巢湖东部水源区磷季节性形态变化及微生物影响模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巢湖富营养化问题已影响到沿岸居民的生产和生活,而磷是导致巢湖水体富营养化的关键性因子。经过多年的控制和治理,点源污染已逐步得到控制,农业非点源污染和内源污染逐渐成为巢湖流域磷主要来源。内源磷在环境条件发生变化时,如温度、溶解氧和扰动等,可以作为“源”向上覆水释放磷,维持水体富营养化状态。
     本文以巢湖东部水源地及入湖河流的磷为研究对象,分析了磷的形态特征及时空变化规律,初步探讨其可能的主要来源,并进行沉积物生物可利用磷释放模拟实验,讨论微生物对这一迁移转化过程的影响。工作主要集中在以下几个方面:
     1、巢湖东部水源地及入湖河流磷形态时空变化特征和来源探讨
     巢湖水体常年呈微碱性,入湖河流磷呈现明显的季节性变化,丰水期高于枯水期;双桥河磷浓度高于柘皋河和小柘皋河;水源区磷浓度受陆源影响呈现相似的季节性变化,湖区磷随时间变化较小,且离主湖区越近磷含量越低。
     柘皋河和小柘皋河磷主要来源是农业用水和生活污水,双桥河还受工业废水和固体污染物的影响,水质较差。三条入湖河流均以非点源污染为主,因此水体磷浓度受降雨影响较大,丰水期高于平水期和枯水期。湖区与入湖河流磷浓度存在差异,河流相对较高,入湖河流是湖泊磷污染的重要来源。颗粒磷为水体磷主要形态,多源于地表径流和生活污水等非点源污染,对水源区水体磷影响较大。
     2、生物可利用磷迁移转化的模拟研究
     在巢湖东部水源地水体磷时空分布和来源探讨的基础上,采集西半湖沉积物,进行室内模拟实验,探索了环境因素(温度、溶解氧、水力扰动及灭菌)对上覆水和沉积物中生物可利用磷形态的影响。
     巢湖西半湖水体和沉积物样均呈微碱性,水体总磷超过v类水标准,颗粒磷为主要形态。沉积物生物可利用磷基本表现为藻类可利用磷(AAP)>水溶性磷(WSP)>碳酸氢钠提取磷(OLP)>易解析磷(RDP)。动力学实验结果表明:上覆水磷初始浓度为0.05mg/L时,沉积物表现为“源”;上覆水磷初始浓度为0.5mg/L时,沉积物表现为“汇”。
     在不同的环境条件下,灭菌体系中上覆水磷浓度均明显高于未灭菌体系:灭菌体系上覆水总磷浓度随温度升高而上升,未灭菌体系变化趋势与其相反,减小以正磷酸盐为主。好氧状态下水体总磷浓度高于厌氧状态,溶解性总磷浓度小于厌氧状态。扰动使水体总磷浓度显著升高,且随扰动频率的增加而呈增大的趋势,在扰动后水体颗粒磷升高,溶解性正磷酸盐和溶解性有机磷浓度降低,主要原因是水体中细小悬浮颗粒物的吸附和絮凝作用,所以扰动仅引起总磷的释放,而不一定导致溶解性磷酸盐的释放。
     不同环境条件下,沉积物中生物可利用磷浓度明显高于灭菌体系,四种生物可利用磷含量大小顺序一致,基本表现为AAP>WSP>OLP>RDP。微生物对沉积物RDP迁移转化影响较小;模拟实验后沉积物WSP均小于原沉积物,呈现一定的释放,温度和微生物作用对WSP影响较小;AAP和OLP变化趋势相似,随温度升高呈波动状态,其原因有待于进一步研究。厌氧状态下生物可利用磷基本高于好氧状态。沉积物扰动导致磷形态分布和生物可利用磷含量发生改变,转速60r/min条件下AAP含量明显低于对照实验,底泥再悬浮减小了铁结合态磷对AAP的贡献,抑制了沉积物AAP的形成,但140r/min扰动下沉积物BAP大幅上升,其原因还有待于进一步研究。
     3、微生物作用下生物可利用磷转化的模拟研究
     本文研究了不同温度条件下,腐殖质还原菌对水-沉积物界面生物可利用磷形态转化的影响。
     腐殖质还原菌促进上覆水生物可利用磷浓度升高,沉积物表现为“源”。当体系中存在自然菌群时,虽然外加腐殖质还原菌能促使上覆水磷浓度升高,但还是低于上覆水初始浓度,沉积物呈现“汇”的特征。在腐殖质还原菌单独作用下,上覆水生物可利用磷含量更高,腐殖质还原菌可能削弱沉积物中原有微生物的聚磷作用。
     腐殖质还原菌和自然菌群都能促进沉积物生物可利用磷的形成和累积。温度变化下,除了AAP, WSP、 OLP和RDP含量均是在腐殖质还原菌的单独作用下最大。外加腐殖质还原菌对WSP影响较小;在沉积物自然菌群存在时,外加腐殖质还原菌对沉积物OLP含量影响较小;腐殖质还原菌促进RDP形成,在原沉积物自然菌群存在下,削弱了腐殖质还原菌对沉积物RDP形成的促进作用。60r/min状态下沉积物BAP波动较大。AAP含量随转速升高呈先升高后降低的趋势,与上覆水DIP相反。腐殖质还原菌促进沉积物WSP和RDP形成。
Lake eutrophication already has affected the production and life of coast residents.Phosphorus is a key factor leading to the eutrophication of Chaohu Lake. After years of control and governance,the point sources are gradually being controlled, and the agricultural non-point source pollution and internal source pollution become the main sources of phosphorus pollution in Chaohu Lake Basin. When various environmental factors influence internal phosphorus,such as temperature, DO and disturbance, phosphorus in the sediments can release and lead eutrophication.
