电喷雾质谱和钌离子催化氧化法研究腐殖酸分子结构特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腐殖酸是自然环境中广泛存在的一类天然有机大分子物质,对环境中的碳循
    环,有机、无机化合物在自然界的分布、迁移、转化和归宿,以及土壤中的矿物
    组成和土壤肥力有非常重要的影响。腐殖酸的这些行为都与其结构有密切关系,
    因此对腐殖酸的分子结构特征的研究有非常重要的意义。
     本文采用电喷雾质谱(ESI-MS)技术,对水溶态Pahokee泥炭腐殖酸的结
    构特征进行了研究,突破了以往固态腐殖酸样品的限制。利用钌离子催化氧化法
    (RICO)对两个泥炭腐殖酸(PILAI和PHAII)、两个土壤腐殖酸(SHAI和SIIAII)
    和一个商业腐殖酸(AHA)中以C-C_(arom)键结合的烷基侧链以及它们的芳香核的
    缩合程度进行了表征。
     ESI-MS质谱图中,离子峰连续分布,m/z值主要集中在低于1500的范围内,
    在质谱图低质荷比端形成相差2个amu的奇数系列峰,可能为复杂分子峰【M-1】
    的系列中性丢失的结果;在m/z约250,350,500和700处有类似“波”的离子
    峰分布,可能暗示不同来源的木质素单体形成的二聚体、三聚体、四聚体结构等。
    根据木质素类17种模型化合物的电喷雾二级质谱碎片机理的详细研究,推断出
    了腐殖酸m/z200以内离子峰的结构。m/z70-110为Pahokee泥炭腐殖酸的“核结
    构”,m/z110-200主要为三种木质素来源的单体结构及其衍生物,总体上可看出
    Pahokee泥炭腐殖酸的母源为裸子植物和被子植物。
     RICO产物中,直链一元脂肪酸是降解产物中最丰富的一类, 除商业腐殖酸
    以C_(28)酸丰度最高外,其它四种腐殖酸的C_(16)酸丰度非常高,都具有明显的偶奇
    优势。一元脂肪酸的碳数范围为C_7C_(34),则与芳核相连的烷基侧链的长度为
    C_6-C_(33)。PHAI、SHAI和SHAII样品的一元脂肪酸具有双峰型的分布特征。样品
    AHA主要为长链的一元脂肪酸(>C_(20))。除PHAI外,其它的腐殖酸未检测到二
    元脂肪酸。其中C_(14)-C_(18)脂肪酸中,可能会含有少量游离态脂肪酸,但主要还是
    以结合态为主。腐殖酸RICO产物中还检测到藿烷酸甲酯化合物,分布范围为
    C_(28)-C_(31)(C_(29)缺失)。藿烷酸甲酯化合物都只有一个R构型,即生物构型,暗示
    腐殖酸具有极低的成熟度。共检测出13种芳羧酸产物,1-6个羧基,腐殖酸的苯
Humic acids are a group of natural organic macromolecules and ubiquitous in the environment. They play an important role in global carbon cycle, affect the distribution, fate, transport, and bioavailability of organic and inorganic pollutants. In addition, they are involved in the mineral composition of soil and the improvements of the soil fertility. All these behaviors are related to their structural composition. Therefore, it has a great significance to characterize the molecular structures of humic acids.The structural characterizations of aqueous humic acid from Pahokee peat was conducted by Electrospray Ionization Mass Spectrometry (ESI-MS). This method avoided the limitation of other analytical methods for solid samples. The verification of side alkyl substitutes bonding to aromatic rings (Calkyl-Carom) in five humic acids, which are two peat humic acids (PHAI and PHAII), two soil humic acids (SHAI and SHAII) and a commercial humic acid (AHA) were characterized using Ruthenium Ion Catalyzed Oxidation (RICO) method. The aromatic structures of humic acids were also discussed in this study.The ion peaks distributed continuously with the mass charge ratios, with most ion fragments below m/z 1500. The two atomic mass unit difference of the odd ion peaks in the low mass charge ratios resulted from neutral mass lose of complex molecular. The strength of ion peaks was characterized by "wave pattern" maxima at
