一维钙钛矿氧化物纳米结构材料的制备及形貌和物性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一维纳米材料由于其独特的结构和新颖的物理、化学和生物学特性,在催化、传感、电子器件等方面有着很大的基础研究价值和潜在的应用价值。1991年日本Lijima等人对碳纳米管的发现为一维纳米结构的研究与应用开辟了崭新的方向,掀起了国际上对一维纳米材料的科研热潮。随着研究的不断深入,各种一维纳米材料,诸如:纳米管、纳米棒、纳米线和纳米纤维等被相继合成。
     一维纳米材料的制备方法主要分为物理方法和化学方法。物理方法主要有热蒸发法和物理粉碎法等;化学方法包括自下而上(bottom-up)和自上而下(top-down)两类。常见的化学方法有气液相生长、模板法、静电纺丝法、光化学蚀刻等。
     静电纺丝技术最初被用于有机高分子聚合物超细纤维的制备,近些年来,人们把这项技术与sol-gel技术结合,合成了几十种一维无机纳米材料,这些材料以氧化物纤维为主。与大多数方法相比,静电纺丝法被公认为是最简单有效的制备一维纳米材料的方法。随着电纺研究的不断深入,人们已经不再停留于对材料的形貌和结构的有效控制等方面的基础性工作,开始注重研究这些具有一维纳米结构材料的奇特的性能,各种功能性一维纳米材料被相继合成。另外,制备方式也不再拘泥于静电纺丝技术与sol-gel的结合,研究人员开始将静电纺丝技术与其他各种物理化学方法相结合,并合成了一系列复合纳米材料。
     钙钛矿型复合氧化物ABO_3具有稳定的晶体结构、独特的电磁性能以及很高的氧化还原、氢解、异构化、电催化等活性,在固体燃料电池、固体电解质、传感器、高温加热材料、固体电阻器及替代贵金属的氧化还原催化剂等诸多领域有着广阔的应用前景。目前,其相关研究多为纳米粉体或块体的制备,而有关钙钛矿型复合氧化物纤维制备的报道较少。
     本文利用静电纺丝法制备了多种具有钙钛矿型结构的氧化物微/纳米纤维,详细讨论了这些微纳米纤维的纳米结构控制条件和形成机制,并研究了纤维的电磁学性质及材料的微观纳米结构对性能的影响等,具体工作如下:
     (1)详细讨论了静电纺丝过程中几个重要的参数(浓度、粘度、电压及喷丝头与收集板之间的距离)对纤维的形成和最终形貌的影响。实验结果表明,前躯体溶液的PVP浓度控制在8~12wt%,溶液粘度在320~680cp,可以形成直径均匀、表面光滑、连续的一维纳米结构的纤维,纤维的直径随粘度的增加变小。当喷丝头与收集板间距固定在12cm,流速为0.1ml/h时,电压值控制在10~16Kv,电纺过程比较稳定,纤维的形成以喷丝头处液滴的劈裂为主,随着电压的增加,纤维直径减小。当电压值固定,纤维直径则随着喷丝头与收集板之间的距离的增加而减小。
     (2)利用静电纺丝法结合sol-gel技术制备合成了LaFeO_3纳米纤维。讨论了乙酸镧[La(OOCH_3)_3·1.5H_2O]和乙酰丙酮铁[C_(15)H_(21)FeO_6]的盐溶液与10wt%的聚乙烯吡咯烷酮(PVP)的乙醇溶液的体积比对复合纤维形貌的影响。SEM结果表明随着La和Fe的盐溶液与PVP溶液体积比的减小,前躯体混合液的粘度增加,纤维直径变小。体积比控制在1:2时,纺丝效果较好,获得了平均直径在300nm左右、表面光滑且长直连续的一维纳米纤维。以该比例下的纤维为研究对象,讨论了烧结温度对纤维形貌及晶体结构的影响。XRD、SEM及TEM结果表明,600℃烧结后形成了较好的具有正交晶系钙钛矿多晶结构的LaFeO_3纳米纤维,其平均直径为200nm。700℃烧结后,纤维断裂。温度达到800℃以上,纤维结构转变为颗粒。
     (3)制备了LaCoO_3纳米纤维。以10wt%的PVP溶液作为络合剂,按1:2体积比配制LaCoO_3/PVP前躯体凝胶进行电纺,获得了平均直径约为400nm的表面光滑且连续的复合纳米纤维。在不同温度下烧结后,SEM结果表明600℃下,样品形成多孔纤维结构,平均直径约为300nm;在700℃、800℃时,转变为项链状纤维结构,直径变化不明显;温度达到900℃以上时纤维结构破坏。XRD结果表明,LaCoO_3纳米纤维在700℃时成相。TEM结果及同心环状电子衍射图为进一步印证,LaCoO_3纳米纤维为多晶结构。
     (4)制备了SrFeO__(3-δ)纳米纤维并研究了其磁性能。以上述相同方法制备SrFeO__(3-δ)/PVP复合纤维,并分别在700℃、800℃、900℃和1000℃下煅烧。SEM结果表明,700℃烧结后,样品保持了连续的纤维状结构,但由于PVP、醋酸根等有机成分的分解,纤维的平均直径从原来的500nm减小为400nm。800℃烧结后,由于纤维中的SrFeO__(3-δ)进一步结晶反应,形成了表面粗糙、多孔的一维纳米结构。900℃下,纤维的形貌发生了明显的变化,形成了由尺寸均匀小晶粒串联而成的项链状纳米纤维结构。纤维的直径急剧减小为220nm。1000℃以上,纤维结构破坏,无法保持一维纳米结构。XRD、TEM及ED结果表明,800℃以上形成了多晶结构的立方钙钛矿型SrFeO__(3-δ)纳米纤维。900℃下样品的热磁曲线(ZFC-FC)表明纤维样品磁学性能优于块体样品,其奈尔温度相对于其他块体样品等明显升高,居里温度也相应的升高。
one-dimensional nanomaterials exhibit novel physical properties and play an important role in fundamental research as well as practical applications. In 1991, Lijima fabricated the CNT successfully. Much attention has been paid to the synthesis of one-dimensional materials, many materials such as nanowires, nanofibers, nanorods et al have been prepared sucessfully.
     The methods for the synthesis of one-dimensional materials involve physical and chemical methods mainly. Evaporation and milling are typical physical methods. Chemical methods invole“bottom-up”and“top-down”. In recent years, top-down approaches such as photolithography, soft lithography, and electrospinning have been exploited to fabricate 1D ceramic nanostructures successfully. Among various top-down approaches, electrospinning appears to be the most straightforward and versatile technique for generating 1D nanostructures. Electrospinning has exhibited a strong ability to generate polymeric nanofibers in the past decade. Combined with calcination or carbonation, ceramic or other inorganic nanofibers could also be synthesized using the electrospinning technique. Rencently, various means combined with electrospinning were applied to produce 1Dfunctional composite nanomaterials. With these techniques, the obtained 1D composite nanomaterials show good structure, stability, and properties.
     In this dissertation , we describes the preparation of perovskite-type LaFeO_3,SrFeO_(3-δ) and LaCoO_3 micro- nanofibers by electrospinning with Sol-Gel process. The preparation condition and formation mechanism were discussed in detail. The magnetic properties and the effects of the nanostructure on it were studied. The main results were as follows:
     (1) Effects of several important electrospinning parameters on the nanostructure of the perovskite oxides micro- nanofibers. The investigated parameters include PVP concentration, viscosity, the distance between the anode and cathode and the voltage et al. The experimental results indicated that, the continuous nanofibers with smooth surface could be obtained at the concentration of 8 wt.% to 12 wt.%, and the corresponding viscosity is 320~680cp. The size of the fibers decreased with the increase of the viscosity and when the voltage increased, it showed a increasing trend under a fixed distance.
     (2) Synthesis of one-dimensional LaFeO_3 nanofibers by electrospinning . Firstly, we prepared the precursor solutions by keeping the lanthanum ferrite inorganic and the 10 wt.% PVP composition at the different volume ratio. The results revealed that the continuous precursor fibers with average diameter of 300nm could be obtained at the ratio of 1:2. The XRD、SEM and TEM results indicated that after annealed at 600℃, the average diameter reduced to 200nm and perovskite type LaFeO_3 nanofibers with polycrystalline structure formed.
     (3) Synthesis of one-dimensional LaCoO_3 nanofibers by electrospinning . The LaCoO_3/PVP precursor fibers with average diameter of 400nm were obtained by the same electrospinning conditions. The XRD and TEM results showed that after annealing at 700℃, the LaCoO_3 nanofibers formed with a necklace-like structure, and the average diameter reduced to 300nm. Further more, TEM and ED images indicated its polycrystalline structure.
