电力市场环境下的无功及电价风险管理问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力工业的市场化改革打破了其垂直一体化的垄断格局,这给电力系统的运行带来了深刻的影响,无功容量不充裕给系统运行带来的损害以及电价波动带来的金融风险是其中的两个重要问题。2003年美加大停电和2000~2001年的加州电力危机就与这两个问题有关。本文就电力市场环境下的这两个问题进行了比较系统的研究。
     首先对近年来国内外就电力市场环境下无功问题的研究现状进行了综述。包括无功成本分析、无功定价方式、无功获取与付费、无功调度以及无功市场势力等方面。之后,对电价风险管理方面的研究现状做了综述。
     在无功市场尚未建立之前,需要对无功源进行成本补偿。因此,对无功源进行成本分析非常重要,它是对无功服务进行定价以及补偿的基础。本文比较了各种无功源(包括同步发电机、电容器、同步调相机、变压器分接头、SVC和STATCOM)的物理特性,并且估计了它们提供无功服务时的固定成本和可变成本,接着详细讨论了发电机在提供无功服务时,固定成本在有功功率和无功功率之间的分摊,指出了使用“元/MVA”的表达式以计算无功容量投资成本的一些错误。举例说明发电机在提供无功服务时机会成本的计算。同时也给出了在考虑资金回报率时,电网侧的无功成本折算到每年度的固定成本表达式。
     对系统所需无功容量的准确估计能够帮助预防因为无功功率缺乏导致的电压崩溃事故,同时也能避免装设过多无功源而造成的浪费。计及了多个无功源可能同时发生预想故障的风险,提出了一种新的无功容量需求的确定方法,此方法同时考虑了购买无功容量的成本、切负荷的成本以及发电再调度的成本,以这三项成本之和最小化为目标,确定需要购买的无功容量的大小及其分布。系统调度机构可以采用类似思想确定每年需要采购的无功源的数量及其位置分布。
     由于无功功率的本地特性,无功市场势力成为建设竞争性无功市场的最大障碍,因此分析系统中哪些无功源拥有潜在的市场势力对推进无功市场的建设意义重大。现有的无功市场势力评估指标大多只考虑了电力系统的技术特征,没有考虑市场参与者的策略性投标行为。在此背景下,提出了基于智能体代理的市场仿真方法以研究无功市场中参与者的博弈行为,其中采用了模仿者动态算法来模拟智能体(参与者)追求利润最大化的理性行为。发展了计及发电机强制无功出力要求的统一价格竞价模式和PAB竞价模式,并利用得到的结算电价计算市场势力指标,即价格成本裕度指标。
     获得准确的现货电价分布形式能够帮助市场参与者确定自身在市场竞争中的位置,特别是有效地分配在现货市场参与竞争的电能比例。现有的研究很多假设现货电价服从正态分布的特征,从浙江电力市场异常的现货电价数据出发,本文基于某一区域的负荷呈正态分布的假设,结合市场总供给曲线在某一点飞升的严重非线性特征,采用概率论从理论上推导了电价作为负荷这种随机变量的函数的分布情况,并以加州、PJM和中国浙江电力市场的实际交易电价数据做了验证。结果表明,只有在电力供求关系很宽松的情况下,电价才近似呈正态分布;而在供求紧张的情况下,电价分布明显偏离正态分布,且具有严重的右偏峰特性;实际电力市场在供求紧张时还表现出狭峰特征。
     紧接以上对现货电价分布形式的研究,提出了一种新的电力市场环境下的双边合同轮流出价谈判合同。基于谈判双方对自身能够承受的风险和利润底线的假设,采用了一系列动态的讨价还价过程以描述谈判过程模型,允许市场参与者根据偏好自己定义风险和收益指标,在本文中以期望效用理论描述电力市场因电价波动带来的风险,以期望利润定义参与者的收益。采用让步因子描述参与者的谈判策略,并为市场参与者设置了期望效用和期望利润的下限限制,这样,谈判最后能够达成一个对双方而言、风险和收益都可以承受的合同。
The power industry restructuring breaks the vertically integrated monopoly of the tranditional power industry with the aim of introducing competition, improving efficiency optimizing resource allocation and reducing power price. However, many new problems and challenges have emerged during the restructuring process. Two vital problems are damage to system caused by insufficient reactive power support, as well as financial risks due to fluctuations of electricity market prices. If these new problems are not properly solved, the emerging electricity market may not be able to grow healthily and even the security and stability of power system associated operation could be endangered. This dissertation focuses on the study of reactive power related issues and on the research of price risk management in the electricity market environment and some significant results are obtained.