    m/z 250, 350, 500 and 700, representing that the dimeric, trimeric and tetrameric structures of lignin degraded products. Based on ESI-MS/MS mechanism of 17 model compounds of lignin monomers, the structures of ion fragments between m/z 70 and 200 was deduced. M/z 70-110 were the "core structure" of Pahokee humic acid, while m/z 110-200 were mainly the monomer of p-hydroxy phenols, vanillyl phenols, syringyl phenols and their derivations. So, the parent source were gymnosperm and angiosperm.n-Alkanoic acids were the major components in the RICO products of humic acids, with obviously odd/even predominance. The highest abundances of four natural humic acids were the n-C16 acid, whereas n-C26 acid for commercial sample AHA. Carbon numbers of monocarboxylic acids range from C7 to C34, consequently the carbon numbers of side alkyl chain bonding to aromatic rings were C6 to C33. The distributions of n-alkanoic acid for PHAI, SHAI, and SHAII were characterized by bimodal peak, whereas AHA was characterized by unimodal distribution with long chain alkanoic acids (>C20). Alkyl-a, ω-dicarboxylic acids were only detected in sample PHAI. Most of n-alkanoic acids ranging from C14 to C18 were bonding to aromatic rings (Calkyl-Carom) as side alkyl substitutes, whereas few of them are occurred as free fatty acid. Hopane acid methyl esters were firstly founded in humic acids, which ranged from C28 to C31 with exception for C29. Hopane acid methyl esters had only R configuration, i.e., organism configuration, suggesting that the maturity of humic acids was low. Thirteen kinds of aromatic carboxylic acids (1-6 carboxyl groups) were also detected in these humic acids. Aromatic tetracarboxylic acid and pentacarboxylic acid were relatively high in four of five humic acids, showing that more polycyclic aromatic hydrocarbons such as anthracene, phenanthrene, triphenylene existed. Relatively high contents of aromatic hexacarboxylic acid implied that more complex PAH such as triphenylene, dibenxopyrene, coronene and perylene existed in humic acids.
引文
1.郭绍辉,李术元,秦匡宗.用钌离子催化氧化法研究干酪根及其显微组分的化学结构.石油大学学报(自然科学版),2000,24(3):54-57.
    2.贾望鲁,彭平安.塔里木轮南地区原油沥青质的分子结构及其初步应用:热解、甲基化.热解和RICO研究.地球化学,2004,33(2):139-145.
    3.李超.蓟县剖面元古宙沉积物(1.8-0.85Ga)的分子有机地球化学研究.中国科学院研究生院博士学位论文,2001.
    4.李丽.不同级分腐殖酸的分子结构特征及其对菲的吸附行为的影响.中国科学院研究生院博士学位论文,2003.
    5.马安来,张水昌,张大江.轮南和塔河油田稠油沥青质钌离子催化氧化研究.天然气地球科学,2004a,15(2):144-149.
    6.马安来,张水昌,张大江,等.轮南、塔河油田稠油油源对比.石油与天然气地质,2004b,25(1):31-38.
    7.宋建中.珠江三角洲地区土壤和表层沉积物有机质的非均质性研究.中国科学院研究生院博士学位论文,2003,25-43.
    8.王启军、陈建渝编著.油气地球化学.武汉:中国地质大学出版社,1988.
    9.王子军,梁文杰,阙国和,等.钌离子催化氧化法研究大庆减压渣油组分的化学结构.燃料化学学报,1999a,27(2):102-109.
    10.王子军,阙国和,梁文杰,等.减压渣油中胶状沥青状物质的化学结构研究.石油学报(石油加工),1999b,15(6):39-46.
    11.徐冠军,张大江,王培荣.用沥青质中生物标志化合物判识生物降解油的油源.科学通报,2003,48(4):400-404.
    12.于世林.高效液相色谱方法及应用.北京:化学工业出版社,2000.
    13.中国科学院地球化学研究所有机地球化学与沉积学研究室编著.有机地球化学.北京:科学出版社,1980.
    14.朱军,郭绍辉,李术元.钌离子催化氧化研究石油沥青质芳香环系结构特征.燃料化学学报,2002,30(5):433-437.
    15.朱军,李术元,郭绍辉.生物降解原油研究的新方法.燃料化学学报,2003,31(1):1-5.
    16.朱良漪,孙亦梁,陈耕燕.分析仪器手册.北京:化学工业出版社,1997,853-860.
    17. Abbt-Braun G, Lankes U, Frimmel F H. Structural characterization of aquatic humic substances-The need for a multiple method approach. Aquat. Sci. 2004,66: 151-170.