     (4) Synthesis and magnetic properties of one-dimensional SrFeO_(3-δ) nanofibers by electrospinning. The SrFeO_(3-δ)/PVP composite nanofibers were prepared by the same method above. These precursor fibers were annealed at different temperature. The SEM and XRD results revealed the SrFeO_(3-δ)/PVP composite fibers changed from continuous fibrous structure to a necklace-like structure following by the decomposition of PVP organic components and the chemical reaction of the inorganic salts. After annealing at 800℃, the one-dimensional SrFeO_(3-δ) nanofibers formed with a perfect polycrystalline structure and the average diameter was about 220nm. Finally, better magnetic properties were carried out by SQUID.
引文
[1] Yang Q B , Li D M , Hong Y L , et al . Preparation and characterization of a PAN nanofiber containing Ag nanoparticles via electrospinning [J ]. Synthetic Metals , 2003 , 137 : 973-974.
    [2] Watthanaarun J, Supaphol P, Pavarjarn V. Photocatalytic activity of neat and silicon-doped titanium( IV) oxide nanofibers prepared by combined sol-gel and electrospinning techniques [J]. J.Nanosci Nanotechno , 2007 , 7 :2443-2450
    [3] M.W.Shao,H.Yaoetal.Fabrieationand and lication of longstrands of silicon nanowires as sensors for bovine serum albumin detection [J]. Appi.Phys.Lett.,2005,87,183103.
    [4] S. Iijima. Helical microtubules of graphitic carbon [J] . Nature 1991 , 354 (6348) :56-58.
    [5] Jana N R,Gearheart L, Murphy C J.Wet chemical synthesis of high aspect ratio cylindrical gold nanorods[J].J.Phys.Chem., B, 2001, 105(19):4047-4065.
    [6] Jana N R,Gearheart L, Murphy C J.Wet chemical synthesis of slilver nanorods and nanowires of controlladble aspect ratio. [J].Chem.Commun., 2001, (7):617-618.
    [7] Link S, Mohamed M B, EI-Sayed M A, Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ration and the medium dielectric constant. [J]. J.Phys.Chem. , B, 1999, 103(16):3037-3077.
    [8] W.M. Qiao, S.Y. Lim, S.H. Yoon, I. Mochida, L.C. Ling, J.H. Yang. Synthesis of crystalline SiC nanofiber through the pyrolysis of polycarbomethylsilane coated platelet carbon nanofiber [J]. Applied Surface Science, 2007, 253(10): 4467-4471.
    [9] Yasuzumi Yamada, Yu-ki Hosono, Nobuyuki Murakoshi. Carbon nanofiber formation on iron group metal loaded on SiO2[J]. Diamond and Related Materials, 2006, 15(4-8): 1080-1084.
    [10] Chang K W, Wu J J. Low-temperature catalytic synthesis of gallium nitride nanowires. [J]. J.Phys.Chem. , B, 2002, 106(32):7796-7799.
    [11] Tang Z, Kotov N A, Giersig M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires.[J]. Science, 2002, 297(5579):237-40.
    [12] Whitney T M, Jiang J S, Searson P C, Chien C L. Fabrication and magnetic properties of arrays of metallic nanowires[J] Science, 1993, 261(5126):1316-1319.
    [13] Thurn-Albrecht T, Schotter J, K?stle G A, et al. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. [J] Science, 2000, 290(5499):2126-2129.
    [14] Vero′nica Salgueirin?o-Maceira, Miguel A. Correa-Duarte, Manuel Ban?obre-Lo′pez, Marek Grzelczak, et al. Magnetic Properties of Ni/NiO Nanowires Deposited onto CNT/Pt Nanocomposites. [J].Adv. Funct. Mater. 2008, 18:616–621
    [15] Duan X, Huang Y, Cui Y, Wang J, Lieber C M. Indium phosphide nanowires as building blocks for nanscale electronic and photoelectronic devices[J].Nature, 2001, 409(6816):66-69.
    [16] Shen G, Chen D. Self-coiling of Ag2V4O11 nanobelts into perfect nanorings and microloops[J]. J Am Chem Soc., 2006, 128(36): 11762-3.
    [17]汪萍,袁爱华.碳纳米管有序阵列的合成和表征[J].无机化学,2006,20(3): 77-80.
    [18] Pan Z, Lai H L, Au F C K, Duan Xia,etal. Oriented silicon carbide nanowires : synthesis and field emiision properties. [J]. Adv. Mater., 2000, 12 (16): 1186-1190
    [19] Wang J L , Chen X S , Wang G H , Wang B L , Lu W, Zhao J . Melting behavior in ultrathin metallic nanowires[J].J. Phys . Rve. B , 2002, 66: 85408.
    [20] Bilalbegovi’c G. Structures and melting in infinite gold nanowires [J]. Solid State Comm., 2000 ,115: 73-6.
    [21] Zhang Y, Ago H, Liu J. The synthesis of In_2O_3 nanowires and In_2O_3 nanoparticles with shape-controlled.[J].J.Crys.Grow.,2004,264(1-3):363-365.
    [22] Dan Li, Jesse T. McCann, and Younan Xia. Electrospinning: a simple and versatile technique for producing ceramic nanofibers and nanotubes.[J]. Journal of the American Ceramic Society, 2006,89(6): 1861–1869.
    [23] Gates B, Mayers B, Cattle B, Xia YN. Synthesis and Characterization of Uniform Nanowires of Trigonal Selenium [J]. Adv Funct Mater 2002; 12: 219–27.
    [24] Gates B, Yin Y, Xia YN. A Solution-Phase Approach to the Synthesis of Uniform Nanowires of Crystalline Selenium with Lateral Dimensions in the Range of 10?30 nm [J]. J Am Chem Soc 2000;122:12582–3.
    [25] Gates B, Mayers B, Grossman A, Xia YN. A Sonochemical Approach to the Synthesis of Crystalline Selenium Nanowires in Solutions and on Solid Supports [J].Adv Mater 2002; 14: 1749–52.
    [26] Puntes VF, Krishnan KM, Alivisatos AP. Science 2001; 5511: 2115-7.
    [27] Greene LE, Law M, Goldberger J, Kim F, Johnson JC, Zhang YF, et al. Angew Chem Int Ed 2003;42:3031–4.
    [28]李永军,刘春艳.一维无机纳米材料的研究进展.[J].Photographic Science and Photochemistry.2003, 21(6):446-468.
    [29] Hughes WL, Wang ZL. Formation of Piezoelectric Single-Crystal Nanorings and Nanobows[J].J Am Chem Soc 2004;126:6703-9.
    [30] Kong XY, Wang ZL. Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts.[J].Nano Lett 2003;3:1625–3.
    [31] S T Lee, N Wang, Y F Zhang et al. [J]. MRS Bull., 1999: 36-42.
    [32] N Wang, Y H Tang, Y F Zhang et al. Nucleation and growth of Si nanowires from silicon oxide[J].Phys. Rev B., 1998, 58: R16024-16026.
    [33] Zhang RQ, Lifshitz Y, Lee ST. [J]. Adv Mater 2003;15:635-40.
    [34] Shi WS, Zheng YF, Wang N, Lee ST. Oxide-assisted growth and optical characterization of gallium-arsenide nanowires[J]. Appl Phys Lett 2001;78:3304-6.
    [35] Duan X.Huang Y.Cui Y.Wang J, Lieber C M. Indium phosphide nanowires as building blocks for nanoscale electronic and photoelectronic devices[J]. Chem.Mater. 2001(6816)
    [36] Martin B R.Dermody D J.Reiss B D Orthogonal self-assembly on colloidal gold platinum nanorods.[J]. Adv.Mater.,1999, 11(2): 1021-1025.
    [37] Zhu Y Q.Hsu W K.Kroto H W.Walton D R M .An alterative route to NbS2 nanotubes. [J].J.Phys.Chem.,B, 2002, 106(31):7623-7626.
    [38] Han Y J.Kim J M.Stucky G D Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15.[J].Chem.Mater., 2000,12(08):2068-2069
    [39] Huang M H.Choudrey A.Yang P Ag nanowire formation within mesoporous silica.[J].Chem.Commun.,2000(12):1063-1064.
    [40] Hopwood JD, Mann S. Synthesis of Barium Sulfate Nanoparticles and Nanofilaments in Reverse Micelles and Microemulsions.[J]. Chem Mater 1997;9:1819–28.
    [41] Xinghua Yang, Changlu Shao , Hongyu Guan, Xiliang Li, Jian Gong. Preparation and characterization of ZnO nanofibers by using electrospun PVA/zinc acetate composite fiber as precursor.[J]. Inorganic Chemistry Communications 2004,7:176–178.
    [42] Changlu Shao , Xinghua Yang, Hongyu Guan, Yichun Liu, Jian Gong. Electrospun nanofibers of NiO/ZnO composite. [J].Inorganic Chemistry Communications 2004,7:625–627.