     The character of phosphorus speciations were investigated,and possible sources were estimated We maked the simulation experiment of sediment bioavailable phosphorus release,and discuss the impact of microorganisms on the transformation process. The main work is in the following aspects:
     1.Speciations character and sources of phosphorus in the eastern water source areas and inflow rivers of Chaohu Lake
     The overlying water is perennial slightly alkaline.The content of phosphorus of inflow rivers display seasonal variations obviously,high-water period higher than low-water period. The concentration of phosphorus of Shuangqiao river are higher than Zhegao River and XiaoZhegao River.Phosphorus concentration of water source areas display a similar seasonal variations influence by land. Concentration of phosphorus in the Lake District have a smaller change over time. The more recent from the lake district, the lower of the phosphorus content
     The main sources of phosphorus pollution of The Zhegao and XiaoZhegao River are agricultural water and domestic sewage. The Shuangqiao river is also affected by industrial waste water and solid waste,so water quality is poor. The three inflow rivers are subject to non-point source pollution. Therefore, rain has a great impact to water phosphorus concentrations. The phosphorus content of the high-water period is higher than the level of nornal-water period and low-water period. Comparing with phosphorus concentration of water in lake,the phosphorus concentration of water in inflow rivers are higher. Inflow rivers are the important sources of the phosphorus pollution in the lake. PP,which is the main form of phosphorus in water,mainly come from the non-point source pollution such as surface runoff and sewage. PP has a great impact on phosphorus of the water in the lake.
     2.Simulation study of bio-available phosphorus transportation and transformation
     The simulation is based on the study of speciations character and sources analysis of phosphorus in the eastern water source areas of Chaohu Lake. Collect the sediments of western lake,and then conduct simulations. Variation of bio-available phosphorus speciations in overlying water and sediments are discussed under different environmental conditions (Temperature, DO,hydraulic disturbance and sterilization).
     The samples of overlying water and sediment display a slightly alkaline. TP is worse than V class water standard. PP is the main form. BAP of sediments show that AAP>WSP>OLP>RDP. Kinetic experiment shows:when the initial phosphorus concentration of the overlying water is0.05mg/L, sediment shows " source " features; when the initial phosphorus concentration is0.5mg/L, sediment shows " sinks " features.
