取.林业科学,2009,45(10):81-87
    赵峰.机载激光雷达数据和数码相机影像林木参数提取研究:[博士学位论文].北京:中国林业科学研究院,2007
    周宇宇,唐世浩,朱启疆,等.长白山自然保护区叶面积指数测量及结果.资源科学,2003,25(6):38-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700