    [43] Abdul-Majeed Azad, Fabrication of transparent alumina (Al_2O_3) nanofibers by electrospinning. [J].Materials Science and Engineering A, 2006, 435–436: 468–473.
    [44] Muzafar A. Kanjwal , Nasser A. M. Barakat , Faheem A. Sheikh, Myung Seob Khil, Hak Yong Kim. Physiochemical characterizations of nanobelts consisting of three mixed oxides (Co3O4, CuO, and MnO2) prepared by electrospinning technique. [J]. J Mater Sci, 2008 (43):5489–5494.
    [45] Changlu Shao, Na Yu, Yichun Liu, Rixiang Mu. Preparation of LiCoO2 nanofibers by electrospinning technique. [J].Journal of Physics and Chemistry of Solids, 2006 ,67: 1423–1426.
    [46] Guan Wang, Yuan Ji, Xianrong Huang, Xiaoqing Yang,Pelagia-Irene Gouma, and Michael Dudley. Fabrication and Characterization of Polycrystalline WO3 Nanofibers and Their Application for Ammonia Sensing. [J]. J. Phys. Chem. B 2006, 110: 23777-23782.
    [47] D. Li and Y. Xia, Fabrication of Titania Nanofibers by Electrospinning. [J].Nano Lett., 2003, 3:555–60.
    [48] G. Larsen, R. Velarde-Ortiz, K. Minchow, A. Barrero, and I.G.Loscertales. A Method for Making Inorganic and Hybrid (Organic/Inorganic) Fibers and Vesicleswith Diameters in the Submicrometer and Micrometer Range Via Sol–Gel Chemistry and Electrically Forced Liquid Jets [J].J. Am. Chem. Soc., 2003,125:1154–5.
    [49] W. Kataphinan, R. Teye-Mensah, E. A. Evans, R. D. Ramsier, D. H. Reneker,and D. J. Smith, High-Temperature Fiber Matrices: Electrospinning and Rare-EarthModification, [J]. J. Vac. Sci. Technol. A, 2003, 21: 1574–8.
    [50] S.-S. Choi, S. G. Lee, S. S. Im, and S. H. Kim. Silica Nanofibers from Electrospinning/Sol–Gel Process [J]. J. Mater. Sci. Lett., 2003, 22, 891–3.
    [51]Y. Wang, R. Furlan, I. Ramos, and J. I. Santigano-Aviles. Synthesis and Characterization of Micro/Nanoscopic Pb(Zr0.52Ti0.48)O3 Fibers by Electrospinning [J].Appl. Phys. A, 2004,78:1043–7.
    [52]Y. Wang and J. J. Santigano-Aviles. Synthesis of Lead Zirconate Titanate Nanofibres and the Fourier-Transform Infrared Characterization of Their Metallo-Organic Decomposition Process [J]. Nanotechnology, 2004,15:32–6.
    [53] X. M. Cui, W. S. Lyoo, W. K. Son, D. H. Park, J. H. Choy, T. S. Lee, and W. H.Park, Supercond. Sci. Technol., 2006, 19:1264.
    [54] G. Larsen, R. Velarde-Ortiz, K. Minchow, A. Barrero, and I. G. Loscertales, [J]. J. Am.Chem. Soc., 2003, 125:1154.
    [55] M. Bognitzki, M. Becker, M Graeser, W. Massa, J. H. Wendorff, A. Schaper, D.Weber, A. Beyer, A. G?lzh?user, and Andreas Greiner. [J].Adv. Mater., 2006, 18:2384.
    [56] Melosh NA, Boukai A, Diana F, Gerardot B, Baldato A, Petroff PM, et al. [J].Science 2003;300:112-5.
    [57] Sun YG, Khang DY, Hua F, Hurley K, Nuzzo RG, Rogers JA. [J].Adv Funct Mater, 2005,15:30-40.
    [58] Suresh L. Shenoya, W. Douglas Batesa, Gary Wnek. Correlations between electrospinnability and physical gelation. [J].Polymer, 2005,46: 8990–9004
    [59] Surawut Chuangchote, Takashi Sagawa, Susumu Yoshikawa. Electrospinning of Poly(vinyl pyrrolidone): Effects of Solvents on Electrospinnability for the Fabrication of Poly(p-phenylene vinylene) and TiO2 Nanofibers. [J]. Journal of Applied Polymer Science, 2009(114): 2777–2791
    [60] Won Keun Sona, Ji Ho Youkb, Taek Seung Leec, Won Ho Park. Effect of pH on electrospinning of poly(vinyl alcohol), [J].Materials Letters, 2005, 59: 1571–1575.
    [61] A. Koski, K. Yim, S. Shivkumar. Effect of molecular weight on fibrous PVA produced by electrospinning.[J]. Materials Letters 2004,58: 493– 497
    [62] J. M. Deitzel, J. Kleinmeyer, D. Harris, N. C. Beck Tan. [J].Polymer, 2001, 42:261.
    [62] Muhammad Miftahul Munir , Adi Bagus Suryamas, Ferry Iskandar, Kikuo Okuyama. Scaling law on particle-to-fiber formation during electrospinning. [J].Polymer ,2009,50 :4935–4943.
    [63] Jinmei Du, Samantha Shintay, Xiangwu Zhang. Diameter Control of Electrospun Polyacrylonitrile/Iron A cetylacetonate Ultrafine Nanofibers. [J].Journal of Polymer Science: Part B: Polymer Physics, 2008,46: 1611–1618.
    [64] Alessio Varesano, Annalisa Aluigi, Claudia Vineis. Study on the Shear Viscosity Behavior of Keratin/PEO Blends for Nanofibre Electrospinning. [J].Journal of Polymer Science: Part B: Polymer Physics, 2008 ,46:1193–1201.
    [65] H. Fong, I. Chun, D.H. Reneker. Beaded nanofibers formed during electrospinning. [J].Polymer, 1999,40 :4585–4592.
    [66] S. De Vrieze, T.Van Camp, A.Nelvig, B.Hagstrom, P.Westbroek,K.De Clerck. The effect of temperature and humidity on electrospinning.[J].J. Mater. Sci,2009(44):1357-1362.
    [67] J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen, et al., [J].Polymer, 2001, 42:8163.
    [68] E. D. Boland, G. E. Wnek, D. G. Simpson, et al., [J].J. Macromol. Sci. Pur. Appl.Chem., 2001, A 38(12):1231.
    [69] A. Theron, E. Zussman and A. L. Yarin, [J]. Nanotechnology, 2001, 12: 384.
    [70] B. Sundaray, V. Subramanian and T. S. Natarajan, [J].Appl. Phys. Lett., 2004,84(7):1222
    [71] J. A. Mathews, G. E. Wnek, D. G. Simpson, et al., [J].Biomacromolecules, 2002, 3(2):232.
    [72] R. Dersch, T. Liu, A. K. Schaper, et al., [J]. J.Polym. Sci. Part A: Polym. Chem., 2003,41:545.
    [73] Jamil A. Matthews,Gary E. Wnek, David G. Simpson, Gary L. Bowlin. Electrospinning of Collagen Nanofibers.[J]. Biomacromolecules 2002, 3:232-238.
    [74] Eugene Smit, Ulrich Bu?ttnerb, Ronald D. Sanderson. Continuous yarns from electrospun fibers.[J]. Polymer 2005 , 46: 2419–2423.
    [75] D. Li, Y. Wang, Y. Xia. [J].Nano Lett.,2003,3:1167
    [76] G. Taylor. Proc. Roy. Soc. London A, 1969, 313: 453.
    [77] T. Han, D. H. Reneker, A. L. Yarin.[J]. Polymer 2007, 48:6064.
    [78] M. M. Hohman, M. Shin, G. Rutledge, M. P. Brenner, Phys. Fluids[J].Nature, 2001,409(6818): 66-69.
    [79] Xiaofeng Lu, Ce Wang,Yen Wei. One-Dimensional Composite Nanomaterials: Synthesis by Electrospinning and Their Applications. [J]. Small 2009, 5, No. 21: 2349–2370
    [80] Yoon J, Chae S K, Kim J M.Colorimetric sensors for volatile organic compounds(VOCs) based on conjugated polymer-embedded electrospun fibers.[J].J.Am.Chem.Soc.,2007,129:3038-3039.
    [81] Li Z Y, Zhang H N, Zheng W,Wang W, Huang H M,Wang C, Macdiarmid A G,Wei Y. Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers[J].J.Am.Chem.Soc.,2008, 130:5036-5037.
    [82] X. F. Lu, X. C. Liu, L. F. Wang, W. J. Zhang, C. Wang. [J]. Nanotechnology 2006, 17:3048.
