交联纤维素酶聚集体的酶学性质及其作用机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的酶固定化方法存在着酶活回收率不高、环境适应性较差以及结构不太稳定等问题,开发高酶活和高稳定性的固定化酶成为酶应用研究的重要课题,交联酶聚集体(Cross-linked enzyme aggregates,CLEAs)技术以其制备技术简单、酶活回收率高、良好环境适应性等独特优势,日益引起人们的关注和研究。
     本研究以纤维素酶为研究对象,主要研究了交联纤维素酶聚集体(Cross-linked cellulase aggregates,CLEAs-C)的制备工艺和酶学性质,从酶聚集体的颗粒尺度以及微观结构对CLEAs-C的催化作用机理进行了研究和探讨。主要研究内容和结果如下:
     以硫酸铵为沉淀剂,戊二醛为交联剂制备CLEAs-C。最优沉淀工艺参数为:硫酸铵饱和度、硫酸铵pH以及酶浓度分别为95%、6.0和50mg/mL;最佳的交联参数为戊二醛浓度、交联温度、交联时间为3%、30℃和10h,获得的CLEAs-C相对酶活回收率较高,约为80%。
     对CLEAs-C的酶学性质进行系统的研究,与游离酶相比,CLEAs-C的最适温度为60℃,提高了10℃,最适pH和离子浓度没有变化,分别为pH3.0和0.2mol/L;CLEAs-C对温度和pH稳定性均优于游离酶,并且储存28d之后仍有80%以上的储存酶活回收率;在最佳制备条件和酶解条件下,CLEAs-C的酶活回收率比游离酶提高了约2.5倍。
     采用傅立叶红外光谱仪、原子力显微镜等对CLEAs-C的特征及结构进行了分析。结果表明,CLEAs-C的刚性二级结构有所增加,具有更好的环境稳定性;并推测在CLEAs-C内部具有一定的空隙,有利于CLEAs-C内部的活性中心伸展以及底物分子与活性部分的充分接触,从而实现提高CLEAs-C的催化能力。
     运用马尔文激光粒度仪对不同搅拌速度制备的CLEAs-C的颗粒尺度进行分析,并结合其相对酶活回收率,初步研究并探讨了CLEAs-C的酶解机理,即CLEAs-C的酶活力随其颗粒尺度的增加呈现先增加,达到最高酶活力后再减低的趋势。当聚集体粒径小时,一方面被交联的纤维素酶少,另一方面聚集体内形成的空间结构小,不利于底物与活性部位接触。而当粒径过大时,聚集体的比表面小,也不利于底物与活性部位接触。只有适当的颗粒尺度时,聚集体有适当的比表面,适当的内部空间结构以及适当的聚集程度,CLEAs-C才呈现最好的酶催化作用。
Cross-linked enzyme aggregates(CLEAs) exhibit high active recovery, steady structure and stronger environment adaptability compared to the immobilized enzymes prepared by traditional methods. In this study, cross-linked cellulase aggregates were prepared by cellulase Trichoderma viride. The preparation process and properties of cross-linked cellulase aggregates (CLEAs-C) were investigated. The reaction mechanism of CLEAs-C was studied by analyzing the structure and characteristics. The main results listed as followed:
     CLEAs-C were prepared by ammonium sulfate used as the precipitant and glutaraldehyde used as and cross-linker. The results showed the optimum parameters of preparing CLEAs-C were: ammonium sulfate saturation of 95%, pH value of 6.0, the amount of cellulases of 50mg/mL, glutaraldehyde concentration of 3%, immobilization temperature of 30℃, immobilization time of 10h. Under the optimum parameters, the maximal relatively active recovery of CLEAs-C was about 80%.
     The enzymatic properties of CLEAs-C were studied in this paper. Compared with free cellulase, the optimal temperature of CLEAs-C was improved from 50℃to 60℃, the optimal pH value and ion concentration were 3.0 and 0.2mol/L respectively, which was the same as those of free cellulases. The stability of temperature and pH of CLEAs-C were superior to free cellulase, CLEAs-C had above 80% store activity recovery after 28 days compared with initial activity. Under the optimal conditions of enzymic preparation and hydrolysis, the highest activity recovery of CLEAs-C was increased by 250% compared with free cellulases.