    18. Aiken G R, Brown P A, Noyes TI, et al. Molecular size and weight of fulvic and humic acids from the Suwannee river. In: Averett R C, Leenheer J A, McKnight D M, Thorn K A, editors. Humic substances in the Suwannee river, Georgia: interactions, properties, and proposed structures. Denver: US Geological Survey; 1995, 89-97.
    19. Aliken G R. Evaluation of ultrafiltration for determining molecular weight of fulvic Acid. Environ. Sci. Technol. 1984,18: 978-981.
    20. Artok L, Murata S, Nomura M, et al. Reexamination of the RICO Method. Energy & Fuels, 1998,12: 391-398.
    21. Beckett R, Jue Z, Giddings J C. Determination of molecular weight distributions of fulvic and humic acids using flow field-flow fractionation. Environ. Sci. Technol. 1987, 21: 289-295.
    22. Bharati S, Patience R L, Larter S R, et al. Elucidation of the Alum Shale kerogen structure using a multi-disciplinary approach. Org. Geochem. 1995, 23(11-12): 1043-1058.
    23. Blokker P, Schouten S, de Leeuw J W, et al. A comparative of fossil and extant algaenans using ruthenium tetroxide degradation. Geochimica et Cosmochimica Acta, 2000, 64(12): 2055-2065.
    24. Blokker P, Schouten S, van den Ende H, et al. Chemical structure of algaenans from the fresh water algae Tetraedron mimmum, Scenedesmus communis and Pediastrum boryanum. Org. Geochem. 1998, 29, (5-7): 1453-1468.
    25. Boucher R J, Standen G, and Eglinton G. Molecular characterisation of kerogens by mild selective chemical degradation-ruthrnium tetroxide oxidation. Fuel, 1991, 70: 695-702.
    26. Boucher R J, Standen G, Patience R L, et al. Molecular characterisation of kerogen from the Kimmeridge clay formation by mild selective chemical degradation and solid state 13C-NMR. Org. Geochem. 1990,16(4-6): 951-958.
    27. Brown T L and Rice J A. Effect of experimental parameters on the ESI FT-ICR mass spectrum of fulvic acid. Anal. Chem., 2000, 72(2): 384-390.
    28. Cabaniss S E, Zhou Q, Maurice P A, et al. A log-normal distribution model for the molecular weight of aquatic fulvic acids. Environ. Sci. Technol. 2000, 34(6): 1103-1109.
    29. Cai Y. Size distribution measurements of dissolved organic carbon in natural waters using ultrafiltraiton technique. Water research, 1999, 33(13): 3026-3060.
    30. Cameron R S, Thornton B K, Swift R S, et al. Molecular weight and shape of humic acid from sedimentation and diffusion measurement of fractional extract. J. Soil Sci. 1972, 23(4): 394-408.
    31. Cappiello A, Simoni E D, Fiorucci C, et al. Molecular characterization of the water-soluble organic compounds in fogwater by ESI MS/MS. Environ. Sci. Technol., 2003, 37(7): 1229-1239.
    32. Chen Y and Schnitzer M. Viscosity measurements on soil humic substances. Soil Soc. Am. J., 1976, 40: 866-872.
    33. Chin Y-P, Aiken G., and O'loughlin E. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ. Sci. Technol., 1994, 28(11): 1853-1858.
    34. Conte P. and Piccolo A. High pressure size exclusion chromatography (HPSEC) of humic substances: molecular sizes, analytical parameters, and column performance. Chemosphere, 1999a, 38(3): 517-528.
    35. Conte P and Piccolo A. Conformational arrangement of dissolved humic substances influence of solution composition on association of humic molecules. Environ. Sci. Technol., 1999b, 33: 1682-1690.
    36. Diallo M S, Simpson A, Gassman P et al. 3-D structural modeling of humic acids through experimental characterization, computer assisted structure elucidation and atomistic simulations. 1. Chelsea soil humic acid. Environ. Sci. Technol. 2003, 37(9): 1783-1793.
    37. Dragojlovic V, Bajc S, Ambles A, et al. Ether and ester moieties in Messel shale kerogen examined by hydrolysis/ruthenium tetroxide oxidation/hydrolysis. Org. Geochem., 2005, 36(1): 1-12.
    38. Duarte R M, Santos E B, Duarte A C. Comparison between diafiltration and concentration operation modes for the determination of permeation coefficients of humic substances through ultrafiltration membranes. Analytica Chimica Acta, 2001, 442: 155-164.