     Under different environmental conditions, phosphorus concentrations in the overlying water of sterile system is significantly higher than bacteria system.TP concentration of the overlying water in the sterile system increases with increasing temperature.Bacteria system changes in the the opposite with sterile system,mainly to reduce the DIP.TP concentration of the overlying water in aerobic condition is higher than anaerobic condition.On the contrary,TDP concentration in anaerobic condition is higher. Disturbance makes TP significantly increase.there is a tendency that TP concentration increase with the increase of the frequency of disturbance.After the disturbance, PP increases, DIP and DOP reduce.The main reason is that the adsorption and flocculation of small suspended particles in water. Therefore, disturbance cause the release of the TP only, but not necessarily lead to the release of dissolved phosphate.
     Under different environmental conditions, phosphorus concentrations in the sediment of sterile system is significantly higher than bacteria system. BAP of sediments show that AAP>WSP>OLP>RDP.The influence of microbial effects on RDP and WSP is slight.And Temperature has a little influence on the WSP. AAP and OLP have the same change trend, presented a fluctuant condition. BAP of sediment in anaerobic condition is higher than aerobic condition. Sediment resuspension lead to Distribution and content change of BAP. Sediment resuspension can inhibit the AAP formation.When60r/min, the content of AAP is lower than control experiment obviously.But, BAP of sediment increase,when140r/min. The reason needs further study.
     3. Simulation experiment on bioavailable phosphorus conversion with microorganisms
     Under different temperature conditions, humus-reducing bacteria's role of bioavailable phosphorus conversion on the water-sediment interface was discussed.
     BAP concentrations of the overlying water are promoted by humus-reducing bacteria. Sediment shows " source " features.When exist natural microflora in the system, phosphorus concentration of the overlying water is lower than initial concentration,even though humus-reducing bacteria promote phosphorus concentration rise. Sediment shows " sinks " features.By the action of humus-reducing bacteria alone, BAP concentrations of the overlying water are higher. Humus-reducing bacteria may decrease the phosphorus accumulating of the original microbial.
     Humus-reducing bacteria and natural microflora can promote the formation and accumulation of BAP. The contents of WSP,OLP and RDP are the maximum in the action of humus-reducing bacteria alone,except AAP. Humus-reducing bacteria has a little influence on WSP.When exist natural microflora in the system, Humus-reducing bacteria has a little influence on OLP. Humus-reducing bacteria can promote the formation of RDP,however, natural microflora decrease effect.BAP of sediment fluctuate quite a bit under60r/min. The contents of AAP increase and then decrease with the increase of the frequency of disturbance, as opposed to DIP.Humus-reducing bacteria can promote the formation of RDP and WSP.
引文
[1]Smith,VH.,Tilman,GD.and Nekola,J.C.Eutrophication:impacts of excess nutrient inputs on freshwater,marine,and terrestrial ecosystems.Environmental Pollution,1999,100:179-196.
    [2]金相灿,屠清瑛.湖泊富营养化调查规范[M].第二版北京:中国环境科学出版社,1990:182-188.
    [3]Dokulil M,Chen W,Cai Q.Anthropogenic impacts to large lakes in China:the Tai Hu example[J].Aquatic Ecosystem Health and Management 2000,3:81-94
    [4]屠清瑛,顾丁锡,徐卓然,等.巢湖富营养化研究[M].合肥:中国科学技术大学出版社,1990.
    [5]姚书春,李世杰.巢湖富营养化过程的沉积记录[J].沉积学报,2002,22(2):343-347.
    [6]Shang G P,Shang J C.Causes and control counterm easures of eutrophication in Chaohu lake,China[J].Chinese Geographical Science, 2005, 15(4):348-354.
    [7]Shang G P, Shang J C.Spatia land te poral variation of eutroph ication in Western Chaohu lake,China[J].Environmental Monitoring and Assessment,2007,130/1-3: 99-109.
    [8]秦伯强.长江中下游地区浅水湖泊富营养化机制和控制途径[J].湖泊科学,2002,14(3):193-202.
    [9]黄明,洪天求.基于主成分分析的巢湖水质影响因子研究[J].合肥工业大学学报(自然科学版),2005,28(06):639-642.