    [83] A. G. MacDiarmid,W. E. Jones, Jr, I. D. Norris, J. Gao, A. T. Johnson, Jr, N. J. Pinto, J. Hone, B. Han, F. K. Ko, H. Okuzaki, M. Llaguno, [J].Synth. Met. 2001, 119:27.
    [84] E. H. Sanders, R. Kloefkorn, G. L. Bowlin, D. G. Simpson, G. E. Wnek. [J].Macromolecules 2003, 36: 3803.
    [85] X. L. Xu, L. X. Yang, X. Y. Xu, X. Wang, X. S. Chen, Q. Z. Liang,J. Zeng, X. B. Jing.[J].J. Controlled Release 2005, 108, 33.
    [86] Y. Yang, X. H. Li, M. B. Qi, S. B. Zhou, J. Weng, Eur. [J].J. Pharm.Biopharm. 2008, 69:106.
    [87] Y. Yang, X. H. Li, W. G. Cui, S. B. Zhou, R. Tan, C. Y. Wang, J. Biomed. [J].Mater. Res. Part A 2008, 86A, 374.
    [88] M. Angeles, H.-L. Cheng, S. S. Velankar. [J]. Polym. Adv. Technol.2008, 19:728.
    [89] Z. C. Sun, E. Zussman, A. L. Yarin, J. H. Wendorff, A. Greiner [J].Adv.Mater. 2003, 15:1929.
    [90] T. Song, Y. Z. Zhang, T. J. Zhou, C. T. Lim, S. Ramakrishna, B. Liu. [J].Chem. Phys. Lett. 2005, 415, 317
    [91] Y. X. Gu, D. R. Chen, X. L. Jiao, F. F. Liu[J].J. Mater. Chem. 2007, 17:1769.
    [92] Y. Zhou, M. Freitag, J. Hone, C. Staii, A. T. Johnson, Jr, N. J. Pinto,A. G. MacDiarmid [J]. Appl. Phys. Lett. 2003, 83, 3800.
    [93] N. J. Pinto, A. T. Johnson, Jr, A. G. MacDiarmid, C. H. Mueller, N. Theofylaktos, D. C. Robinson, F. A. Miranda. [J].Appl. Phys. Lett.2003, 83, 4244.
    [94] T. C. Shang, F. Yang, W. Zheng, C. Wang [J].Small 2006, 2, 1007.
    [95] Z. Y. Li, H. N. Zhang, W. Zheng, W. Wang, H. M. Huang, C. Wang, A. G. MacDiarmid, Y. Wei [J]. J. Am. Chem. Soc. 2008, 130, 5036.
    [96] X. Wang, C. Drew, S.-H. Lee, K. J. Senecal, J. Kumar, L. A. Samuelson [J].Nano Lett. 2002, 2, 1273.
    [97] H. Q. Liu, J. Kameoka, D. A. Czaplewski, H. G. Craighead [J].Nano Lett. 2004, 4:671.
    [98] K. Sawicka, P. Gouma, S. Simon [J]. Sens. Actuators B 2005, 108,585.
    [99] A. C. Patel, S. X. Li, J. M. Yuan, Y. Wei, [J]. Nano Lett. 2006, 6, 1042.
    [100] M. M. Demir, M. A. Gulgun, Y. Z. Menceloglu, B. Erman, S. S. Abramchuk, E.. Makhaeva, A. R. Khokhlov, V. G. Matveeva, M. G. Sulman. [J]. Macromolecules E 2004, 37, 1787.
    [101] L. P. Chen, S. G. Hong, X. P. Zhou, Z. P. Zhou, H. Q. Hou. [J]. Catal.Commun. 2008, 9, 2221.
    [102] A. C. Patel, S. X. Li, C. Wang, W. J. Zhang, Y. Wei. [J]. Chem. Mater. 2007, 19, 1231.
    [103] E. Formo, E. Lee, D. Campbell, Y. Xia. [J].Nano Lett. 2008, 8: 668.
    [104] E. Formo, Z. Peng, E. Lee, X. Lu, H. Yang, Y. Xia. [J].J. Phys. Chem. C,2008, 112, 9970.
    [105] B. Ding, C. R. Li, Y. Hotta, J. Kim, O. Kuwaki, S. Shiratori. [J].Nanotechnology ,2006, 17:4332.
    [106] Y. Zhu, J. C. Zhang, Y. M. Zheng, Z. B. Huang, L. Feng, L. Jiang. [J]. Adv.Funct. Mater.,2006, 16:568.
    [107] Y. Zhu, J. C. Zhang, J. Zhai, Y. M. Zheng, L. Feng, L. Jiang. [J].Chem Phys Chem 2006, 7: 336.
    [108] G. Hota, B. R. Kumar, W. J. Ng, S. Ramakrishna. [J]. J. Mater. Sci. 2008,43:212.
    [109] C. S. Ki, E. H. Gang, N. C. Um, Y. H. Park, [J]. J. Membr. Sci. 2007, 302,20.
    [110] X. F. Song, Z. J. Wang, Z. Y. Li, C. Wang. [J].J. Colloid Interf. Sci. 2008,327, 388.
    [111] G. Y. Oh, Y. W. Ju, H. R. Jung, W. J. Lee. [J]. J. Anal. Appl. Pyrolysis 2008, 81, 211.
    [112] R. Ramaseshan, S. Sundarrajan, Y. J. Liu, R. S. Barhate, N. L. Lala, S. Ramakrishna. [J].Nanotechnology 2006, 17, 2947.
    [113] M. Y. Song, D. K. Kim, K. J. Ihn, S. M. Jo, D. Y. Kim. [J]. Synth. Met.2005, 153, 77.
    [114] K. Onozuka, B. Ding, Y. Tsuge, T. Naka, M. Yamazaki, S. Sugi, S. Ohno, M. Yoshikawa, S. Shiratori. [J]. Nanotechnology 2006, 17,1026.
    [115] K. Fujihara, A. Kumar, R. Jose, S. Ramakrishna, S. Uchida. [J]. Nanotechnology 2007, 18: 365709.
    [116] R. Zhu, C. Y. Jiang, X. Z. Liu, B. Liu, A. Kumar, S. Ramakrishna. [J].Appl. Phys. Lett. 2008, 93: 013102.
    [117] M. Y. Song, D. K. Kim, K. J. Ihn, S. M. Jo, D. Y. Kim. [J].Nanotechnology 2004, 15, 1861.
    [118] R. Jose, A. Kumar, V. Thavasi, S. Ramakrishna[J]. Nanotechnology,2008, 19: 424004.
    [119] M. Y. Li, G. Y. Han, B. S. Yang. [J]. Electrochem. Commun., 2008, 10:880.
    [120] C. Kim, K. S. Yang, M. Kojima, K. Yoshida, Y. J. Kim, Y. A. Kim, M. Endo. [J]. Adv. Funct. Mater. 2006, 16: 2393.
    [121] L. Wang, Y. Yu, P. C. Chen, C. H. Chen. [J]. Scripta Mater. 2008, 58, 405.
    [122] H. W. Lu, D. Li, K. Sun, Y. S. Li, Z. W. Fu. [J]. Solid State Sci. 2009, 11,982.
    [123] Y. W. Ju, G. R. Choi, H. R. Jung, W. J. Lee. [J]. Electrochim. Acta 2008,53, 5796.
    [124] Q. P. Pham, U. Sharma, A. G. Mikos. [J]. Tissue Eng., 2006, 12:1197.
    [125] C. Burger, B. S. Hsiao, B. Chu. [J]. Annu. Rev. Mater. Res. 2006, 36:333.
    [126] C. P. Barnes, S. A. Sell, E. D. Boland, D. G. Simpson, G. L. Bowlin. [J].Adv. Drug Delivery Rev. 2007, 59: 1413
    [127] S. Agarwal, J. H. Wendorff, A. Greiner. [J]. Polymer 2008, 49: 5603.
    [128] J. Fang, H. T. Niu, T. Lin. [J]. Chin. Sci. Bull. 2008, 53: 2265.
    [1] Suresh L. Shenoy, W. Douglas Bates, Gary Wnek. Correlations between electrospinnability and physical gelation [J ]. Polymer, 2005 ,46: 8990–9004.
    [2] Alessio Varesano, Annalisa Aluigi, Claudia Vineis, Claudio Tonin. Study on the Shear Viscosity Behavior of Keratin/PEO Blends for Nanofibre Electrospinning [J ]. Journal of Polymer Science: Part B: Polymer Physics,2008,46:1193-1201.
    [3] Dan Li, Jesse T. McCann, and Younan Xia. Electrospinning: A Simple and Versatile Technique for Producing Ceramic Nanofibers and Nanotubes [J ]. J. Am. Ceram. Soc., 2006,89 (6): 1861–1869.