     The characters and stutruct structure of CLEAs-C were analyzed using FTIR, and Atomic Force Microscope. The results showed the rigid structures of secondary structure were increased, exhibiting a better stability. It was speculated that there were some interspace in CLEAs-C, which make made the active sites of cellulases extend and allow the substrate molecule entering to contact with active sites, improving the enzymatic hydrolysis could be happened.
     The partical size of CLEAs-C prepared by different stirring rate was analyzed by Malvern Laser Particle Sizer, and the reaction mechanism of CLEAs-C was studied in terms of relatively active recovery of CLEAs-C. The results showed the activity of CLEAs-C increased firstly and reached the maximum, and then decreased with particle size. When the particle size of CLEAs-C was small, it meant less cellulases were cross-linked or less steric space inside the CLEAs-C, resulting into lower catalysis capacity. However, in the case of large particle size, the specific surface area of aggregates was small, decreasing the possibility of contacting between cellulase and substrate. Therefore, when CLEAs-C had proper particle sizes, proper specific surface area, proper steric space inside and proper degree of aggregation, CLEAs-C inhibited high catalysis capacity.
引文
[1]罗立新.娄文勇.酶制剂技术[M].化学工业出版社,北京, 2008, 1-10.
    [2] Coughlan M.P., Ljungdahl L.G.. In biochemisty and genetics of cellulose degradation[M]. London: Academic Press, 1988, 11.
    [3] Manning K, Wood D.A.. Production and regulation of extracellular endocellulase by Agaricus bisporus[J]. Microbiol, 1983, 129(6): 1839-1847.
    [4]杨永彬,黄谚谚,林跃鑫.纤维素酶的结构及分子多样性[J].生命的化学, 2004, 24(3): 211-213.
    [5]陈小坚.纤维素酶的分子生物学研究及应用进展[J].湖北民族学院学报, 2006, 23(4): 48-51.
    [6]刘燕,张宏福,孙哲.纤维素酶的分子生物学与基因工程研究进展[J].饲料工业, 2007, 28(18): 11-14.
    [7] Zhou X.G., Smith J.A., OiFaith M., et al.. Correlation of cellulosegene expression and cellulolytic activity throughout the gut of the ter-mite Reticulitermes flavipes [J]. Gene, 2007, 395(12): 29-39.
    [8] Wheeler M.M, Zhou X.G, et al.. Molecular and biochemicalmarkers formonitoring dynamic shifts of cellulolytic pro-tozoa in Reticulitermes flavipes[J]. Insect Biochemistry and Molecu-larBiology, 2007, 37(12): 1366-1374.
    [9]谢占玲,吴润.纤维素酶的研究进展[J].草业科学, 2004, 4: 72-76.
    [10] Tilbeugh H.V., Tomme P., Claeyssens M., et al.. Limited proteolysis of the cellobiohydrolase from T ressei[J]. FEBB Lett, 1986, 204(2): 223-227.
    [11] Reese E.T.. Enzymatic hydrolysis of the walls of yeasts cells and germinated fungal spores[J]. Biochimica et Biophysica Acta, 1977, 499(1): 10-23
    [12]赵政,陈学文,朱梅芳等.添加乳酸菌和纤维素酶对玉米秸秆青贮饲料品质的影响[J].广西农业科学, 2009, 40(7): 919-922.
    [13]李静,高兰阳,沈益新.乳酸菌和纤维素酶对稻草青贮品质的影响[J].南京农业大学学报, 2008, 31 (4): 86-90.
    [14]张彪,马慧,苗树君.纤维素酶和乳酸菌制剂对玉米秸青贮营养成分及其奶牛瘤胃降解率的影响[J].新饲料, 2009, 5: 30-32.
    [15]庄苏,颜瑞,丁立人等.纤维素酶与木聚糖酶对象草青贮发酵品质的影响[J].南京农业大学学报, 2009, 32 (4): 148-153.
    [16]郑晓灵,刘艳芬,刘铀等.纤维素酶对甘蔗梢青贮品质的影响[J].饲料工业, 2007, 28(12): 39-41.
    [17]薛艳林,玉柱,白春生等.添加纤维素酶和苹果渣对苜蓿草渣青贮品质的影响[J].中国草地学报, 2009, 31(3): 88-90.
    [18] Giraldo L.A.,Tejido M.L.,Ranilla M.J.,et al..Effects of exoge-nous fibrolytic enzymes on in vitro ruminal fermentation of substrates with different forage:concentrate ratios[J]. Anim Feed Sci Tech, 2008, 141(3-4): 306-325.