    39. Evtuguin D V, Neto C P, Silva A M S, et al. Comprehensive study on the chemical structure of dioxane lignin from plantation Eucalyptus globulus Wood. J. Agric. Food Chem., 2001, 49: 4252-4261.
    40. Exner A, Theisen M, Panne U, et al. Combination of asymmetric flow field-flow fractionation (AF4) and total-reflexion X-ray fluorescence analysis (TXRF) for determination of heavy metals associated with colloidal humic substances. Fresenius J Anal Chem, 2000, 366: 254-259.
    41. Francioso O, Sanchez-Cortes S, Casarini D, et al. Spectroscopic study of humic acids fractionated by means of tangential ultrafiltration. Journal of Molecular Structure, 2002, 609: 137-147.
    42. Haiber S, Burba P, Herzog H, et al. Elucidation of aquatic humic partial structures by multistage ultrafiltration and two-dimensional nuclear magnetic resonance spectrometry. Fresenius J Anal Chem, 1999, 364: 215-218.
    43. Huang W. Sorption and desorption by soils and sediments: effect of sorbent heterogeneity. Ph.D. Thesis, The University of Michigan, 1997.
    44. Hur N, Amy G, Foss D, et al. Optimization of method for detecting and characterizing NOM by HPLC-size exclusion chromatography with UV and on-line DOC detection. Environ. Sci. Technol., 2002, 36(5): 1069-1076.
    45. Janos P. Separation methods in the chemistry of humic substances. Journal of Chromatography A, 2003, 983:1-18.
    46. Jansen S A, Malaty M, Nwabara S, et al. Structural modeling in humic acids. Materials Science and Engineering, 1996, 4:175-179.
    47. Kidena K, Tani Y, Murata S, et al. Quantitative elucidation of bridge bonds and side chains in brown coals. Fuel, 2004, 83:1697-1702.
    48. Kilduff J and Weber W J. Transport and separation of organic macromolecules in ultrafiltration processes. Environ. Sci. Technol., 1992, 26: 569-577.
    49. Klaus U, Pfeifer T, Spiteller M. APCI-MS/MS: a powerful tool for the analysis of bound residues resulting from the interaction of pesticides with DOM and humic substances. Environ. Sci. & Technol., 2000, 34(16): 3514-3520.
    50. Kribii A, Lemee L, Chaouch A, et al. Structural study of the Moroccan Timahdit (Y-layer) oil shale kerogen using chemical degradations. Fuel, 2001, 80: 681-691.
    51. Kuchler I L and Miekeley N. Ultrafiltration of humic compounds through low molecular mass cut off level membranes. Sci. of Total Environ., 1994, 154: 23-28.
    52. Kujawinski E B, Freitas M A, Zang X, et al. The application of electrospray ionization mass spectrometry (ESI MS) to the structural characterization of natural organic matter. Org. Geochem., 2002,33:171-180.
    53. Leenheer J A, Rostad C E, Gates P M, et al. Molecular resolution and fragmentation of fulvic acid by electrospray ionization/multistage tandem mass spectrometry. Anal. Chem., 2001, 73(7): 1461-1471.
    54. Li C, Peng P A, Sheng G Y, et al. A study of a 1.2 Ga kerogen using Ruion-catalyzed oxidation and pyrolysis-gas chromatography-mass spectrometry: structural features and possible source. Org. Geochem., 2004, 35: 531-541.
    55. Li L, Huang W L, Peng P A, et al. Chemical and molecular heterogeneity of humic acids repetitively extracted from a peat. Soil Sci. Soc. Am. J., 2003, 67: 740-746.
    56. Lu X Q, Hanna J V, Johnson W D. Source indicators of humic substances: An elemental composition, solid state 13C CP/MAS NMR and Py-GC/MS study. Applied Geochemistry, 2000,15: 1019-1033.
    57. Magnuson M L, Kelty C A, Sharpless C M, et al. Effect of UV irradiation on organic matter extracted from treated Ohio river water studied through the use of electrospray mass soectrometry. Environ. Sci. & Technol., 2002, 36(23): 5252-5260.
    58. Manning T J, Bennett T, Milton D. Aggregation studies of humic acid using multiangle laser light scattering. Sci. of Total Environ., 2000, 257:171-176.