     This dissertation first reviews the reactive power related issues, which include costs of reactive power, Var pricing, procurement and payment of Var, Var dispatch and reactive market power. As followed, literatures on price risk management problem are reviewed.
     Physical characteristics of reactive power equipments, including synchronous generator, shunt capacitor, synchronous compensator, transformer tap changer, SVC, and STATCOM, are compared firstly. Fixed costs and variable costs of different reactive power sources in electricity market environment are estimated. And then the fixed cost allocation between active power and reactive power provided by synchronous generator is put forward. Meanwhile, this paper indicates one mistake in calculating investment costs of reactive capacity with yuan/MVA expression. The calculation of opportunity costs of synchronous generator in providing reactive power services is illustrated. Lastly, the annual component of fixed cost taking account of return on capital is presented.
     Appropriate determination of reactive power requirements is an important issue for maintaining voltage stability, decreasing transmission losses, and mitigating the potential exercise of reactive market power. A model is developed for annual procurement of reactive power capacity considering the possible outage of multiple Var sources in electricity market environment. The objective is to minimize the total cost, including the cost of purchasing reactive power capacity, load shedding and generation redispatch. A method based on the Monte-Carlo simulation and Differential Evolution algorithm is served for solving the established optimization problem. Simulation results from case studies demonstrate the essential features of the developed model and method.
     Reactive market power has been regarded as a vital problem for its negative effect on the efficient operation of the market. Up to now, research work on the evaluation index for reactive market power has been mainly based on technical characteristics of power system. However, the strategic bidding between market participants is not taken into account. Given this background, an agent-based market simulation framework is presented for analyzing the game behaviors and resulting reactive market power of market participants. Replicator dynamics algorithm is utilized to simulate agents' rational behavior of pursuing maximum profits. Two models, in which minimum reactive power requirement is taken into account, are presented for describing uniform-price auction and pas-as-bid (PAB) auction in reactive power market. The reactive market power is calculated using well-know price cost margin index. The CIGRE 32-bus system is used for case studies. Simulation results demonstrate the essential features of the developed model and method. Furthermore, the analysis results indicate that reactive market power in uniform-price auction is more severe than that in PAB auction.
     The study on probability density function and distribution function of electricity prices contributes to the power generators and purchasers to estimate their own management accurately, and helps the regulator monitor the periods seriously deviating from normal distribution. Based on the assumption that load presents normal distribution, combining serious non-linear characteristic of aggregate supply curve, this paper has theoretically derived the distribution of electricity prices as the function of random variable of load utilizing knowledge of probability theory. And the conclusion has been validated with the electricity price data of California, PJM and Zhejiang markets. The result shows that electricity prices obey normal distribution approximately only when supply-demand relationship is very loose, whereas the prices deviate from normal distribution highly and present seriously right-skewness characteristic. Moreover, the real electricity markets also display the narrow-peak characteristic when undersupply occurs.