    [19] Alvarez G.,Pinos R., odriguez J.M., et al...Effects of exogenous fibrolytic enzymes on ruminal digestibility in steers fed high fiber rations[J]. Livestock Sci, 2009, 121(2-3): 150-154.
    [20] Pinos-Rodrcguez J.M., Moreno R., GonzcLlez S.S., et al.. Effects of exogenous fibrolytic enzymes on ruminal fermentation and digestibility of total mixed rations fed to lambs[J]. Anim feed sci tech, 2008, 142(3-4): 210-219.
    [21] Avellaneda J.H, Pinos-Rodrcguez J.M, GonzcLlez S.S, et al.. Effects of exogenous fibrolytic enzymes on ruminal fermentation and digestion of Guinea grass hay[J]. Anim Feed Sci Tech, 2009, 149(1-2): 70-77.
    [22] Martins A.S.,Vieira P.F., Berchielli T.T., et al.. Ruminal degra-dation of corn silage and rice straw using exogenous fibrolytic enzymes[J]. Anim Sci, 2008, 30(4): 435-442.
    [23]刘颖,林亲录.纤维素酶制取与应用研究进展[J].中国食物与营养, 2006, (4): 33-35.
    [24]肖冬光,王德培,吴沉等.里氏木霉纤维素酶在酒精生产中应用的研究[J].酒精, 1997, 3: 12-16.
    [25]吕伟民,王宇,傅国红等.玉米秸秆发酵生产燃料酒精[J].酒精, 2002, 29(5): 84.
    [26] Crohmann K.. Simultaneous saccharification and fermentation of vellulosic substrates to ethanol[M]. J.N.Saddlered, 1993.
    [27]贲永光,丘泰球,李坤平等.纤维素酶法提取黄芪总黄酮的工艺研究[J].时珍国医国药, 2009, 20(10): 2478-2480.
    [28]张燕梁,闫小彦,于长青等.纤维素酶酶法提取麦胚黄酮工艺条件的优化[J].黑龙江八一农垦大学学报, 2009, 21(2): 72-76.
    [29]喻春皓,张萍,王宏志.正交试验优选蒸制黄芩的纤维素酶辅助提取工艺[J].中国药房, 2009, 20(36): 2826-2827.
    [30]丁兴红,孙杰,喻治霞等.纤维素酶辅助提取银杏叶总黄酮的工艺条件[J].林业科技开发, 2009, 4: 66-68.
    [31]裴海闰,曹学丽,徐春.响应面法优化纤维素酶提取苹果渣多酚类物质[J]. 2009, 24(3): 50-54.
    [32]李永生,林强,郑来丽等.川乌的纤维素酶酶解提取工艺研究[J].中草药, 2009, 40(11): 1735-1739.
    [33]孙显,王维香.纤维素酶法提取川芎多糖的工艺条件研究[J].西华大学学报(自然科学版), 2009, 28(5): 103-106.
    [34]舒国伟,陈合,张凡等.纤维素酶辅助提取黄姜色素的研究[J],食品科技, 2009, (34)11: 194-196.
    [35]曾超珍,郭玉,孙丽香.纤维素酶法提取枸骨叶熊果酸的工艺研究[J].北方园艺, 2009, 9: 216~21.
    [36]范雪荣.生物酶在棉针织物染整加工中的应用[J].针织工业, 2008, 5: 547-52
    [37]朱啸宇,李津彩.棉针织面料生物酶丝光整理研究[J].针织工业, 2007, 6: 49-51.
    [38]万志琴.天然彩色棉针织面料生物酶丝光整理的研究[J].上海纺织科技, 2004, 32(1): 30-32.
    [39]高树珍.酸性纤维素酶在棉织物表面抛光中的应用[J].黑龙江纺织, 2008, 3: 15-18.
    [40] Pelach M.A., Pastor F.J., Puig J.. Enzymic deinking of old newspapers with cellulose[J]. Process Biochemistry, 2003, 38: 1063~1067
    [41] Prasad DY , Heitmann JA, Joyce TW.Enzymatic de-inking of coloured offset newsprint[J]. Nord Pulp Pap Res J, 1993, (8):284.
    [42]秦全贵,宋永华,许开绍等.纤维素酶与造纸工业[J].广西轻工业, 1997, 3: 12-15.
    [43]杨桂,陈嘉川,曹知朋.纤维素酶后处理制备NaOH-H2O2粘胶纤维棉浆粕的研究[J].中国造纸学报, 2005, 20(2): 91-94.