    59. Mclntyre C, Batts B D, Jardine D R. Electrospray mass spectrometry of groundwater organic acids. Journal of Mass Spectrometry, 1997, 32: 328-330.
    60. Mclntyre C, McRac C, Jardine D, et al. Identification of compound classes in soil and peat fulvic acids as observed by electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2002, 16: 1604-1609.
    61. Miikki V, Senesi N, and Hanninen K. Characterization of humic material formed by composting of domestic and Industrial biowastes. Part 2 Spectroscopic evaluation of humic acid structures. Chemosphere, 1997, 34(8): 1639-1651.
    62. Mojelsky T W, Ignadiak T M, Frakman Z, et al. Structural features of Albert oil sand bitumen and heavy oil asphaltenes. Energy & Fuels, 1992, 6: 83-96.
    63. Murata S, Tani Y, Hiro Masataka, et al. Structural ananlysis of coal through RICO reaction: detailed analysis of heavy fractions. Fuel, 2001, 80: 2099-2109.
    64. Nomura M, Artok L, Murata S, et al. Structural evaluation of Zao Zhuang coal. Energy & Fuels, 1998,12: 512-523.
    65. Nomura M, Kidena K, Hiro M, et al. Mechanistic Study on the Plastic Phenomena of Coal. Energy & Fuels, 2000,14: 904-909.
    66. Orlov D S. Soil humic acids and general theory of humification. Moscow state university publicsher, Moscow, 1990.
    67. Osterberg R, and Shirshova L. Oscillating, nonequilibruim redox properties of humic acids. Geochemimica et Cosmochimica Acta, 1997, 61(21): 4599-4604.
    68. Palmer N E and von Wandruszka R. Dynamic light scattering measurements of particle size development in aqueous humic materials. Fresenius J Anal Chem 2001, 371: 951-954.
    69. Peng P A, Morales-Izquierdo A, Lown E M, et al. Chemical structure and biomarker content of Jinghan asphaltenes and kerogens. Energy & Fuels, 1999a, 13(2): 248-265.
    70. Peng P A, Fu J M, Sheng G Y. Ruthenium-ions-catalyzed oxidation of an immature asphtaltene: Structural features and biomarker distribution. Energy & Fuels, 1999b, 13(2): 266-277.
    71. Perminova I V, Frimmel F H, Kovalevskii D V, et al. Development of a predictive model for calculation of molecular weight of humic substances. Wat. Res., 1998, 32(3): 872-881.
    72. Persson L, Alsberg T, Kiss G, et al. On-line size-exclusion chromatography / electrospray ionisation mass spectrometry of aquatic humic and fulvic acids. Rapid Commun. Mass Spectrom., 2000,14: 286-292.
    73. Petteys M P, and Schimpf M E. Characterization of hematite and its interaction with humic material using flow field-flow fractionation. Journal of Chromatography A, 1998, 816: 145-158.
    74. Peuravuori J, and Pihlaja K. Multimethod characterization of lake aquatic humic matter isolated with sorbing solid and tangential membrane filtration. Analytica Chimica Acta, 1998, 364: 203-221.
    75. Peuravuori J. and Pihlaja K. Moleular size distribution and spectroscopic properties of aquatic humic substances. Analytica Chimica Acta, 1997, 337: 133-149.
    76. Pfeifer T, Klaus U, Hoffmann R, et al. Characterisation of humic substances using atmospheric pressure chemical ionisation and electrospray ionisation mass spectrometry combined with size-exclusion chromatography. Journal of Chromatography A, 2001, 926: 151-159.
    77. Phillips S L, and Olesik S V. Initial characterization of humic acids using liquid chromatography at the critical condition followed by size-exclusion chromatography and electrospray ionization mass spectrometry. Anal. Chem., 2003, 75(20): 5544-5553.
    78. Piccolo A, and Spiteller M. Electrospray ionization mass spectrometry of terrestrial humic substances and their size fractions. Anal. Bioanal. Chem., 2003, 377: 1047-1059.
    79. Pinheiroa J P, Mota A M, d'Oliveira J M R, et al. Dynamic properties of humic matter by dynamic light scattering and voltammetry. Analytica Chimica Acta, 1996, 329: 15-24.
    80. Plancque G, Amekraz B, Moulin V, et al. Molecular structure of fulvic acids by electrospray with quadrupole time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom., 2001,15: 827-835.
