输变电设备状态评价及可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着智能电网和数字化变电站的发展,电力设备数量剧增,输变电设备智能化程度提高,原有的定期检修结合事后检修的检修体制已无法满足电网发展的需求。状态检修通过设备状态评价、可靠性分析、风险评估、检修决策等手段来开展检修工作,可以提高检修的针对性和有效性,是一种经济合理、提倡推广的维修方式。其中设备状态评价和可靠性分析是风险评估和检修决策的基础,因此输变电设备状态评价和可靠性分析是状态检修工作开展的基础,对当今电力行业发展具有重要意义。
     本文的研究内容主要包括以下三方面:(1)借鉴国家电网公司对一次输变电设备进行状态评价的成果,首先研究了电子式互感器状态评价的层次模型、评价方法及流程,在此基础上,研究电子式互感器的可靠性定量分析计算,为电力企业在设备选择、可靠性评估等方面提供参考依据;(2)从状态检修的需求出发提出基于时间和状态的故障率模型,同时考虑设备在运行过程中的衰退信息和失效信息,在状态故障率模型中引入时间标签,提出以设备健康状态模型为基础,模型参数随时间变化的输变电设备故障率模型改进方案;(3)提出采用全状态集成法来计算改进模型的比例参数和曲率参数,该方法对设备带有时间标签的完整健康过程进行研究,跟踪利用全过程的状态信息,得到带有役龄标记的模型参数。利用上述三方面内容的研究成果分别针对一些算例进行分析和比较,算例结果很好的验证了上述方法的可行性和有效性。
As the development of smart grid and digital substation, the number of power transmission and transformation equipment is increasing dramatically, and the equipment became more intelligent. The traditional maintenance system which is time based maintenance associated with corrective maintenance, has not met the demand of power grid. Condition based maintenance, which works through equipment condition evaluation, reliability analysis, risk assessment and decision-making, is well-directed and effective, and is a kind of economical and reasonable maintenance that worth to be promoted. While equipment condition evaluation and reliability analysis are the basis for is the risk assessment and maintenance decision-making, they are the basic work of condition based maintenance, which is of great importance for today's power industry.
     This article studied on the following three parts:(1)The electronic instrument transformer condition evaluation level-model, evaluation methods and processes were studied firstly, by learning from the results of condition evaluation research which was taken by state grid corporation of China on power transmission and transformation equipment. Then the quantitative reliability of electronic instrument transformer was calculated which would be made reference for the enterprise in the equipment selection and reliability analysis; (2)Secondly, the failure rate model which based on time and condition was proposed, that meant both of equipment recession information and failure information should be considered. By introducing a time label, an improvement of condition failure rate model was presented, which considered model parameters changing with time; (3) Lastly, all-state integration (ASI) method was proposed to calculate the proportion parameters and the curvature parameter of improved model. ASI is used to study on an integral health process which is with time tag of each device, and follows condition information of integral process. So model parameters are marked with service age. Some of the examples were analyzed and compared using the research result above-mentioned, and the examples results well verified the feasibility and effectiveness of the method presented above.
引文
[1]United States Department of Energy Office of Electric Transmission and Distribution. "Grid 2030" a national vision for electricity's second 100 years [EB/OL]. http://www.oe.energy.gov/smartgrid.htm.
    [2]United States Department of Energy Office of Electric Transmission and Distribution. National electric delivery technologies roadmap [EB/OL]. http://www.oe.energy.gov/smartgrid.htm.
    [3]United States Department of Energy Office of Electric Transmission and Distribution. Grid Wise action planning[EB/OL]. http://www.oe.Energy.gov/.htm.
    [4]United States Department of Energy Office of Electric Transmission and Distribution. Grid Works multi-year planning[EB/OL]. http://www.oe.Energy.gov/.htm.
    [5]United States Department of Energy Office of Electric Transmission and Distribution. National electric delivery technologies roadmap[EB/OL]. http://www.oe.energy.gov/smartgrid.htm.
    [6]European Commission. European Smart Grids technology platform [EB/OL]. http://www.smartgrids.eu/?q=node/27.
    [7]European Commission. European Smart Grids technology platform vision and strategy for Europe's electricity networks of the future[EB/OL]. http://www.smartgrids.eu/
    [8]陈树勇,宋书芳,李兰欣,等.智能电网技术综述[J].电网技术,2009,33(8):1-7.
    [9]康重庆,陈启鑫,夏清.低碳电力技术的研究展望[J].电网技术,2009,33(2):1-7.
    [10]谢开,刘永奇,朱治中,等.面向未来的智能电网[J].中国电力,2008,41(6):19-22.
    [11]帅军庆.创新发展建设智能电网:华东高级调度中心项目群建设的实践[J].中国电力企业管理,2009(4):19-21.