    [44]隋晓飞,陈嘉川,杨桂花等.纤维素酶协同木聚糖酶预处理对磨浆能耗及其性能的影响[J].中华纸业, 2008, 8: 30-33.
    [45]梅乐和,岑沛霖.现代酶工程[M].北京:化学工业出版社, 2006, 66-74..
    [46]朱启忠.生物固定化技术及应用[M].北京:化学工业出版社, 2009, 84-118.
    [47] Woodward J., Zachry G.S.. Immobilization of cellulose through its carbohydrate side chains:A rationale for its recovery and reuse[J]. Enzyme and Microbial Technology, 1982, 4(4): 245-248.
    [48] Mishra C., Deshpande V.,Rao M.. Immobilization of Penicillium funiculosumcellulase on a soluble polymer[J]. Enzyme and Microbial Technology, 1983, 5(5): 342-344.
    [49] Kumakura M., Kaetsu I.. Fluid immobilized cellulose [J]. BiotechnolLetter, 1985, 7(10): 773-778.
    [50] Wongkhalaung C., Kashiwagi Y., Magae Y., et al.. Cellulase immobilized on a soluble polymer[J]. Appl Microbiol Biotechnol, 1985, 21(1/2): 37-41.
    [51]柴梅,袁振宏,颜涌捷.肠溶衣聚合物固定化纤维素酶性质的研究[J].微生物学通报, 2007, 3: 410-413.
    [52] Afsahi B., Kazemi A., Kheyr A., et al.. Immobilization of cellulase on non-porous ultrafine silica particles[J]. Scientia Iranica, 2007, 14(4): 379-383.
    [53] Dincer A., Telefoncu A.. Improving the stability of cellulaseby immobilization on modified polyvinyl alcohol coated chitosanbeads[J]. Journal ofMolecularCatalysis (B):Enzymatic, 2007, 45(1/2): 10-14.
    [54] Wei P., Zhang H.Q., Wan Y.Z., et al.. Immobilization of Cellulase Using Polysulfone Membrane[J]. Asian Journal of Chemistry, 2009, 21(8): 6417-6423.
    [55] Wu, L.L., Yuan X.Y., Sheng J.. Immobilization of cellulase in nanofibrous PVA membranes by electrospinning[J]. Journal of Membrane Science, 2005, 250(1-2): 167-173.
    [56] LI C.Z., Yoshimoto M., Fukunaga K, et al.. Preparation and characterization of cellulase-containing liposomes for their immobilization suitable for enzymatic hydrolysis of cellulose[J]. Journal of Chemical Engineering of Japan, 2004, 37(5): 680-684.
    [57] LI C.Z., ,Yoshimoto M., Fukunaga K., et al.. Charaterization and immobilization of liposome-bound cellulase for hydrolysis of insoluble cellulose[J]. Bioresource Technology, 2006, 98(7): 1366-1372.
    [58]寇灵梅,李冰,郭祀远等.磁性固定化纤维素酶的制备及其磁响应性[J]食品科学,2006, 27, 12: 335-339
    [59]李冰,邵海员,黎锡流等.磁性固定化纤维素酶的交联法制备及其磁致酶学性质[J].河南工业大学学报(自然科学版), 2006, 27, 6: 10-14
    [60]邱广亮,李咏兰.纳米级磁性微粒的制备及固定化纤维素酶的研究[J].药物生物技术, 2001, 8(4): 197-199.
    [61]霍书豪,许敬亮,张猛等. Fe3O4纳米颗粒固定化纤维素酶的酶学特性研究[J].试剂与化学品, 2009, 27(6): 33-36.
    [62]王玫,宋芳,汪世龙等.磁性纳米颗粒Fe3O4固定化纤维素酶的光谱学研究[J].光谱学与光谱分析, 2006, 26(5): 895-898.
    [63]葛凤燕,胡欣童,蔡再生等.棉织物的磁性固定化纤维素酶抗起毛起球整理[J].印染, 2009, 18: 1-5.
    [64] Cao L., van Langen L.M., Sheldon R.A,. Immobilised enzymes_carrier-bound or carrier-free[J]. Current Opinion in Biotechnology, 2003, 14: 387–394.
    [65] Habeeb AFSA. Preparation of enzymically active, waterinsoluble derivatives of trypsin[J]. Arch Biochem Biophys, 1967, 119: 264-268.