    81. Reemtsma T, and These A. On-line coupling of size exclusion chromatography with electrospray ionization-tandem mass spectrometry for the analysis of aquatic fulvic and humic acids. Anal. Chem., 2003, 75(6): 1500-1507.
    82. Richardson S D. Water Analysis: Emerging Contaminants and Current Issues. Anal. Chem., 2003, 75(12): 2831-2857.
    83. Rigol A, Vidal M, Rauret G. Ultrafiltration-capillary zone electrophoresis for the determination of humic acid fractions. Journal of Chromatography A, 1998, 807: 275-284.
    84. Sachs S, Bubner M, Schmeide K, et al. Carbon-13 NMR spectroscopic studies on chemically modified and unmodified synthetic and natural humic acids. Talanta, 2002, 57: 999-1009.
    85. Saiz-Jimenez C, and de Leeuw J W. Lignin pyrolysis products: Their structures and their significance as biomarkers. Org. Geochem., 1986,10: 869-876.
    86. Saiz-Jimenez C. Analytical pyrolysis of humic substances: pitfalls, limitations, and possible solutions. Environ. Sci. & Technol., 1994, 28(11): 1773-1780.
    87. Sanchez-Cortes S, Francioso O, Ciavatta C, et al. pH-dependent adsorption of fractionated peat humic substances on different silver colloids studied by surface-enhanced Raman spectroscopy. Journal of Colloid and Interface Science, 1998,198: 308-318.
    88. Schafer A I, Mauch R, Waite T D, et al. Charge effects in the fractionation of natural organics using ultrafiltration. Environ. Sci. Technol., 2002, 36: 2572-2580.
    89. Schimpf M E and Petteys M P. Characterization of humic materials by flow field-flow fractionation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997,120: 87-100.
    90. Schulten H R, Schnitzer M. Chemical model structures for soil organic matter and soils. Soil Sci., 1997,162:115-130.
    91. Schulten H R. The three-dimensional structure of humic substances and soil organic matter studied by computational analytical chemistry. Fresenius J. Anal. Chem., 1995,351:62-73.
    92. Sein L T, Varnum J M, Jansen S A. Conformational modeling of a new building block of humic acid: approaches to the lowest energy conformer. Environ. Sci. Technol. 1999, 33(4): 546-552.
    93. Senesi N, Rizzi F R, Dellino P et al. Fractal humic acids in aqueous suspensions at various concentrations, ionic strengths, and pH values. Colloids and surfaces A: physicochemical and Engineering Aspects, 1997,127: 57-68.
    94. Shin H-S, Monsallier J M, Choppin G R. Spectroscopic and chemical characterizations of molecular size fractionated humic acid. Talanta, 1999, 50: 641-647.
    95. Simpson A J, Salloum M J, Kingery W L, et al. Improvements in the two-dimensional nuclear magnetic resonance spectroscopy of humic substances. J. Environ. Qual., 2002, 31: 388-392.
    96. Solouki T, Freitas M A, Alomary A. Gas-phase hydrogen/deuterium exchange reactions of fulvic acids: An electrospray ionization Fourier transform ion cyclotron resonance mass spectral study. Anal. Chem., 1999, 71(20): 4719-4726.
    97. Sparks, D L. Environmental Soil Chemistry. Academic Press: New York, 1995.
    98. Staub C, Buffle J, Haerdi W. Measurement of complexation properties of metal ions in natural conditions by ultrafiltration: influence of varies factors on the retention of metals and ligands by neutral and negatively charged membranes. Analytical chemistry, 1984, 56: 2843-2849.
    99. Steelink C. Implications of elemental characteristics of humic substances. In G R Aiken, D M McKnight, R L Warshaw and P McCarthy (Eds.) Humic substances in soil, sediments and water, Wiley Interscience, New York, 1985, 457-476.
    100.Stenson A C, Landing W M, Marshall AG, et al. Ionization and fragmentation of humic substances in electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometry. Anal. Chem., 2002, 74(17): 4397-4409.
    101.Stenson A C, Marshall A G, Cooper W T. Exact masses and chemical formulas of individual Suwannee river fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectra. Anal. Chem.,
     2003, 75(6): 1275-1284.
    102.Stevenson F J. Humus chemistry: genesis, composition, reactions. 2nd ed. John Wiley & Sons, New York, 1994.