    [4] Wolfgang Sigmund, Junhan Yuh, Hyun Park, Vasana Maneeratana,et al. Processing and Structure Relationships in Electrospinning of Ceramic Fiber Systems[J]. J. Am. Ceram. Soc., 2006,89(2): 395–407.
    [5] Mohamed Basel Bazbouz, George K Stylios. Novel mechanism for spinning continuous twisted composite nanofiber yarns [J]. European Polymer Journal 2008,44 :1–12.
    [6] A. K. Moghe, B. S. Gupta. Co-axial Electrospinning for Nanofiber Structures: Preparation and Applications [J]. Polymer Reviews, 2008,48:353–377.
    [7] Darrell H. Reneker, Alexander L. Yarin. Electrospinning jets and polymer nanofibers[J]. Polymer , 2008,49:2387-2425.
    [8] Ramakrishnan Ramaseshan, Subramanian Sundarrajan, and Rajan Jose. Nanostructured ceramics by electrospinning[J]. Jounal of Applied Physics,2007, 102, :111101-17
    [9]周险峰,“静电纺丝法制备ABO3型钙钛矿复合氧化物微纳米纤维”,吉林大学博士论文,2006.
    [10] A. Koski, K. Yim, S. Shivkumar. Effect of molecular weight on fibrous PVA produced by electrospinning[J]. Materials Letters ,2004,58:493– 497.
    [11] Won Keun Son, Ji Ho Youk, Taek Seung Lee, Won Ho Park. Effect of pH on electrospinning of poly(vinyl alcohol) [J]. Materials Letters, 2005,59:1571–1575.
    [12] Yi Xin, Zonghao Huang , Jinfeng Chen, Cheng Wang, Yanbin Tong, Sidong Liu. Fabrication of well-aligned PPV/PVP nanofibers by electrospinning [J]. Materials Letters , 2008,62:991–993.
    [13] Yuya Ishii, Heisuke Sakai, Hideyuki Murata. A new electrospinning method to control the number and a diameter of uniaxially aligned polymer fibers[J]. Materials Letters, Materials Letters 2008,62:3370–3372.
    [14]杨清彪,“高分子微/纳米纤维和金属纳米粒子/高分子复合纤维的制备与表征”,吉林大学博士学位论文,2004。
    [15]崔启征,董相廷,于伟利,王进贤,王慧茹,杨晓峰,于晓辉.静电纺丝技术制备无机物纳米纤维的最新研究进展[J].稀有金属材料与工程,2006, 35(7):1167-1171.
    [16] Shiyou Xu, Yong Shi,Sang-Gook Kim.Fabrication and mechanical property of nano piezoelectric fibres[J]. Nanotechnology 2006,17:4497-4501.
    [17] Huajun Zhou, Thomas B. Green, Yong Lak Joo. The thermal effects on electrospinning of polylactic acid melts[J]. Polymer, 2006, 47(21): 7497-7505.
    [18] Yang Liu, Guiping Ma, Dawei Fang, Juan Xu, Hongwen Zhang, Jun Nie. Effects of solution properties and electric field on the electrospinning of hyaluronic acid [J]. Carbohydrate Polymers, 2011, 83(2): 1011-1015.
    [19] Tamer Uyar, Flemming Besenbacher. Electrospinning of uniform polystyrene fibers: The effect of solvent conductivity[J]. Polymer, 2008, 49(24): 5336-5343.
    [20] Won Keun Son, Ji Ho Youk, Taek Seung Lee, Won Ho Park. The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers[J]. Polymer, 2004, 45(9): 2959-2966.
    [21] O.S. Y?rdem, M. Papila, Y.Z. Mencelo?lu. Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: An investigation by response surface methodology[J]. Materials & Design, 2008, 29(1): 34-44.
    [22]张立德,牟季美.纳米材料和纳米结构,科学出版社,2002.
    [23] Goki Eda, James Liu, Satya Shivkumar. Solvent effects on jet evolution during electrospinning of semi-dilute polystyrene solutions[J].European Polymer Journal, 2007, 43(4): 1154-1167.
    [24] Jason Lyons, Christopher Li, Frank Ko. Melt-electrospinning part I: processing parameters and geometric properties[J]. Polymer, 2004, 45(22): 7597-7603.
    [25] M. M. Demir, I. Yilgor, E. Yilgor, B. Erman. Electrospinning of polyurethane fibers[J]. Polymer, 2002, 43(11): 3303-3309.
    [26] Naiqian Zhan, Yaoxian Li, Chaoqun Zhang, Yan Song, Hengguo Wang, Lei Sun, Qingbiao Yang, Xia Hong. A novel multinozzle electrospinning process for preparing superhydrophobic PS films with controllable bead-on-string/microfiber morphology[J]. Journal of Colloid and Interface Science, 2010, 345(2): 491-495.
    [27] C.J. Thompson, G.G. Chase, A.L. Yarin, D.H. Reneker. Effects of parameters on nanofiber diameter determined from electrospinning model[J]. Polymer, 2007, 48(23): 6913-6922.
    [28] Vince Beachley, Xuejun Wen. Effect of electrospinning parameters on the nanofiber diameter and length[J]. Materials Science and Engineering: C, 2009, 29(3): 663-668.
    [29] Sureeporn Tripatanasuwan, Zhenxin Zhong, Darrell H. Reneker. Effect of evaporation and solidification of the charged jet in electrospinning of poly(ethylene oxide) aqueous solution [J]. Polymer, 2007, 48(19): 5742-5746.
    [30] Muhammad Miftahul Munir, Adi Bagus Suryamas, Ferry Iskandar, Kikuo Okuyama. Scaling law on particle-to-fiber formation during electrospinning[J]. Polymer, 2009, 50(20): 4935-4943.
    [31] Tamer Uyar, Flemming Besenbacher. Electrospinning of cyclodextrin functionalized polyethylene oxide (PEO) nanofibers [J]. European Polymer Journal, 2009, 45(4): 1032-1037.
    [32] Nandana Bhardwaj, Subhas C. Kundu. Electrospinning: A fascinating fiber fabrication technique[J]. Biotechnology Advances, 2010, 28(3): 325-347.
    [33] Darrell H. Reneker, Alexander L. Yarin. Electrospinning jets and polymernanofibers[J]. Polymer, 2008, 49(10): 2387-2425.
    [34] Jing Tao, Satya Shivkumar. Molecular weight dependent structural regimes during the electrospinning of PVA[J]. Materials Letters, 2007, 61(11-12): 2325-2328.
    [35] H. Fong, I. Chun, D. H. Reneker. Beaded nanofibers formed during electrospinning Beaded nanofibers formed during electrospinning [J]. Polymer, 1999, 40(16): 4585-4592.
    [36] K.H. Lee, H.Y. Kim, H.J. Bang, Y.H. Jung, S.G. Lee. The change of bead morphology formed on electrospun polystyrene fibers [J]. Polymer, 2003,44(14): 4029-4034.
    [37] Zhongli Wang, Xiaojuan Liu, Minfeng Lv, Ping Chai, Yao Liu, and Jian Meng. Preparation of Ferrite MFe2O4 (M ) Co, Ni) Ribbons with Nanoporous Structure and Their Magnetic Properties[J]. J. Phys. Chem. B, 2008, 112: 11292-11297.
    [38] Zhongli Wang, Xiaojuan Liu, Minfeng Lv, Ping Chai, Yao Liu, Xianfeng Zhou, Jian Meng. Preparation of One-Dimensional CoFe2O4 Nanostructures and Their Magnetic Properties.[J]. J. Phys. Chem. C, 2008, 112: 15171-15175.
    [39] McKee MG, Wilkes GL, Colby RH, Long TE. Macromolecules 2004;37:1760
    [40] J. M. Deitzel, J. Kleinmeyer, D. Harris, N. C. Beck Tan. Polymer, 2001, 42, 261.
    [1] A. Delmastro, D. Mazza, S. Ronchetti, M. Vallino, R. Spinicci, P. Brovetto,M. Salis. Synthesis and characterization of non-stoichiometric LaFeO3 perovskite [J]. Materials Science and Engineering B, 2001,79:140–145.
    [2] Z. Yang,Y. Huang, B. Dong. Fabrication and structural properties of LaFeO3 nanowires by an ethanol–ammonia-based sol–gel template route [J]. Appl. Phys. A, 2005, 81:453–457.
    [3] Torranee J B, Lacorre p, Asavaroenghai C, et al.Simple and peroskite oxides of transition-metals:why some are metallic, while most are Insulating.[J].J.Solid State chemistry,1991,90:168-172.
    [4]冯明,赵书华,李娜,刘梅,李海波.钙钛矿型复合氧化物LaFeO3纳米晶的制备及表征[J].吉林师范大学学报(自然科学版),2005,8(3):5-6.