    [66] Jansen E.F., Olson A.C.. Properties and enzymatic activities of papain insolubilized with glutaraldehyde[J]. Arch Biochem Biophys, 1969, 129: 221-228.
    [67] Amotz S. Method for production of an immobilized enzyme preparation by means of a crosslinking agent[J]. Novo Industri A/S, 1987; US 4, 665.
    [68] Lopez-Serrano P., Cao L., van Rantwijk F.,et al.. Croos-linked Enzyme Aggregates with Enhanced Activity:Application to Lipases[J]. Biotechnol Lett, 2002,24: 1379- 1383.
    [69] Cao L., van Langen L.M., Janssen M.H.A.,et al..: Preparation and properties of cross-linked aggregates of penicillin acylase and other enzymes[J]. Eur Pat Appl, 1999, EP1088887A1.
    [70] St Clair N.L., Navia M.A.. Cross_linked enzyme crystals as robust biocatalysts[J]. J Am Chem Soc, 1992, 114: 7314~7316.
    [71] Chinese Journal of Pharmaceuticals 2001,32(11)毛益斌,张蓓蕾.交联酶晶体的研究及应用[J].中国医药工业杂志, 2001, 32(11): 523-527
    [72] Quiocho F.A., Richards F.M... Intermolecular cross-linking of a protein in thecrystalline state: carboxypeptidase-A[J]. Proc Nat Acad Sci USA, 1964, 52: 833-839.
    [73] Persichetti, R.A., Stclair N.L., et al.. Cross-linked enzyme crystals (CLECs) of thermolysin in the synthesis of peptides[J]. Journal of the American Chemical Society, 1995, 117(10): 2732-2737.
    [74] Hoskin,F.C.G., Walker J.E., et al.. Degradation of nerve gases by CLECS and cells: Kinetics of heterogenous systems[J]. Chemico-Biological Interactions, 1999, 119-120(0): 439-444
    [75] Kim W., Chae H., et al.. Stability and activity of cross-linking enzyme crystals of cyclodextrin glucanotransferase isolated from Bacillus macerans[J]. Journal of Molecular Catalysis B-Enzymatic, 2003, 26(3-6): 287-292.
    [76] Noritomi, H., Sasanuma A., et al.. Catalytic properties of cross-linked enzyme crystals in organic media[J]. Biochemical Engineering Journal, 2007, 33(3): 228-231.
    [77] Patel I., Ludwig R., et al.. Comparing soluble Trametes pubescens laccase and cross-linked enzyme crystals (CLECs) for enzymatic modification of cellulose 10(th) EWLP, Stockholm, Sweden, August 25-28, 2008." Holzforschung, 2009, 63(6): 715-720.
    [78] Timothy S.L., Jeetendra D., Vaghjiani Gary J.,et al. A Systematic Approach to the Large-scale Production of Protern Crystals[J]. Enzyme and Microbia Technology, 2000, 26(8): 582-892.
    [79] Ducruix A., Giege R.. Crystallization of Nucleic Acids and Proteins: A Practical Approach.2nd Edition[M]. Oxford University Press, UK, 1999.
    [80] Cao L.Q., van Rantwijk F. et al.. Cross-linked enzyme aggregates: A simple and effective method for the immobilization of penicillin acylase[J]. Organic Letters, 2000, 2(10): 1361-1364.
    [81]钟国华,何玥,罗建军等.高效氯氰菊酯降解菌株HG-P-01的培养基筛选及优化[J].微生物学通报, 2009, 36(5): 672-677。
    [82] Matijosyte, I.I. Arends, et al.. Preparation and use of cross-linked enzyme aggregates (CLEAs) of laccases[J]. Journal of Molecular Catalysis B-Enzymatic, 2009, 62(2): 142-148.
    [83] Montoro-Garcia, S., Gil-Ortiz F., et al.. Improved cross-linked enzyme aggregates forthe production of desacetyl beta-lactam antibiotics intermediates[J]. Bioresource Technology, 2009, 101(1): 331-336
    [84] Shah S., Sharma A. et al.. Preparation of cross-linked enzyme aggregates by using bovine serum albumin as a proteic feeder[J]. Analytical Biochemistry, 2006, 351(2): 207-213.
    [85] Cabana, H., Jones J.P., Soiros N.A.. Preparation and characterization of cross-linked laccase aggregates and their application to the elimination of endocrine disrupting chemicals. Journal of Biotechnology, 2007,132: 23-31.