    [10]贺华中.东湖主要点源氮、磷负荷的动态变化[J].湖泊科学.1996,8(3):229-234.
    [11]王佳宁,晏维金,贾晓栋,等.长江流域点源氮磷营养盐的排放、模型及预测[J].环境科学学报,2006,26(4):658-666
    [12]Novotny V and Olem H. Water quality:prevention,identification and management of diffuse pollution. New York :Van Nos tr and Reinh old Com pany, 1993:2
    [13]段永惠,张乃明,张玉娟.施肥对农田氮磷污染物径流输出的影响研究[J].土壤,2005, 37(1):48-51.
    [14]高超,张桃林.农业非点源磷污染对水体富营养化的影响及对策[J].湖泊科学.1999.11(4):369-375.
    [15]金苗,任泽,史建鹏,等.太湖水体富营养化中农业面污染源的影响研究[J].环境科学与技术.2010,33(10):106-109
    [16]Boers, P. C. M. Nutrient Em ission from Agriculture inthe Netherlands, Causes and Remedies[J].W ater Science and Technology,1996,33(4):183-189.
    [17]荆红卫,华蕾,孙成华,等.北京城市湖泊富营养化评价与分析[J].湖泊科学,2008,20(3):357-363
    [18]杨德敏,曹文志,陈能汪,等.厦门城市降雨径流氮、磷污染特征[J].生态学杂志,2006,25(6): 625-628
    [19]王绪伟,王心源,封毅,等.巢湖沉积物总磷分布及其地质成因[J].安徽师范大学学报(自然科学版),2007,30(04):496-499
    [20]王绪伟,王心源,封毅,等.巢湖沉积物总磷含量及无机磷形态的研究[J].水土保持学报,2007,21(4):56-59.
    [21]杨龙元,秦伯强,胡维平,等.太湖大气氮、磷营养元素干湿沉降率研究[J].海洋与湖沼,2007,38(02):104-110.
    [22]商少凌,洪华生.厦门海域大气气溶胶中磷的沉降通量[J].厦门大学学报(自然科学版),1997,36(1):106-109.
    [23]樊敏玲,王雪梅,王茜,等.珠江口横门大气氮、磷干湿沉降的初步研究[J]热带海洋学报,2010,29(1):51-56.
    [24]袁群.内河船舶污染特点分析及调控税收机制研究[J]上海环境科学,2009,28(2):62-65
    [25]胡承兵.长江干线船舶防污工作的现状、存在的问题及对策[J].交通环保,2000(2):24-28
    [26]李健强.浅谈船舶生活污水污染的现状和对策[J]珠江水运,2008,(2):35-37
    [27]汪家权,孙亚敏,钱家忠,等.巢湖底泥磷的释放模拟实验研究[J].环境科学学报,2002,22(6):107-110.
    [28]Ostroumov S A. On some issues of maintaining water quality and self-purification[J].Water Resources,2005,32(3):337-346.
    [29]何本茂,韦蔓新.铁山港湾水体自净能力及其与环境因子的关系初探[J].海洋湖沼通报,2006,(3):21-26.
    [30]任瑞丽,刘茂松,章杰明,等.过水性湖泊自净能力的动态变化[J].生态学杂志,2007,26(8):1222-1227.
    [31]曹承进,秦延文,郑丙辉,等.三峡水库主要入库河流磷营养盐特征及其来源分析[J].环境科学,2008,29(2):310-315
    [32]张晟,郑坚,刘婷婷,等.三峡水库入库支流水体中营养盐季节变化及输出[J].环境科学,2009,30(1):58-63.
    [33]张晟,李崇明,郑坚,等.三峡水库支流回水区营养状态季节变化[J].环境科学,2009,30(1):64-69.