     Participants can sign forward bilateral contracts several months in advance of its delivery for mitigating price risk in electricity markets. Up to now, the research work for bilateral contracts has concentrated on the effect of bilateral contracts on reducing price risk. Given this background, we propose a systematic negotiation scheme through which a generator and distribution company can reach a mutually beneficial and risk tolerable forward bilateral contract. Under this approach, the generator and distribution company respond rationally to a stream of bilateral offers/counter-offers considering their respective benefits while accounting for the risks incurred by the uncertainty in the pool spot price. Each negotiating party can choose its own definition of benefits and risk, which are expected utility in this paper. Concession factor is utilized to illustrate the negotiation strategy of participants. The reservation expected utility and reservation expected profit are added to this approach to model the tolerable limits of risk and benefit. Numerical tests show that this flexible negotiating framework can be readily put into practice.
引文
[1]US-Canada Power System Outage Task Force. Final Report on the August 14, 2003 Blackout in the United States and Canada:Causes and Recommendations [EB/OL]. [2004-03-31]. https://reports.energy.gov/BlackoutFinal-Web.pdf
    [2]GIL J B, SAN ROMAN T G, ALBA RIOS J J, et al. Reactive power pricing:a conceptual framework for remuneration and charging procedures. IEEE Transactions on Power Systems,2000,15(2):483-489.
    [3]LAMONT J W, FU J. Cost analysis of reactive power support. IEEE Transactions on Power Systems,1999,14(3):890-898.
    [4]DA SILVA E L, HEDGECOCK J J, MELLO J C O, et al. Practical cost-based approach for the voltage ancillary service. IEEE Transactions on Power Systems,2001,16(4):806-812.
    [5]GROSS G, TAO S, BOMPARD E, et al. Unbundled reactive support service: key characteristics and dominant cost component. IEEE Transactions on Power Systems,2002,17(2):283-289.
    [6]SCHWEPPE F C, CARAMANIS M C, TABORS R D, et al. Spot pricing of electricity. Boston:Kluwer Academic Publishers,1988.
    [7]BAUGHMAN M L, SIDDIQI S N. Real-time pricing of reactive power:theory and case study results. IEEE Transactions on Power Systems,1991,6(1): 23-29.
    [8]HOGAN W W. Markets in real electric networks require reactive prices. The Energy Journal,1993,14(3):171-200.
    [9]KAHN E, BALDICK R. Reactive power is a cheap constraint. The Energy Journal,1994,15(4):191-201.
    [10]LIN X J, YU C W, DAVID A K, et al. A novel market-based reactive power management scheme. International Journal of Electrical Power and Energy Systems,2006,28(2):127-132.
    [11]戴彦,倪以信,文福拴,等.电力市场下的无功电价研究.电力系统自动化,2000,24(5):9-14.
    [12]FERC Staff Report. Principles for efficient and reliable reactive power supply and consumption. Docket No AD05-1-000, Feb.2005. [EB/OL]. [2005-02-04]. http://www.ferc.gov/eventcalendar/Files/20050310144430-02-04-05-reactive-p ower.pdf.
    [13]戴彦,倪以信,文福拴,等.基于潮流组成分析及成本分摊的无功功率电价.电力系统自动化,2000,24(18):13-17.
    [14]LIN X J, YU C W, CHUNG C Y. Pricing of reactive support ancillary services. Generation, Transmission and Distribution, IEE Proceedings,2005,152(5): 616-622.
    [15]CHUNG C Y, CHUNG T S, YU C W. Cost-based reactive power pricing with voltage security consideration in restructured power systems. Electric Power Systems Research,2004,70(2):85-91.
    [16]HUANG G, ZHANG H. Dynamic voltage stability reserve studies for deregulated environment. In:Proceedings of IEEE Power Engineering Society Summer Meeting, Vancouver (Canada), July 15-19,2001, Vol.1:301-306.
    [17]ROSEHART W, CANIZARES C, QUINTANA V. Costs of voltage security in electricity markets. In:Proceedings of IEEE Power Engineering Society Summer Meeting, Seattle (USA), July 16-20,2000, Vol.4:2115-2120.
    [18]HAO S. A reactive power management proposal for transmission operators. IEEE Transactions on Power Systems,2003,18(4):1374-1381.
    [19]于辉,赵冬梅.单边开放电力市场下的无功电价研究.电网技术,2004,28(14):62-67.