    [5] U. Russo, L. Nodari, M. Faticanti, V. Kuncser, G. Filoti. Local interactions and electronic phenomena in substituted LaFeO3 perovskites [J]. Solid State Ionics, 2005, 176(1-2):97-102.
    [6] A.E. Giannakas, A.C. Ladavos, P.J. Pomonis. Preparation, characterization and investigation of catalytic activity for NO+CO reaction of LaMnO3 and LaFeO3 perovskites prepared via microemulsion method [J]. Appl. Catal. B Environ, 2004,49(3):147-158.
    [7] J. Adebahr, P. Gavelin, P. Jannasch, D. Ostrovskii, B. Wesslen, P. Jacobsson. Cation coordination in ion-conducting gels based on PEO-grafted polymers [J].Solid State Ionics, 2000, 135(1-4):154-155.
    [8] Xiwei Qi, Ji Zhou, Zhenxing Yue, Zhilun Gui, Longtu Li. Auto-combustion synthesis of nanocrystalline LaFeO3 [J]. Mater. Chem. Phys., 2003,78: 25-29.
    [9] N.Q. Mih. Ceramic fuel cells[J]. J. Am. Ceram. Soc., 1993,76 (4):563-588.
    [10] J. Molenda, K.′Swierczek, W. Zajac. Functional materials for the IT-SOFC[J]. Journal of Power Sources , 2007,173:657–670.
    [11] T. Kawada, H. Yokokawa. Materials and Characterization of Solid Oxide Fuel Cell [J]. Key Eng. Mater., 1997,125:187-192.
    [12] Sang Lixia, Liu Yu, Li Qunwei, Xu Lixian, Ma Chongfang, Dai Hongxing. Photocatalytic Hydrogen Evolution from Water over Nano Perovskite Oxides LaFeO3 [J]. Journal of The Chinese Rare Earth Society, 2006, 24:42-45.
    [13] R. Spinicci, A. Tofanari, A. Delmastro, D. Mazza, S. Ronchetti. Catalytic properties of stoichiometric and non-stoichiometric LaFeO3 perovskite for total oxidation of methane[J]. Materials Chemistry and Physics, 2002,76:20-25.
    [14]徐科,张朝平.钙钛矿型LaFeO3纳米材料光催化氧化NO2的研究[J].中国稀土学报,2007,25:29-32.
    [15]杨秋华,沈海云.纳米LaFeO3和SrFeO3制备、表征及光催化活性研究[J].实验室科学,2009,5:61-64.
    [16]宋爱君,高发明. LaFeO3溶胶凝胶合成和光催化性能[J].稀土,2004,25:25-27.
    [17]靳建华,白涛,白炳贤,等.用酒石酸凝胶法制备LaFeO3纳米晶[J].稀土, 2001, 22(2): 61.
    [18]郑伟.氧化物纳米纤维甲/乙醇气体传感器的性能研究,吉林大学,博士论文,2010.
    [19]杨芬,张鹏翔.浅谈钙钛矿气敏材料[J].云南冶金,2004, 33(3):46-48.
    [20] M.A. Pena, J.L.G. Fierro. Chemical Structure and Performance of Perovskite Oxides[J].Chem. Rev., 2001, 101: 1981-2017.
    [21] Xing Liu, Bin Cheng, Jifan Hu, Hongwei Qin, Minhua Jiang. Semiconducting gas sensor for ethanol based on LaMgxFe1-xO3 nanocrystals[J]. Sensors and Actuators B , 2008,129:53-58.
    [22] X. Liu, H. Ji, Y. Gu, M. Xu. Preparation and acetone sensitive characteristics of nano-LaFeO3 semiconductor thin films by polymerization complex method.[J]. Mater. Sci. Eng. B , 2006, 133:98–101.
    [23] N.N. Toan, S. Saukko, V. Lantto. Gas sensing with semiconducting perovskite oxide LaFeO3[J]. Physica B, 2003,327:279-282.
    [24] Saeid Farhadi, Zohreh Momeni, Masoumeh Taherimehr. Rapid synthesis of perovskite-type LaFeO3 nanoparticles by microwave-assisted decomposition of bimetallic La[Fe(CN)6]5H2O compound[J]. Journal of Alloys and Compounds, 2009,471:L5-L8.
    [25] C. V′azouez-V′azouez, P. K?gerler, M.A. L′opez-Quintela, R.D. S′anchez, J. Rivas. [J]. J.Mater. Res. , 1998,13:451.
    [26] Huitao Fan, Tong Zhang, Xiujuan Xu, Ning Lv. Fabrication of N-type Fe2O3 and P-type LaFeO3 nanobelts by electrospinning and determination of gas-sensing properties [J]. Sensors and Actuators B: Chemical, In Press, Corrected Proof, Available online 15 October 2010.
    [27] W.J. Zheng, R.H. Liu, D.K. Peng, G.Y. Meng. Hydrothermal synthesis of LaFeO3 under carbonate-containing medium [J].Mater. Lett., 2000,43:19.
    [28] M. Sivakumar, A. Gedanken, W. Zhong, Y.H. Jiang, Y.W. Du, I. Brukental, D. Bhattacharya, Y. Yeshurun, I. Nowik. Sonochemical synthesis of nanocrystalline LaFeO3[J]. J. Mater. Chem., 2004,14:764.
    [29] Y. Sadaoka, H. Aono, E. Traversa, M. Sakamoto. Thermal evolution of nanosized LaFeO3 powders from a heteronuclear complex, La[Fe(CN)6]·nH2O [J].J. Alloys Compd., 1998, 278 :135.
    [30] J.J.Liang, H.S.Weng. Catalytic properties of lanthanum strontium transition metal oxides(La1-xSrxBO3; B=manganese,iron,cobalt,nickel) for toluene oxidation[J].Ind.Eng.Chem.Res., 1993, 32:2563-2572.
    [31] M. Popa, J. Frantti, M. Kakihana. Lanthanum ferrite LaFeO3+d nanopowders obtained by the polymerizable complex method [J]. Solid State Ionics, 2002, 154–155: 437-445.
    [32] Xiwei Qi, Ji Zhou, ZhenxingYue, Zhilun Gui, Longtu Li. A simple way to prepare nanosized LaFeO3 powders at room temperature[J]. Ceramics International , 2003,29:347–349.
    [33] A.E. Giannakas, A.K. Ladavos, P.J. Pomonis. Preparation, characterization and investigation of catalytic activity for NO + CO reaction of LaMnO3 and LaFeO3perovskites prepared via microemulsion method[J]. Applied Catalysis B: Environmental, 2004,49:147-158.
    [34] A.D. Jadhav, A.B. Gaikwad, V. Samuel, V. Ravi. A low temperature route to prepare LaFeO3 and LaCoO3[J]. Materials Letters, 2007, 61:2030-2032.
    [35] S.Q. Zhao, J.K.O. Sin, B.K. Xu, M.Y. Zhao, Z.Y. Peng, H. Cai. A high performance ethanol sensor based on field-effect transistor using a LaFeO3 nano-crystalline thin-film as a gate electrode [J]. Sens. Actuators B, 2000,64:83-87.
    [36] J W Seo, E E Fullerton, F Nolting, A Scholl, J Fompeyrine, J-P Locquet.Antiferromagnetic LaFeO3 thin films and their effect on exchange bias[J]. J. Phys.: Condens. Matter , 2008, 20:264014 (10pp).
    [37] G. Shabbir, A.H. Qureshi, K. Saeed. Nano-crystalline LaFeO3 powders synthesized by the citrate-gel method[J]. Materials Letters, 2006,60:3706-3709.
    [38] S Czekaj, F Nolting, L J Heyderman, K Kunze, M Kr¨uger. Antiferromagnetic domain configurations in patterned LaFeO3 thin films[J]. J. Phys.: Condens. Matter, 2007,19:386214 (7pp).
    [39] A.A. Cristo′bal a, P.M. Botta, P.G. Bercoff, J.M. Porto Lo′pez. Mechanosynthesis and magnetic properties of nanocrystalline LaFeO3 using different iron oxides[J]. Materials Research Bulletin, 2009,44:1036-1040.
    [40] Shudan Li, Liqiang Jing, Wei Fu, Libin Yang, Baifu Xin, Honggang Fu. Photoinduced charge property of nanosized perovskite-type LaFeO3 and its relationships with photocatalytic activity under visible irradiation[J]. Materials Research Bulletin, 2007,42:203-212.
    [41] S. Czekaj, F. Nolting, L. J. Heyderman, P. R. Willmott, and G. van der Laan. Sign dependence of the x-ray magnetic linear dichroism on the antiferromagnetic spin axis in LaFeO3 thin films[J]. Physical Review B , 2006, 73:020401(R).