    [34]夏守先,杨丽标,张广萍,等.巢湖沉积物-水界面磷酸盐释放通量研究[J]农业环境科学学报,2011,30(2):322-327
    [35]李悦,乌大年,薛永先.沉积物中不同形态磷提取方法的改进及其环境地球环境化学意义[J].海洋环境科学,1998,17(1):15-20
    [36]朱广伟,秦伯强.沉积物中磷形态的化学连续提取法应用研究[J].农业环境科学学报,2003,22(33):349-352
    [37]Sondergaard M,Windolf J,Jeppesen E.PhosPhorus fractions and profiles in the sediment of shallow Danish lakes as related to phosphorus load.sediment composition and lake chemistry [J]. Wat.Res.1996,30,992-1002
    [38]Chang,S.C.and Jackson,M.L.Fractionation of soil phosphours[J].Soil Sci.,1957,84:133-144
    [39]翁焕新.河流沉积物中磷的结合状态及其地球化学意义[J].科学通报,1993,38(13):1219-1222
    [40]Williams J D H,Jaquet J M.Thomas R L.Forms of phosphorus in surficial sediments of Lake Erie[J]J Fish Res Bd Can,1976,33:413-429
    [41]Williams,J.D.H.Shear,H.andThomas,R.L.Availability to Scenedesmus quadricuada of different forms of phosphours in sedimentary materials from the Great Lakes. [J] Limnol Oceanogr.1980,25:1-11.
    [42]Hielties A H M,L Lijklema.Fractionation of inorganic phosphates in caleareous sediments[J],J Environ Qual,1980,9:405-407
    [43]Psenner,R,Pucskso,Sager,M.Fraktionierung organoishcher and anorganischer phosphorverbindungen von sedimenten Versuch einer Definition okologsehwiehtiger Fractionen[J].Arch Hydrobiol/Suppl,1985,70:111-115
    [44]Ruttenberg,K.C.Development of a sequential extraction method for different forms of phosphours in marine sediments.Limnol.Oceanogr,1992,37:1460-1482.
    [45]De Groot,C.J.and Golterman,H.L.Sequential fractionation of sediment phosphate[J].Hydrobiologia,1990,192:143-149.
    [46]Golterman,H.L,Fractionation of sediment phosphate with chelating compounds:a simplifieation,and comparison with other methods[J].Hydrobiologia,1996,335:87-95
    [47]Hegemann D A,Johnson S H,Keenan J D.Determination of Algae-Available Phosphorus on Soil and Sediment:A Review and Analysis[J].Environ Qual,1983, (12):12-16
    [48]章宗涉,戌克文,沈国华.武汉东湖湖水的藻类生长潜力(AGP)测试[J].环境科学学报,1990,10(4):447-451
    [49]王芳,晏维金.长江输送颗粒态磷的生物可利用性及其环境地球化学意义[J].环境科学学报,2004,24(3):418-422
    [50]Ellison M E,Brett M T.Particulate phosphorus bioavailability as a function of stream flow and land cover[J].Water Research,2006,40:1258-1268
    [51]李大鹏,黄勇,范成新.底泥间歇扰动-沉降过程对静止水体中生物有效磷的影响[J].环境科学,2010,31(8):1795-1800
    [52]李大鹏,黄勇.底泥间歇扰动对静止水体磷迁移的累加效应[J].环境化学,2010,29(6):1075-1078
    [53]李大鹏,黄勇,范成新.沉积物悬浮频率对水体颗粒态磷生物有效性的影响[J].环境科学学报,2011,31(10):2217-2222
    [54]李勇,李大鹏,黄勇,沉积物扰动频率对悬浮物中形态磷数量分布的影响[J].环境科学与技术,2011,34(10):19-23.
    [55]卜玉山,Magdoff F R十种土壤有效磷测定方法的比较[J].土壤学报,2003,40(1):140-146
    [56]徐望龙,王晓蓉,耿金菊,等.不同方法测定沉积物中生物可利用性磷对铜绿微囊藻生长量的影响[J].中国环境科学,,2011,31(9):1486-1491
    [57]侯立军,陆健健,刘敏,等.长江口沙洲表层沉积物磷的赋存形态及生物有效性[J].环境科学学报,2006,6(3):488-494.
    [58]戴纪翠,宋金明,李学刚.胶州湾不同形态磷的沉积记录及生物可利用性研究[J].环境科学,2007,28(5):929-936.