    [12]高翔.数字化变电站应用技术[M].北京,中国电力出版社,2010.
    [13]林宇锋,钟金,吴复立.智能电网技术体系探讨[J].电网技术,2009,33(12):8-14.
    [14]陈三运,谭洪恩,江志刚.输变电设备的状态检修[M].北京:中国电力出版社,2004.
    [15]许婧,王晶,高峰,等.电力设备状态检修技术研究综述[J].电网技术.2000,24(8):48-52.
    [16]张怀宇,朱松林,张扬,等.输变电设备状态检修技术体系研究与实施[J].电网技术.2009,33(13):70-73.
    [17]黄雅罗,黄树红.发电设备状态检修[M].北京,中国电力出版社,2001.
    [18]王磊.火电厂设备运行状态评价方法研究及实现[D].武汉,华中科技大学,2004.
    [19]刘伟.电力变压器健康状态评估与剩余寿命分析[D].保定,华北电力大学,2009.
    [20]张定海.复杂可修系统可靠性分析[D].兰州,兰州理工大学,2007.
    [21]彭金宁.供电系统用户供电可靠性研究[D].西安,西安理工大学,2004.
    [22]张余利.多态系统可靠性建模及求解方法研究[D].沈阳工业大学,2007.
    [23]Endrenyi J, George J Anders. Aging, maintenance, and reliability-approaches to preserving equipment health and extending equipment life. IEEE power & energy magazine,2006,6:59-67.
    [24]李海泉,李刚.系统可靠性分析与设计[M].北京,科学出版社,2003.
    [25]赵东元,樊虎,任志久.可靠性工程与应用[M].北京,国防工业出版社,2009.
    [26]国家电网公司关于规范开展状态检修工作意见[S].北京:国家电网公司,2008.
    [27]国家电网公司设备状态检修管理规定(试行)[S].北京:国家电网公司,2008.
    [28]国家电网公司.油浸式变压器(电抗器)状态评价导则[S.北京:国家电网公司,2008.
    [29]国家电网公司.SF6高压断路器状态评价导则[S].北京:国家电网公司,2008.
    [30]国家电网公司.架空输电线路状态评价导则[S].北京:国家电网公司,2008.
    [31]顾煜炯.发电设备状态维修理论与技术[M].北京,中国电力出版社,2010.
    [32]蔡瑞桔,牛东晓,陈志业.电力设备可靠性指标的组合预测方法及应用[J].电力设备,2002,3(1):58-61.
    [33]Arshad M, Islam S M. A novel fuzzy logic technique for power transformer asset management[C].41st IAS Annual Meeting, Tampa, USA,2006.
    [34]金少华.电工产品可靠性评估方法与贝叶斯理论的应用[D].河北,河北工业大学,2002.
    [35]张黎,张波.电气设备故障率参数的一种最优估计算法[J].继电器,2005,33(17):31-34.
    [36]张文举,朱勇华.基于岭回归的电力系统设备故障率分析[J].现代电力,2008,25(5):84-87.
    [37]任震,张静伟,张晋昕.基于偏最小二乘法的设备故障率计算[J].电网技术,2005,29(5)12-15.
    [38]胡泽江,刘宗兵,束洪春.基于BP神经网络的设备故障率获取[J].云南水力发电,2007,24(1):85-88.
    [39]国家电网公司.输变电设备风险评估导则(试行)[S].北京:国家电网公司,2008.
    [40]Yi Wang, Huifang Wang, Benteng He. Calculation of Power Equipment Reliability for Condition-based Maintenance Decision-making[C].2010 International Conference on Power System Technology,2010, Hangzhou, P.R.China.
    [41]王一.输变电设备状态检修决策研究[D].杭州,浙江大学,2011.
    [42]丁锋,何正嘉,訾艳阳,等.基于设备状态振动特征的比例故障率模型可靠性评估[J].机械工程学报,2009,45(12):89-94.
    [43]左洪福,张海军.基于比例风险模型的航空发动机视情维修决策[J].航空动力学报,2006,21(4):716-721.
    [44]盛晔.输变电设备维修策略的研究[D].浙江大学,2004.
    [45]袁志坚.电力变压器状态维修决策方法的研究[D].重庆大学,2004.
    [46]王有元.基于可靠性和风险评估的电力变压器状态维修决策方法研究[D].重庆大学,2008.
    [47]许婧,王晶,高峰,等.电力设备状态检修技术研究综述[J].电网技术,2000(8):48-52.
    [48]GB/T 7252-87变压器油中溶解气体分析和判断导则.1987.
    [49]IEEE Std C57.104-1991 IEEE guide for the interpretation of gases generated in oil immersed transformers.1991.
    [50]HUGHES D. Condition Based Risk Management(CBRM)-enabling asset condition information to be central to corporate decision making.18th International Conference and Exhibition on Electricity Distribution, June 6-9,2005, Turin, Italy:1-5.