    [20]EL-SAMAHY I, BHATTACHARYA K, CANIZARES C. A procurement market model for reactive power services considering system security. IEEE Transactions on Power Systems,2008,23(1):137-149.
    [21]ZHANG Y J, REN Z. Optimal reactive power dispatch considering costs of adjusting the control devices. IEEE Transactions on Power Systems,2005, 20(3):1349-1356.
    [22]ZHONG J, BHATTACHARYA K. Toward a competitive market for reactive power. IEEE Transactions on Power Systems,2002,17(4):1206-1215.
    [23]SALGADO R S, IRVING M R. Framework for the analysis of reactive power dispatch in energy pools. Generation, Transmission and Distribution, IEE Proceedings,2004,151(2):167-174.
    [24]SU C T, LIN C T. Fuzzy-based voltage/reactive power scheduling for voltage security improvement and loss reduction. IEEE Transactions on Power Delivery, 2001,16(2):319-323.
    [25]ISEMONGER A G. The competitive procurement of voltage support [EB/OL]. [2008-02-04]. http://www.caiso.com/181c/181 ca4c9731f0.html.
    [26]BHATTACHARYA K, ZHONG J. Reactive power as an ancillary service. IEEE Transactions on Power Systems,2001,16(2):294-300.
    [27]NEDWICK P, MISTR A F, CROASDALE E B. Reactive management:a key to survival in the 1990s. IEEE Transactions on Power Systems,1995,10(2): 1036-1043.
    [28]DANDACHI N H, RAWLINS M J, ALSAC O, et al. OPF for reactive pricing studies on the NGC system. IEEE Transactions on Power Systems,1996,11(1): 226-232.
    [29]ALVARADO F L, OVERBYE T. Measuring reactive market power. In: Proceedings of IEEE Power Engineering Society Winter Meeting, New York (USA), January 31-February 4,1999, Vol.1:294-296.
    [30]HAO S, PAPALEXOPOULOS A. Reactive power pricing and management. IEEE Transactions on Power Systems,1997,12(1):95-104.
    [31]ZHONG J, NOBILE E, BOSE A, et al. Localized reactive power markets using the concept of voltage control areas. IEEE Transactions on Power Systems, 2004,19(3):1555-1561.
    [32]徐楠.电力市场环境下的无功问题研究.[博士学位论文]杭州,浙江大学,2006.
    [33]KUECK J, KIRBY B, RIZY T, et al. Reactive power from distributed energy.
    The Electricity Journal,2006,19(10):27-38.
    [34]MIGUELEZ E L, CEREZO F M E, RODRIGUEZ L R. On the assignment of voltage control ancillary service of generators in Spain. IEEE Transactions on Power Systems,2007,22(1):367-375.
    [35]CHANG J W, GRAVES F C, MURPHY D M. Transmission management in the deregulated electric industry:a case study on reactive power. The Electricity Journal,2003,16(8):61-73.
    [36]周浩.电力市场电价金融风险研究.[博士学位论文]杭州,浙江大学,2004.
    [37]张显,王锡凡.电力金融市场综述.电力系统自动化,2005,29(20):1-9,19.
    [38]曹毅刚,王晓清,沈如刚,等.考虑电力衍生产品的风险管理和资产组合优化模型.电力系统自动化,2007,31(13):36-41.
    [39]刘敏,吴复立.电力市场环境下发电公司风险管理框架.电力系统自动化,2004,28(13):1-6.
    [40]刘敏,吴复立.电力市场环境下发电商电能分配策略研究.中国电机工程学报,2008,28(25):111-117.
    [41]周明,李庚银,严正,等.考虑备用需求和风险的供电企业最优购电计划.电网技术,2005,29(3):33-38.
    [42]郭金,江伟,谭忠富.风险条件下供电公司最优购电问题研究.电网技术,2004,28(11):18-22.
    [43]韩金山,张世英,张文泉,等.零售市场单一卖方的最优风险管理策略.电网技术,2004,28(13):54-59.