    [86] Chen J., Zhang J.L., Han B.X., et al.. Synthesis of cross-linked enzyme aggregates (CLEAs) in CO2-expanded micellar solutions[J]. Colloids and Surfaces B-Biointerfaces, 2006, 48(1): 72-76.
    [87] Hobbs H.R., Kondor B., et al.. Continuous kinetic resolution catalysed by cross-linked enzyme aggregates, CLEAs in supercritical CO2 [J].. Green Chemistry, 2006, 8(9): 816-821.
    [88] Dijkstra, Z.J., Merchant R., et al. Stability and activity of enzyme aggregates of Calb in supercritical CO2 [J].. Journal of Supercritical Fluids, 2007, 41(1): 102-108.
    [89] .Mateo C., Palomo J.M., et al..A new, mild cross-linking methodology to prepare cross-linked enzyme aggregates[J]. Biotechnology and Bioengineering, 2004, 86(3): 273-276.
    [90] Cao L., van Langen L.M. et al. Cross-linked aggregates of penicillin acylase: robust catalysts for the synthesis of beta-lactam antibiotics[J]. Journal of Molecular Catalysis B-Enzymatic, 2001, 11(4-6): 665-670.
    [91] Sangeetha K.,. Abraham T.E. Preparation and characterization of cross-linked enzyme aggregates (CLEA) of subtilisin for controlled release applications[J]. International Journal of Biological Macromolecules, 2008, 43(3): 314-319
    [92] Jinwoo L., Kim J., et al..Simple synthesis of hierarchically ordered mesocellular mesoporous silica materials hosting crosslinked enzyme aggregates[J]. Small 2005,1(7): 744-53
    [93] Kim M., Kim L.J., et al..Crosslinked enzyme aggregates in hierarchically-ordered mesoporous silica: A simple and effective method for enzyme stabilization[J].Biotechnology and Bioengineering, 2007, 96: 210-218.
    [94] Park, J.M., Kim M., et al. Immobilization of the cross-linked para-nitrobenzyl esterase of Bacillus subtilis aggregates onto magnetic beads[J]. Process Biochemistry, 2009, 45(2): 259-263
    [95] Chmura, A., van derKraan G.M., et al.. Cross-linked aggregates of the hydroxynitrile lyase from Manihot esculenta: Highly active and robust biocatalysts[J]. Advanced Synthesis & Catalysis, 2006, 348(12-13): 1655-1661.。
    [96] Bode, M. L., van Rantwijk F., et al.. Crude aminoacylase from Aspergillus sp is a mixture of hydrolases[J]. Biotechnology and Bioengineering, 2003, 84(6): 710-713.
    [97] Schoevaart, R., Wolbers M.W., et al..Preparation, optimization, and structures of cross-linked enzyme aggregates (CLEAs)[J]. Biotechnology and Bioengineering, 2004, 87(6): 754-762.。
    [98] Schoevaart R., Wolbers M.W., et al.. Preparation, optimization, and structures of cross-linked enzyme aggregates (CLEAs)[J]. Biotechnology and Bioengineering, 2004, 87(6): 754-762.。
    [99] Cao L, Rantwijk F.V, Sheldon R.A. et al.. Cross-linked enzyme aggregates: a simple and effective method for the immobilization of penicillin acylase[J]. Organic Letters, 2000, 2(10): 1361-1364
    [100] Cao L, Langen L.M, Rantwijk F.V., et al. Cross-linked enzyme aggregates of penicillin acylase: robust catalysts for the synthesis ofβ-lactam antibiotics[J]. Journal of Molecular Catalysis B:Enzymatic, 2001, 11: 665-670
    [101] López-Serrano P., Cao L., Rantwijk. F.V. et al.. Cross-linked enzyme aggregates of lipaseswith enhanced activity[J]. Biotrans, 2001, 18: 119
    [102] López-Serrano P., Cao L., Rantwijk. FVet al. Cross-linked enzyme aggregateswith enhanced activity: application to lipases[J]. Biotechnology Letters, 2002, 24: 1379-1383
    [103] Burcu S.A., Ufuk B.. Preparation of cross-linked tyrosinase aggregates[J] Process Biochemistry, 2008, 43: 125–131
    [104]刘燕,张宏福,孙哲.纤维素酶的分子生物学与基因工程研究进展[J].饲料工业, 2007, 28(18): 11-14.