    [59]马钦,李北罡,焦小宝.黄河表层沉积物中磷的分布特征及磷的生物可利用性[J].农业环境科学学报,2009,28(11):2379-2384
    [60]黄满湘,周成虎,章申,等.北京官厅水库流域农田地表径流生物可利用磷流失规律[J].湖泊科学,2003,15(2):118-124
    [61]高扬,朱波,汪涛,等.人工模拟降雨条件下紫色土坡地生物可利用磷的输出[J].中国环境科学,2008,28(6):542-547
    [62]张路,范成新,朱广伟,等.长江中下游湖泊沉积物生物可利用磷分布特征[J].湖泊科学,2006,18(1)36-42
    [63]金相灿,卢少勇,王开明,等.巢湖城区洗耳池沉积物磷及其生物有效磷的分布研究[J].农业环境科学学报,2007,26(3):847-851
    [64]朱元荣,张润宇,吴丰昌,等.贵州红枫湖沉积物生物可利用磷分布特征及其与粒径的关系[J].湖泊科学,2010,22(4):513-520
    [65]尹大强,覃秋荣,阎航.环境因子对五里湖沉积物磷释放的影响[J].湖泊科学,1994,6(3):240-244
    [66]高光,秦伯强,朱广伟.浅水湖泊沉积物磷释放的重要因子——铁和水动力[J].农业环境科学学报,2003,22(6):762-764.
    [67]李勇.城市浅水型湖泊底泥磷释放的环境因子影响实验研究[J].江苏环境科技,2002,15(4):4-6
    [68]Bando R.Sediments:Chemistry and toxieity of in Plaee Pollutants[M].Michigan:Lewis Publisher,1990,131-144
    [69]冯海艳,李文霞,杨忠芳,等.上覆水溶解氧水平对苏州城市河道底泥吸附/释放磷影响的研究[J]地学前缘(中国地质大学(北京):北京大学),2008,15(5):227-234.
    [70]Jensenh S, Andersen F O. Importance of temperature, nitrate and pH for phosphorus release from aerobic sediment of four shallow eutrophic lake[J].Limnol Oceanogr,2001,37(3): 577-589.
    [71]孙小静,朱广伟,罗潋葱.浅水湖泊沉积物磷释放的波浪水槽试验研究[J].中国科学D辑,地球科学,2005,35(增刊11):51-59
    [72]王晓蓉,华兆哲,徐菱.环境条件变化对太湖沉积物磷释放的影响[J].环境化 学,1996、15(1):15-19
    [73]李兵,袁旭音,邓旭.不同pH条件下太湖入湖河道沉积物磷的释放[J].生态与农村环境学报,2008,4(4):57-62
    [74]李大鹏,黄勇,李伟光.底泥再悬浮条件下pH值对磷的形态及其生物有效性的影响[J].农业环境科学学报,2008,27(4):1540-1544
    [75]周易勇,付永清.水体磷酸酶:来源、特征及其生态学意义[J].湖泊科学,1999,11(3):274-282
    [76]宋春雷,曹秀云,李建秋.湖泊磷酸酶与微生物活性对内源磷负荷的贡献及其与富营养化的关系.[J]中国科学D辑,地球科学,2005,35(增刊11):90-100
    [77]东野脉兴,樊竹青,张灼.云南滇池微生物对磷循环与沉积作用的实验研究[J]化工矿产地质,2003,25(2):65-75
    [78]金相灿,王圣瑞,赵海超.磷形态对磷在水-沉水植物-底质中分配的影响[J]生态环境,2005,14(5):631-635
    [79]陈秋敏,王国祥,葛绪广.沉水植物苦草对上覆水各形态磷浓度的影响[J]水资源保护,2010,26(4):49-56
    [80]Zhou Q, Gibson C E, Zhu Y M. Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK[J].Chemosphere,2001, 42:221-225.
    [81]杨丽霞,杨桂山,苑韶峰,等.不同雨强条件下太湖流域典型蔬菜地土壤磷素的径流特征[J].环境科学,2007,28(8):1763-1769.