    [44]周浩,张富强.采用VaR历史模拟方法计算电力市场短期金融风险.电力系统自动化,2004,28(3):14-18.
    [45]王壬,尚金成,冯旸,等.基于CVaR风险计量指标的发电商投标组合策略及模型.电力系统自动化,2005,29(14):5-9.
    [46]张显,王锡凡,王建学,等.发电商长期电能分配策略研究.中国电机工程学报,2005,25(1):6-12.
    [47]周浩,康建伟,陈建华,等.蒙特卡罗方法在电力市场短期金融风险评估中的应用.中国电机工程学报,2004,24(12):74-77.
    [48]王金凤,李渝曾,张少华.期权交易对供电公司购电组合的影响.电力系统自动化,2008,32(3):30-32,96.
    [49]王访,周晓阳,周晨.发电公司投资组合决策流程电力系统及其自动化学报,2008,20(1):33-37,45.
    [50]任震,黄福全,黄雯莹,等.电力市场中的发电厂报价组合策略.电力系统自动化,2002,26(2):14-17.
    [51]曾次玲,张步涵,谢培元,等.基于风险管理在开放的能量市场和备用市场间优化分配发电容量.电网技术,2004,28(13):70-74.
    [52]王丽杰,张步涵,陶芬.基于风险管理的发电商多时段投标组合策略.继电器,2006,34(11):61-65,85.
    [53]YAN H M, YAN H Z, ZHANG H. Demand allocation analysis for energy purchasers in deregulated energy markets. In:Proceedings of International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, April 4-7,2000, London, UK:344-348.
    [54]YAN Houmin, YAN Houzhong. Optimal energy purchases in deregulated California energy markets. In:Proceedings of IEEE Power Engineering Society Winter Meeting, Singapore, January 23-27,2000, Vol.2:1249-1254.
    [55]LIU Y A, GUAN X H. Purchase allocation and demand bidding in electric power markets. IEEE Transactions on Power Systems,2003,18(1):106-112.
    [56]WOO C K, KARIMOV R I, HOROWITZ I. Managing electricity procurement cost and risk by a local distribution company. Energy Policy,2004,32(8): 635-645.
    [57]XU Jun, LUH P B, WHITE F B, et al. Power portfolio optimization in deregulated electricity market with risk management. IEEE Transactions on Power Systems,2006,21(4):1653-1662.
    [58]韩金山,刘严,谭忠富,等.电力零售企业风险的解释结构模型研究.电网技术,2005,29(8):14-19.
    [59]刘瑞花,刘俊勇,何迈.半绝对离差购电组合优化策略及风险管理.电力系统自动化,2008,32(23):9-13.
    [60]吉兴全,文福拴.发电投资的实物期权决策方法.电力系统自动化,2005,29(1):1-5.
    [61]李开海,郭耀煌,蒋燕.电源投资规模选择权的实物期权方法.电力系统自动化,2006,30(23):48-52.
    [62]张少华,李渝曾,王长军,等.结合期权理论的双边可选择电力远期合同模型.电力系统自动化,2001,25(21):28-32.
    [63]马歆,蒋传文,侯志俭,等.基于摆动期权合约的发电商风险回避模型研究,继电器,2004,32(19):1-4.
    [64]姚建刚周启亮张佳启等.基于期权理论的发电权交易模型.中国电机工程学报,2005,25(21):76-80.
    [65]盛方正,季建华.基于断电期权的供电公司购电价格风险管理方法.电力系统自动化,2007,31(18):30-33.
    [66]BURKHART L A. FERC Takes on Reactive Power. Fortnightly's SPARK, Letter #15, March 2005 [EB/OL]. [2007-05-04]. http://www.pur.com/pubs /spark/mar05.pdf
    [67]BARQUIN J, SOLER D, LARGO O, et al. On the cost of reactive power generation and voltage support service. Symposium on Bulk Power System Dynamics and Control IV, National Technical University, Athens,1998.