    [105] Zhao L.F., Zheng L.Y., Gao G.. et al..,Resolution of N-(2-ethyl-6-methylphenyl) alanine via cross-linked aggregates of Pseudomonas sp. Lipase[J]. Journal of Molecular Catalysis B: Enzymatic, 2008, 54: 7-12.
    [106] Burcu S.A., Ufuk B.. Preparation of cross-linked tyrosinase aggregates[J] Process Biochemistry, 2008, 43, 125–131.
    [107] Sohel D., Manali K., Munishwar N.G.. Preparation and characterization of combi-CLEAs catalyzing multiple non-cascade reactions[J]. Journal of Molecular Catalysis B: Enzymatic, 2007, 44: 128–132.
    [108]王梦凡,贾辰熙,齐崴等.胰蛋白酶交联聚体的制备及性质研究[J].化学学报, 2008, 16: 1929-1934.
    [109] Christopher R., Deborah A., David P., et al.. Preparation and application of cross-linked aggregates of chloroperoxidase with enhanced hydrogen peroxide tolerance[J]. Journal of Molecular Catalysis B: Enzymatic, 2009, 56, 41-45.
    [110]董晓毅,夏仕文.交联脲酶聚集体的制备和初步应用[J].生物工程学报, 2003, 19, 3: 332-336
    [111]罗建平,欧杰,潘利华.交联β-葡萄糖苷酶聚集体的制备及其性质[J].食品科学, 2007, 28, 12: 254-257.
    [112]温度对化学反应速度的影响[OL]..http://huaxue.zxxk.com/Article/0909/80404P2. shtml. 2009, 9, 17
    [113]欧杰.交联葡萄糖苷酶聚集体的制备及其生产大豆异黄酮活性苷元的研究[D].合肥,合肥工业大学(硕士学位论文), 2007.
    [114] Christina V., Evangelos T., Paul C.. Preparation of multipurpose cross-linked enzyme aggregates and their application to production of alkyl ferulates[J]. Journal of Molecular Catalysis B: Enzymatic, 2008, 54: 35–41
    [115]邹承鲁.活性部位的柔性[J].生理科学进展, 2001, 32(1): 7-12.
    [116] Illanes, A., Wilson L.. Crosslinked penicillin acylase aggregates for synthesis of beta-lactam antibiotics in organic medium[J]. Applied Biochemistry and Biotechnology, 2006, 133(3): 189-202.
    [117] Lorena W., Andrés I., Lorena S.. et al. Effect of the degree of cross-linking on the properties of different CLEAs of penicillin acylase[J]. Process Biochemistry, 2009,44(3): 22-326.
    [118]潘延芳,孔珊珊,陈怡倩等.交联重组枯草杆菌纤溶酶聚集体的制备及其性质研究[J].中国生化药物杂志, 2007, 28(5): 318-321.
    [119]陈实公.固定化纤维素酶的制备及其性质研究[D].合肥:合肥工业大学(硕士学位论文), 2006.
    [120]凡亮,陈伶利,王卫等.氨基化二氧化硅颗粒固定木瓜蛋白酶研究程[J].生物工程学报, 20, 2: 287--290
    [121]陈石根,周润琦.酶学[M].上海:复旦大学出版社, 2001: 135-214.
    [122] Fu F.N., Deoliverira D.B., Trumble W.R., et al. Secondary structure estimation of protein using the amide III region of Fourier transform infrared spectroscopy: application to analyze calcium binding-induced structural changes in calsequestrin[J]. Appl Spectrosc, 1994, 48: 1432-1441.
    [123] Girebenow K, Klibanov A.M.. Lyophilization-induced reversible changes in the secondary structure of proteins[J]. Proc Natl Acad Sci USA, 1995, 92: 10969-10976.
    [124] Singh B.R, Fuller M.P, Schiavo G.. Molecular structure of tetanus neurotoxin as revealed by Fourier transform infrared and circular dichroic spectroscopy[J]. Biophys Chem, 1990, 46: 155-166.
    [125]刘媛.傅立叶变换红外光谱定量分析蛋白质二级结构的方法建立及其应用[D].北京:北京师范大学(硕士学位论文), 2002.
    [126]杨莹.高保娇.反相悬浮聚合法制备HEMA/NVP/MBA三元聚合物交联微球[J]应用化学,. 2008, 25(4): 476-480. .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700