    [82]陈志良,程炯,刘平,等.暴雨径流对流域不同土地利用土壤氮磷流失的影响[J].水土保持学报,2008,22(5):30-33.
    [83]侯立军,刘敏,许世远.环境因素对苏州河市区段底泥内源磷释放的影响[J].上海环境科学,2003,22(4):258-260.
    [84]蔡景波,丁学锋,彭红云,等.环境因子及沉水植物对底泥磷释放的影响研究[J].水土保持学报,2007,21(2):151-154.
    [85]Shrestha S.,Kazama F.Assessment of surface water quality using multivariate statistical techniques:A case study of the Fuji river basin[J].Japan. Environmental Modelling & Software, 2006, 22 (4):464-475
    [86]方凤满,金高洁,高超.巢湖水环境质量时空演变特征及成因分析[J].水土保持通报,2010,30(5):178-181
    [87]袁和忠,沈吉,刘恩峰,等.模拟水体pH控制条件下太湖梅梁湾沉积物中磷的释放特征[J].湖泊科学,2009,21(5):663-668
    [88]韩沙沙,温琰茂.富营养化水体沉积物中磷的释放及其影响因素[J].生态学杂志,2004,23(2):98-101.
    [89]孙卫红,程炜,崔云霞,等.太湖流域主要入湖河流水环境综合整治[J].中国资源综合利用,2009,11:39-42.
    [90]周慧平,高超.巢湖流域非点源磷流失关键源区识别[J].环境科学,2008,29(10):2696-2702
    [91]王妍,黄亚丽,朱昌雄.巢湖小柘皋河水生植物调查及多样性分析[J].现代化农业,2011(3):32-34.
    [92]韩飞园,周非,刘雪花,等.水生植物重建工程对小柘皋河富营养化水质的净化效果[J].环境科学研究,2011,24(11):1263-1268.
    [93]金相灿,辛玮光,卢少勇,等.入湖污染河流对受纳湖湾水质的影响[J].环境科学研究,2007,20,(4):52-56.
    [94]庹刚,李恒鹏,金洋,等.模拟暴雨条件下农田磷素迁移特征[J].湖泊科学,2009,21(1):45-52
    [95]Zhou QX,, Gibson CE, Zhu YM. Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK[J].Chemo-sphere, 2001, 42: 221-225.
    [96]郭志勇,李晓晨,王超,等.pH值对玄武湖沉积物中磷的释放及形态分布的影响[J].农业环境科学学报,2007,26(3):873-577
    [97]王琦,姜霞,金相灿,等.太湖不同营养水平湖区沉积物磷形态与生物可利用磷的分布及相互关系[J].湖泊科学,2006,18(2):120-126.
    [98]胡进宝,刘凌,王哲.南京玄武湖沉积物生物可利用磷的研究[J].环境污染与防治,2009,31(10):19-23
    [99]刘敏,许世远,侯立军,等.长江口滨岸潮滩沉积物中磷的存在形态和分布特征[J].海洋通报,2001,20(5):10-17.
    [100]晏维金,章申,吴淑安,等.模拟降雨条件下生物可利用磷在地表径流中的流失和预测[J].环境化学,1999,18(6):497-506
    [101]曹海艳,冯启言.环境因子对南四湖底泥磷释放的影响实验研究[J].水科学与工程技术,2006,6:36-38.
    [102]韩璐,黄岁樑,罗阳,等.溶解氧等环境因素对Alafia河表层沉积物磷释放影响的模拟研究[J].农业环境科学学报,2010,29(11):2178-2184
    [103]王庭健,苏睿,金相灿,等.城市富营养湖泊沉积物中磷负荷及其释放对水质的影响[J]环境科学研究,1994,7(4):12-19
    [104]丁艳青,朱广伟,秦伯强,等.波浪扰动对太湖底泥磷释放影响模拟[J]水科学进展,2011,22(2):273-278.
    [105]秦伯强,朱广伟,张路,等.大型浅水湖泊沉积物内源营养盐释放模式及其估算方法—以太湖为例[J].中国科学D辑,2005,S2期

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700