    [68]SANCHA J L, FERNANDEZ J L, CORTES A. A proposal for reactive power ancillary service market. CIGRE Symposium on Open Access, Paper No. 500-03, Tours (France),1997.
    [69]KIRBY B, HIRST E. Ancillary service details:voltage control. ORNL/CON-453, Oak Ridge National Laboratory, Oak Ridge, Tenn., December 1997.
    [70]ALVARADO F, BORISSOV B, KIRSCH L, D. Reactive power as an identifiable ancillary service. Prepared for Transmission Administrator of Alberta, Ltd., Laurits R. Christensen Associates Inc., March 18,2003 [EB/OL]. [2006-03-05]. http://www.pserc.wisc.edu/ecow/get/publicatio/
    [71]KIRSCH L D. Preparing the ground for pricing unbundled electricity services: the importance of markets. Report TR-106933, Electric Power Research Institute, Palo Alto, November 1996.
    [72]SAUER P W, OVERBYE T, GROSS G, et al. Reactive power support services in electricity markets:costing and pricing of ancillary services project final report. Power Systems Engineering Research Center (PSERC) Publication 00-08, May 2001.
    [73]Union of the Electricity Industry (EURELECTRIC). Voltage control-reactive energy. Technical Report, Mar,1997.
    [74]FESMIRE B. FACTS Check:An overview of the available technology. Utility Automation & Engineering T&D, May,2006.
    [75]牛怀平,刘俊勇,吴集光.一种新的两部制无功定价方法.电网技术,2005,29(7):1-6.
    [76]孔飘红,刘俊勇,张新平.发电侧无功成本与定价研究.继电器,2004,32(5):24-28.
    [77]HEINTZ A. Costing methodology for ancillary services. Successful Strategies for Pricing Unbundled Services Conference, Stone and Webster, August 1996.
    [78]张粒子,李亚男,李国辉,等.发电侧电力市场无功定价方法探讨.中国电力,2002,35(1):28-32.
    [79]邹斌,周浩,李晓刚.电力市场原理与实践.北京:中国林业出版社&北京大学出版社,2006.
    [80]KONG P H, LIU J Y, PAN L L, et al. Reactive power market based on consolidated compensation. In:Proceedings of 2004 IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies (DRPT2004). Hong Kong:April,2004, pp.540-545.
    [81]文福拴,林旭军,张富强,等.电力市场环境下的无功问题.北京:中国电力出版社,2007.
    [82]徐楠,文福拴,余志伟.电力市场环境下的无功问题.电力系统自动化,2006,30(11):93-104.
    [83]葛炬,张粒子,周小兵.电力市场环境下辅助服务问题的研究.现代电力,2003,20(1):80-85.
    [84]牛怀平,刘俊勇,薛禹胜.多种运行方式下的无功定价方法.电力系统自动化,2006,30(19):13-17,60.
    [85]孔飘红,刘俊勇,潘蕾蕾,等.基于统一优化补偿的无功电力市场.电网技术,2004,28(15):16-20.
    [86]舒立平,陈允平.一种新的无功电力定价算法.电网技术,2004,28(5):59-63,68.
    [87]方军,张永平,陈寿孙,等.计及无功功率成本及其资源价值的无功采购方法.电力系统自动化,2002,26(20):29-34.
    [88]丁勇,王秀丽.考虑无功资源价值的无功实时定价.西安交通大学学报,2004,38(12):1296-1300.
    [89]徐楠,文福拴.电力市场环境下的无功采购.电力系统及其自动化学报,2008,20(1):21-27.