    103.Stock L M and Tse K. Ruthenium tetroxide catalysed oxidation of Illinois No.6 coal and some representative hydrocarbons. Fuel, 1983, 62: 974-976.
    104.Stock L M and Wang S-H. Ruthenium tetroxide catalysed oxidation of coals. Fuel, 1986, 65: 1552-1562.
    105.Stock L M and Wang S-H. Ruthenium tetroxide catalysed oxidation of Illinois No. 6 coal, the formation of volatile monocarboxylic acids. Fuel, 1985, 64: 1713-1717.
    106.Strausz O P, Mojelsky T W, Lown E M.The molecular structure of asphaltene: An unfolding story. Fuel, 1992, 71: 1355-1363.
    107.Strausz O P, Mojelsky T W, Faraji F, et al. Additional structural details on athabasca asphaltene and their ramifications. Energy & Fuels 1999a, 13(2): 207-227.
    108.Strausz O P, Mojelsky T W, Lown E M. Structural features of Boscan and Duri asphaltenes. Energy & Fuels 1999b, 13(2): 228-247.
    109.Su Y, Artok L, Murata S, et al. Structural analysis of the asphaltene fraction of an Arabian mixture by a ruthenium-ion-catalyzed oxidation reaction. Energy & Fuels, 1998,12: 1265-1271.
    110.Swift R S. Methods of soil analysis. Part 3. Chemical methods. in Organic matter characterization (Sparks D Led) . Soil Sci Soc Am. Book Series: 5. Soil Sci Soc Am. Madison, WI, 1996: 1018-1020.
    111.Tao Z Y, Zhang J, Zhai J J. Characterization and differentiation of humic acids and fulvic acids in soils from various regions of China by nuclear magnetic resonance spectroscopy. Analytica Chimica Acta, 1999, 395: 199-203.
    112.Thang N M, Geckeis H, Kim J I, et al. Application of the flow field flow fractionation (FFFF) to the characterization of aquatic humic colloids: evaluation and optimization of the method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 181: 289-301.
    113.These A, and Reemtsma T. Limitations of electrospray ionization of fulvic and humic acids as visible from size exclusion chromatography with organic carbon and mass spectrometric detection. Anal. Chem., 2003, 75(22): 6275-6281.
    114.Thurman E M. Organic geochemistry of natural waters, Martinus Nijlof/Dr. W. Junk publishers, Dordrecht, the Netherlands, 1985.
    115.Thurman E M, Wershaw R L, Malcolm R L, et al. Molecular size of aquatic humic substances. Org Geochem., 1982, 4: 27-35.
    116.Tonelli D, Seeber R, Ciavatta C, et al. Extraction of humic acids from a natural matrix by alkaline pyrophosphate. Evaluation of the molecular weight of fractions obtained by ultrafiltration. Fresenius J. Anal. Chem., 1997, 359: 555-560.
    117.US Geological Survey Staff. Humic substances in the Suwannee River, Georgia; interactions, properties, and proposed structures, open file report, US Geological Survey, Denver, CO, 1989, 87-557.
    118.van den Hoop M A and van Leeuwen H P. Influence of molar mass distribution on the complexation of heavy metals by humic material. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997,120: 235-242.
    119.Von Wandruszka R, Schimpf M, Hill M, et al. Characterixation of humic acid size fractions by SEC and MALS. Org. Geochem., 1999, 30: 229-235.
    120.Wagoner D B, Christman R F, Cauchon G, et al. Molar mass and size of Suwannee river natural organic matter using multi-angle laser light scattering. Environ. Sci. Technol., 1997, 31: 937-941.
    121.Warton B, Alexander R, Kagi R I. Characterisation of the ruthenium tetroxide oxidation products from the aromatic unresolved complex mixture of a biodegraded crude oil. Org. Geochem., 1999, 30:1255-1272.
    122.Yau W W, Kirkland J J, Bly D D. Modern size exclusion chromatography. Wiley, New York, 1979,476.
    123.Yoshioka H. and Ishiwatari R. An improved ruthenium tetroxide oxidation of marine and lacustrine kerogens: possible origin of low molecular weight acids and benzenecarboxylic acids. Org. Geochem., 2005, 36(1): 83-94.
    124.Zhou Q H, Cabaniss S E, Maurice P A. Considerations in the use of high-pressure size exclusion chromatography (HPSEC) for determining molecular weights of aquatic humic substances. Water Research, 2000, 34 (14): 3505-3514.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700