    [42]季宏伟,周德凤,周险峰,刘海涛,孟健.静电纺丝法制备LaFeO3纳米纤维[J].高等学校化学学报,2009, 30(11): 2112-2115.
    [1] Monica Popa, Masato Kakihana. Synthesis of lanthanum cobaltite (LaCoO3) by the polymerizable complex route[J]. Solid State Ionics, 2002, 151: 251-257.
    [2]吴秉衡,胡双启. LaCoO3对TNT废水光催化降解的实验研究[J].火炸药学报, 2008, 31(6): 21-24.
    [3]吴维维,张虹,常思思,高敬,贾立山.可见光下钙钛矿LaCoO3光催化杀菌性能的应用研究[J].化工时刊,2009,23:25-28.
    [4]朱俊武,王艳萍等.纳米LaCoO3的制备及其对高氯酸铵分解的催化性能[J].中国稀土学报,2007,25(3):364-367.
    [5] M.Medarde, C.Dallera, M.Grione, J.Voigt, A.Reichl, C.Zobel, H.Kierspel, A. Freimuth, T.Lorenz. Spin-state transition and metal-insulator transition in La1?xEuxCoO3[J].Phys.Rev.B, 2005, 71:014443.
    [6] D.Phelan, D.Louca, S. Rosenkranz, S. H. Lee,Y. Qiu, P.J.Chupas, et al. Nanomagnetic Droplets and Implications to Orbital Ordering in La1-xSrxCoO3 [J].Phys. Rev. Lett., 2006, 96: 027201.
    [7] A. Podlesnyak, S. Streule, J. Mesot, M. Medarde, E.Pomjakushina, K. Conder, et al. Spin-State Transition in LaCoO3: Direct Neutron Spectroscopic Evidence of Excited Magnetic States [J]. Phys. Rev. Lett., 2006, 97: 247208.
    [8] G.Thornton, B.C. Tofield, A.W.Hewat. A neutron diffraction study of LaCoO3 in the temperature range 4.2 < T < 1248 K [J].J.Solid State Chem., 1986, 61: 301.
    [9]张士龙,孔辉,岑诚,苏金瑞,朱长飞. LaCoO3中自旋态转变现象的超声研究[J].物理学报,2005, 54(9):4380-4383.
    [10] J.W.Freeland, J.X.Ma, J.Shi. Ferromagnetic spin-correlations in strained LaCoO3 thin films[J].Appl.Phys.Lett., 2008, 93: 212501.
    [11] M.Retuerto, M.Garcia-Hernandez, M.J.Martinez-Lope, M.T.Fernandez-Diaz, J.P.Attfield, J.A.Alonso. Switching from ferro- to antiferromagnetism in A2CrSbO6 (A = Ca, Sr) double perovskites: a neutron diffraction study[J].J.Mater.Chem., 2007, 17, 3555.
    [12] Manjunath B.Bellakki; C.Madhu; Tobias Greindl; Sandeep Kohli; Patrick McCurdy; V.Manivannan. Synthesis and measurement of structural and magnetic properties of K-doped LaCoO3 perovskite materials[J]. Rare Metals, 2010, 5: 691-697.
    [13] Ming Caibing, Ye Daiqi, Yi Hui, Fu Mingli. Catalytic performance of precious metal-substituted LaCoO3 over soot[J]. China Environmental Science, 2009, 9: 924-928.
    [14]孙志强,钙钛矿型催化剂对柴油机尾气中碳颗粒和NO_x的同时去除,北京化工大学,硕士论文,2007.
    [15] Zhang Yongming, Liu Zhongxin, Sun Zhongliang, Zhang Wuyuan, Zhang Dela1. Catalysts for Hydrogen Peroxide Decomposition from Rare Earth Compounds with Perovskite Structure[J]. Journal of the Chinese Rare Earth Society,2007,3: 293-298.
    [16] Liu Shumo, Wei Jiying, Jiang Feng, Zuo Min, Cai Bing. Preparation,Structure and Soot Oxidation Performance of Nano-scaled Perovskite-typeLa_(1-x)K_xCoO_3 Catalyst[J]. The Chinese Journal of Process Engineering, 2007, 6:1229-1235.
    [17] Cui Xiaoliang, Yang Qiuhua, Fu Xixian. The photocatalysed reduction of aqueous sodium carbonate on LaCoO3 nano particles[J]. the National Natural Science Foundation of China, 2003, 5(7):56-59.
    [18] Shigeru Masuda, Yoshiya Harada. Deexcitation of rare-gas metastable atoms on semiconductor surfaces: MoS2 and LaCoO3[J]. Surface Science, 1993, 283 (1-3) :A234.
    [19] Mohammad Ghasdi, Houshang Alamdari. CO sensitive nanocrystalline LaCoO3 perovskite sensor prepared by high energy ball milling [J]. Sensors and Actuators B: Chemical, 2010, 148(2): 478-485.
    [20] S. Ajami, Y. Mortazavi, A. Khodadadi, F. Pourfayaz, S. Mohajerzadeh. Highly selective sensor to CH4 in presence of CO and ethanol using LaCoO3 perovskite filter with Pt/SnO2 [J]. Sensors and Actuators B: Chemical, 2006, 116(2): 420-425.
    [21] A.V. Salker, N.-J. Choi, J.-H. Kwak, B.-S. Joo, Duk-Dong Lee. Thick films of In, Bi and Pd metal oxides impregnated in LaCoO3 perovskite as carbon monoxide sensor [J]. Sensors and Actuators B: Chemical, 2005, 106(1): 461-467.
    [22] Lishan Jia, Juanjuan Li, Weiping Fang, Hao Song, Qingbiao Li, Yong Tang. Visible-light-induced photocatalyst based on C-doped LaCoO3 synthesized by novel microorganism chelate method [J]. Catalysis Communications, 2009,10(8): 1230-1234.
    [23]于洁,马文会,王华,何天淳.掺杂LaCoO3-δ的非化学计量比及混合电导率[J].中山大学学报(自然科学版), 2007, S1:102-104.
    [24] Chia Siang Cheng, Lan Zhang, Yu Jun Zhang, San Ping Jiang. Synthesis of LaCoO3 nano-powders by aqueous gel-casting for intermediate temperature solid oxide fuel cells[J].Solid State Ionics, 2008,179(7-8):282-289.
    [25] Zhao Jie, Ma Yongchang, Li Chen, Wang Zhiqi, Liu Jiwen. Preparation and properties of LaCoO3-based mixed conductors doped with multielement[J]. Materials Science and Technology, 2010, 1 :15-19.
    [26]华斌,张建福,卢凤双,孔永红,蒲健,李箭. LaCoO3涂层对SUS 430合金连接体中温氧化行为的影响[J].金属学报, 2009, 5:605-609.
    [27] A. G. C. Kobuseen, F. R. Van Buren, T. G. M. Van Den Belt, Wees H. J. A. Van. Oxygen evolution on LaCoO3-type electrodes[J]. Journal of Electroanalytical Chemistry, 1979, 96(1):123-126.
    [28] Yan Liu, Jinfu Ma, Junhua Lai, Yongning Liu. Study of LaCoO3 as a cathode catalyst for a membraneless direct borohydride fuel cell [J]. Journal of Alloys and Compounds, 488(1):204-207.
    [29] Gengxin Song, Liang Li, Dapeng Xu. High-quality LaCoO3 single crystal grown by optical floating zone method and its electromagnetic properties[J]. Cryst. Res. Technol., 2010, 45(5):461-464.
    [30] Sonya Ivanova, Ekaterina Zhecheva, Radostina Stoyanova. Microstructure of LaCoO3 prepared by freeze-drying of metal–citrate precursors revealed by EPR [J]. Journal of Physics and Chemistry of Solids, 2007,68(2): 168-174.
    [31] Jun Yang, Runsheng Li, Junyi Zhou, Xiaoci Li, Yuanming Zhang, Yulin Long, Yongwang Li. Synthesis of LaMO3 (M = Fe, Co, Ni) using nitrate or nitrite molten salts[J]. Journal of Alloys and Compounds, 2010, 508(2): 301-308.
    [32] Monica Popa, Jose M. Calderon-Moreno. Lanthanum cobaltite nanoparticles using the polymeric precursor method [J]. Journal of the European Ceramic Society, 2009, 29(11):2281-2287.
    [33] Jiguang Deng, Lei Zhang, Hongxing Dai, Chak-Tong Au. In situ hydrothermally synthesized mesoporous LaCoO3/SBA-15 catalysts: High activity for the complete oxidation of toluene and ethyl acetate [J]. Applied Catalysis A: General, 2009, 352(1-2): 43-49.