    [90]National Electricity Market Management Company (NEMMCO). Operating Procedure:Non-market Ancillary Services,2003. Available on: http://www.nemmco.com.au/powersystemops/so_op3708v013.pdf
    [91]National Electricity Market Management Company (NEMMCO). Network Control Ancillary Service Quantity Procedure (NCAS Quantity Procedure), 2008. Available on:http://www.nemmco.com.au/powersystemops/160-0361.pdf
    [92]National Electricity Market Management Company (NEMMCO). NCAS Quantity Procedure:Eraring Energy Comment. Available on: www.nemmco.com.au/powersystemops/169-0107.pdf
    [93]LI W. Risk assessment of power systems:models, methods, and applications. Piscataway, NJ:IEEE Press,2005.
    [94]LI W, CHOUDHURY P. Probabilistic transmission planning. IEEE Power & Energy Magazine,2007,5(5):46-53.
    [95]ALOMOUSH M I, SHAHIDEHPUR S M. Contingency-constrained congestion management with a minimum number of adjustments in preferred schedules. International Journal of Electrical Power and Energy Systems,2000,22(4): 277-290.
    [96]WANG R, LASSETER R H. Re-dispatching generation to increase power system security margin and support low voltage bus. IEEE Transactions on Power Systems,2000,15(2):496-501.
    [97]FRIAS P, GOMEZ T, SOLER D. A reactive power capacity market using annual auctions. IEEE Transactions on Power Systems,2008,23(3): 1458-1468.
    [98]SINGH H, HAO S, PAPALEXOPOULOS A. Transmission congestion management in competitive electricity markets. IEEE Transactions on Power Systems 1998,13(2):672-680.
    [99]STORN R, PRICE K. Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, International Computer Science Institute, Berkeley, CA,1995.
    [100]LIANG C H, CHUNG C Y, WONG K P, et al. Parallel optimal reactive power flow based on cooperative co-evolutionary differential evolution and power system decomposition. IEEE Transactions on Power Systems,2007,22(1): 249-257.
    [101]WALVE K. Nordic 32 - a CIGRE test system for simulation of transient stability and long term dynamics. Sweden,1993.
    [102]DAVID A K, WEN Fushuan. Market power in electricity supply. IEEE Transactions on Energy Conversion,2001,16(4):352-360.
    [103]林济铿,倪以信,吴复立.电力市场中的市场力评述.电网技术,2002,26(11):70-76.
    [104]WANG P, XIAO Y, DING Y. Nodal market power assessment in electricity markets. IEEE Transactions on Power Systems,2004,19(3):1373-1379.
    [105]赵义术,余贻鑫,刘怀东.使用LSFE分析计及输电系统约束的市场势力.电力系统自动化,2003,27(13):30-35.
    [106]徐楠,文福拴,余志伟.电力市场中的无功市场势力研究.电力系统及其自动化学报,2007,19(4):7-12.
    [107]DE MELLO HONORIO L, DE SOUZA A C Z, DE LIMA J W M, et al. Exercising reactive market power through sensitivity studies and HHI. In:
    Proceedings of IEEE Power Engineering Society Winter Meeting, New York (USA), January 27-31,2002, Vol.1:447-451.
    [108]CHICCO G. A new method for reactive market power assessment in competitive electricity markets. In:Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference, Dubrovnik (Croatia), May 12~15, 2004, Vol.3:1061-1064.
    [109]FENG Donghan, ZHONG Jin, GAN Deqiang. Reactive market power analysis using must-run indices. IEEE Transactions on Power Systems,2008,23(2): 755-765.
    [110]RAHIMI A F, SHEFFRIN A Y. Effective market monitoring in deregulated electricity markets. IEEE Transactions on Power Systems,2003,18(2): 486-493.
    [111]BUNN D W, OLIVEIRA F S. Agent-based simulation-an application to the New Electricity Trading Arrangements of England and Wales. IEEE Transactions on Evolutionary Computation,2001,5(5):493-503.
    [112]ROTH A, EREV I. Learning in extensive-form games:experiment data and simple dynamic model in the intermediate term. Game and Economic Behavior, 1995,8(1):164-212.
    [113]BORGERS T, SARIN R. Learning through reinforcement and replicator dynamics. Journal of Economic Theory,1997,77(1):1-14.