    [51]潘乐真,鲁国起,张焰,等.基于风险综合评判的设备状态检修决策优化.电力系统自动化,2010,34(11):28-32.
    [52]鲁宗相,吴林林.基于风险评估的断路器检修决策研究[J].电力系统保护与控制,2010,38(15):47-52.
    [53]Jeffrey D B, Nicolas A F, Farnoosh R. A new hybrid current sensor for high-voltage applications[J]. IEEE Trans on Power Delivery,2005,20(1):32-38.
    [54]纪哲,黄纯,周有庆,等.基于PCB平面型Rogowski线圈的电流互感器误差分析及积分器设计[J].电力自动化设备,2011,31(2),76-78.
    .[55]刘青,王增平,徐岩,等.光学电流互感器对继电保护系统的影响研究[J].电网技术,2005,29(1):11-14.
    [56]李岩松,郭志忠,杨以涵,等.自适应光学电流互感器的基础理论研究[J].中国电机工程学报,2005,25(22):21-26.
    [57]IEC60044-7, Instrument transformer-part 7:electronic voltage transformers[S].
    [58]IEC60044-8, Instrument transformer-part 8:electronic current transformers[S].
    [59]于文斌,高桦,郭志忠.光学电流传感头的可靠性试验和寿命评估问题探讨[J].电网技术,2005,29(4):55-59.
    [60]王鹏,张贵新,朱小梅,等.基于故障模式与后果分析及故障树法的电子式电流互感器可靠性分析[J].电网技术,2006,30(23):15-20.
    [61]朱清清,严正,贾燕冰,等.输电线路运行可靠性预测[J].电力系统自动化,2010.34(24):18-22.
    [62]任震,万官泉,黄金风,等.电力系统可靠性原始参数的改进预测[J].电力系统自动化,2003,27(4):37-40.
    [63]潘乐真,张焰,俞国勤,等.状态检修决策中的电气设备故障率推算[J].电力自动化设备,2010,30(2):91-94.
    [64]王一,王慧芳,张亮等.基于效用和成本的状态检修维修方式选择研究[J].电力系统保护与控制,2010,38(19):39-45.
    [65]杨莳百,戴景宸,孙启宏.电力系统可靠性分析基础及应用[M].北京:水利电力出版社,1986.
    [66]郭永基.可靠性工程基础[M].北京:清华大学出版社,2002.
    [67]曹晋华,程侃.可靠性数学引论[M].修订版.北京:高等教育出版社,2006.
    [68]熊信银,朱永利.发电厂电气部分(第三版)[M].北京,中国电力出版社,2008.
    [69]刘伟.电力变压器健康状态评估与剩余寿命分析[D].保定,华北电力大学,2009.
    [70]J AHROMI A N, PIERCY R, CRESS S. An Approach to Power Transformer Asset Management Using Health Index[J]. IEEE Electrical Insulation Magazine,2009,25(2):20-34.
    [71]Yi Wang, Huifang Wang, Benteng He. Calculation of Power Equipment Reliability for Condition-based Maintenance Decision-making[C].2010 International Conference on Power System Technology,2010, Hangzhou, P.R.China.
    [72]何剑,程林,孙元章,等.条件相依的输变电设备短期可靠性模型[J].中国电机工程学报.2009,(7):39-46.
    [73]张秀斌,王广伟,郭波.应用比例故障率模型进行基于状态的视情维修决策[J].可靠性与环境适应性理论研究,2002,(4):19-22.
    [74]DIEDERIK L, ANDREW K S J, JIANG Xiaoyue. Research optimizing the performance of a repairable system under a maintenance and repair contract[J]. Quality and Reliability Engineering International,2007,23(5):943-960.
    [75]SOFIANE G, ERNIE L C, WALTRAUD K. A general repair, proportional—hazards, framework to model complex repairable systems[J]. IEEE Transaction on Reliability,2003,52(1):26-32.
    [76]SAMROUT M, CHATELET E, KOUTA, et al. Optimization of maintenance policy using proportional hazard model[J]. Reliability Engineering and System Safety,2009,94(1):44-52.
    [77]余绍峰,何文林,孙翔.输变电设备故障率的估算方法.浙江电力,2009(6):5-8.
    [78]王一,何奔腾,王慧芳.基于全寿命状态的设备可靠性研究[J].电网技术,2011,35(8):207-211.
    [79]王慧芳,杨荷娟,何奔腾,等.输变电设备故障率模型改进分析[J].电力系统自动化,2011,35(16),27-31.
    [80]中国电力企业联合会.2004年220千伏及以上电压等级变压器、断路器、架空线路等13类输变电设施运行可靠性指标[OL]. [2010-01-28]. http://www.cec.org.cn/4-6/cec_kekao/zt/2005/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700