    [34] Haiyun Shen, Qiuhua Yang, Ning Li. Study on reaction mechanism of low temperature preparation of nanocrystalline LaCoO3-λ[J]. Journal of Rare Earths, 2008, 26(5): 681-683.
    [35] Nunzio Russo, Stefania Furfori, Debora Fino, Guido Saracco, Vito Specchia. Lanthanum cobaltite catalysts for diesel soot combustion [J]. Applied Catalysis B: Environmental, 2008, 83(1-2): 85-95.
    [36] Chia Siang Cheng, Lan Zhang, Yu Jun Zhang, San Ping Jiang. Synthesis of LaCoO3 nano-powders by aqueous gel-casting for intermediate temperature solid oxide fuel cells[J]. Solid State Ionics, 2008, 179(7-8): 282-289.
    [37] Lidia Armelao, Gregorio Bottaro, Laura Crociani, Roberta Seraglia, Eugenio Tondello, Pierino Zanella. A versatile single-source precursor for the synthesis of LaCoO3 films[J].Materials Letters, 2008, 62(8-9): 1179-1182.
    [38] Zhu Junwu, Sun Xiaojie, Wang Yanping, Wang Xin, Yang Xujie, Lu Lude. Solution-Phase Synthesis and Characterization of Perovskite LaCoO3 Nanocrystals via A Co-Precipitation Route[J]. Journal of Rare Earths, 2007, 25(5): 601-604.
    [39] D. Berger, C. Matei, F. Papa, G. Voicu, V. Fruth. Pure and doped lanthanum cobaltites obtained by combustion method[J]. Progress in Solid State Chemistry, 2007, 35(2-4): 183-191.
    [40] J.P.Yan, J.S.Zhou, J.B.Goodenough. Ferromagnetism in LaCoO3 [J]. Phys. Rev. B., 2004, 70: 014402.
    [41] D.Fuchs, C.Pinta, T.Schwarz, P.Schweiss, P.Nage., S.Schuppler, R.Schneider, M.Merz, G.Roth. Ferromagnetic order in epitaxially strained LaCoO3 thin films [J].Phys.Rev.B., 2007,75:144402.
    [1] Yude Wang, Jingbo Chen, Xinghui Wu. Preparation and gas-sensing properties of perovskite-type SrFeO3-δoxide[J]. Materials Letters, 2001,49:361–364.
    [2]“朱玉梅,纳米晶钛酸锶镁氧传感器的研究”,吉林大学硕士论文,吉林大学,2001
    [3] M.L. Post, J.J. Tunney, [J].Sens. Actuators B , 1999,59:190.
    [4] J. Tunney, M.L. Post, [J].J. Electroceram , 2000,5:63.
    [5] M.L. Post, W. Brian, S.P. Kennepohl, [J].Sens. Actuators B , 1993,13–14:272.
    [6] M. L. Post, [J].Thin film oxygen sensor, Patent number US5397541 (1995).
    [7] Y. Tsujimoto, C. Tassel, N. Hayashi, T. Watanabe, H. Kageyama, K. Yoshimura, M.Takano, M. Ceretti, C. Ritter, W. Paulus, [J].Nature 2007,450:1062.
    [8]张春丽,赵军霞.微波加热法制备SrFeO3光催化材料的研究[J].有色矿冶, 2009,vol(25) 3 :36-38.
    [9] Jia Lishan, Ding Tong, Li Qingbiao, Tang Yong. Study of photocatalytic performance of SrFeO3-x by ultrasonic radiation [J]. Catalysis Communications , 2007 ,8: 963–966.
    [10] A. Lebon, P. Adler, C. Bernhard, A.V. Boris, A.V. Pimenov, A. Maljuk, et al. Magnetism, Charge Order, and Giant Magnetoresistance in SrFeO3-δSingle Crystals [J]. Physical Review Letters,2004, 92(3):037202-1-4.
    [11] P. Adler, A. Lebon,V. Damljanovi?, C. Ulrich, C. Bernhard, A. V. Boris, et al. Magnetoresistance effects in SrFeO3-δ: Dependence on phase composition and relation to magnetic and charge order [J]. Physical Review B , 2006, 73: 094451-1-16.
    [12] Y.M. Zhao, P.F. Zhou. Metal– insulator transition in helical SrFeO3-δantiferromagnet[J]. Journal of Magnetism and Magnetic Materials , 2004, 281 :214–220.
    [13] Grenier, J C,Ea N, Pouchard M, Hagenmuller P J. [J].Solid State Chem. 1985, 58, 243.
    [14] Takano Y, Okita T, Nakayama N, Bando Y, Takeda Y, Yamamoto O, Goodenough J B .[J] J.Solid State Chem. 1988, 73: 140.
    [15] Hodges J P, Short S, Jorgensen J D, Xiong X, Dabrowski B, Mini S M, Kimball C W. [J]. J. Solid State Chem. 2000, 151: 190.
    [16] Marchetti L, Forni L.[J]. Appl. Catal. A: Gen. 1998, 152:179.
    [17] I R Shein, V L Kozhevnikov, A L Ivanovskii. The influence of oxygen vacancies on the electronic and magnetic properties of perovskite-like SrFeO3-x [J]. Journal of Physics and Chemistry of Solids, 2006, 67:1436–1439
    [18] A Maljuk, A Lebon, V Damljanovic′, C Ulrich, C T Lin, P Adler, B Keimer. Growth and oxygen treatment of SrFeO3-y single crystals [J]. Journal of Crystal Growth ,2006,291:412–415.
    [20] A Maljuk, J Strempfer, C Ulrich, A Lebon, C T Lin. [J] J. Crystal Growth, 2003, 257:427.
    [21] A Lebon, P Adler, C Bernhard, A V Boris, A V Pimenov, A Maljuk, C T Lin, C Ulrich, B Keimer.[J]. Phys. Rev. Let, 2004, 92: 037202.
    [22] C. Liang, D A Yang, J J Song, M X Xu.[J].Key Eng. Mater, 2005, 280–283: 315.
    [24] A Majid, J J Tunney, M Post, J Margeson.[J]. J. Sol-Gel. Sci. Technol, 2006, 38 :271.
    [25] C Liang, D Yang, Z Yang, F Hou, M Xu.[J]. Surf. Coat. Technol, 2005,200 : 2515
    [26] J.W. Fergus.[J]. Sens. Actuators B , 2007,123:1169.
    [27] M L Post, J J Tunney.[J]. Sens. Actuators B, 1999,59:190.
    [28] J. Tunney, M L Post.[J]. J. Electroceram, 2000,5: 63.
    [29] Z. Wang, T Sasaki, N Koshizaki, J J Tunney, M L Post.[J]. Thin Solid Films , 2003,437:95.
    [30] H Yamada, M Kawasaki, Y Tokura. [J].Appl. Phys. Lett , 2002,80: 622.
    [31] T Yu, Y F Chen, Z G Liu, L Sun, S B Xiong, N B Ming, Z M Zhou. [J].J. Appl. Phys. A, Mater. Sci. Process, 1996, 64:69.
    [32] O I Lebedev, J Verbeeck, G van Tendeloo, N Hayashi, T Terashima, M Takano. [J].Phil.Mag, 2004,84: 3825.
    [33] Y Wang, J Chen, X Wu. [J].Mater. Lett, 2001, 49:361.
    [34] F W Poulsen, G Lauvstad, R Tunold. [J]. Solid State Ionics , 1994,72:47.
    [35] V L Kozhevnikov, I A Leonidov, M V Patrakeev, E B Mitberg, K R Poeppelmeier.[J].J. Solid State Chem, 2000,158:320.
    [36] A Rothschild, W Menesklou, H L Tuller, E Ivers-Tiffee.[J].Chem. Mater, 2006, 18:3651.
    [37] J B MacChesney, R C Sherwood, J F Potter.Electric and Magnetic Properties of the Strontium Ferrates [J].The Journal of Chemical Physics, 1965, 43(6):1907-1913.
    [38] Tunney J.J,Post M.L.The electrical conductance of SrFeO2.5+x thin films [J]. Journal of Electroceramics, 2000,5(1):63-69.
    [39] A. Maljuk, A. Lebon, V. Damljanovic, C. Ulrich, C.T. Lin, P. Adler, B. Keimer [J]. J. Cryst. Growth, 2006,291: 412.
    [40] L. Kienlea, P. Adlera, J. Strempfera, B. Keimera, V. Duppela, F. Phillipp. Electron-beam induced in-situ transformations in SrFeO3-δsingle crystals[J]. Journal of Physics and Chemistry of Solids, 2007,68: 73–79.
    [41] Shiming Zhou, Lei Shi, Jiyin Zhao, Laifa He, Haipeng Ynag,Shangming Zhang.Ferromagnetism in LaCoO3 nanoparticles[J].Physical Review B, 2007, 76: 172407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700