    [114]刘梅招,杨莉,甘德强.基于Agent的电力市场仿真研究综述.电网技术,2005,29(4):76-79.
    [115]GAMS Release 2.50. A user's guide. GAMS Development Corporation,1999. [EB/OL]. [2008-12-10]. http://www.gams.com.
    [116]VEHVILAINEN I. Basics of electricity derivative pricing in competitive markets. Applied Mathematical Finance,2002,9(1):45-60.
    [117]VEHVILAINEN I. Applying mathematical finance tools to the competitive Nordic electricity market. Ph.D. Thesis, Department of Engineering Physics and Mathematics, Helsinki University of Technology,2004.
    [118]CATER J C. Valuing options for electric power resources. The Electricity Journal,1995,8(3):43-49.
    [119]ALLEN E H, ILIC M D. Stochastic unit commitment in a deregulated utility industry. In:Proceedings of 29th North American Power Symposium, Laramie, WY, October 1997, pp.105-112.
    [120]高波,张晓东.基于博弈论的发电厂竞价策略模拟研究与风险分析.继电器,2004,32(12):8-11,35.
    [121]王健,文福拴,杨仁刚,等.电力市场环境下发电机组的最优检修策略初探.电网技术,2004,28(10):22-27.
    [122]尚金成,黄永皓,张维存,等.一种基于博弈论的发电商竞价策略模型与算法.电力系统自动化,2002,26(9):12-15.
    [123]BOTTAZZI G, SAPIO S, SECCHI A. Some statistical investigations on the nature and dynamics of electricity prices. Physica A,2005,355(1):54-61.
    [124]JORDI C, ANTONIO G, MARIANO V. Forecasting long term electricity prices [EB/OL]. [2004-12-10]. http://www.iit.upco.es/docs/03JCB01.pdf
    [125]白利超,康重庆,夏清,等.不确定性电价分析.中国电机工程学报,2002,22(5):36-41.
    [126]周浩,康建伟,韩祯祥,等.利用系统剩余容量评估电力市场短期金融风险.电力系统自动化,2004,28(23):6-10.
    [127]李玉平,言茂松.发电容量的持留激励和电力危机的预警.电力系统自动化,2002,26(22):5-9.
    [128]GUAN X H, HO Y C, PEPYNE D L. Gaming and price spikes in electric power markets. IEEE Transactions on Power Systems,2001,16(3):402-408.
    [129]REN Y J, GALIANA F D. Pay-as-bid versus marginal pricing-part Ⅱ:market behavior under strategic generator offers. IEEE Transactions on Power Systems, 2004,19(4):1777-1783.
    [130]周浩,张富强,韩祯祥.电力市场中经济持留的研究.电力系统自动化,2005,29(8):16-20.
    [131]盛骤,谢式千,潘承毅.概率论与数理统计(第二版).北京:高等教育出版社,1997.
    [132]http://www.caiso.com.
    [133]http://www.pjm.com/markets/energy-market/day-ahead.html.
    [134]CONEJO A J, GARCIA-BERTRAND R, CARRION M, et al. Optimal involvement in futures market of a power producer. IEEE Transactions on Power Systems,2008,23(2):703-711.
    [135]CARRION M, PHILPOTT A B, CONEJO A J, ARROYO J M. A stochastic programming approach to electric energy procurement for large consumers. IEEE Transactions on Power Systems,2007,22(2):744-754.
    [136]CARRION M, CONEJO A J, ARROYO J M. Forward contracting and selling price determination for a retailer. IEEE Transactions on Power Systems,2007, 22(4):2105-2114.
    [137]韩正华,周渝慧,吴俊勇,等.基于博弈论的电力市场双边交易智能体谈判策略.电力系统自动化,2007,31(1):20-26.
    [138]DAVID A K, WEN F S. Bilateral transaction bargaining between independent utilities under incomplete information. Generation, Transmission and Distribution, IEE Proceedings,2001,148(5):448-454.
    [139]王鹏,杨华春,邬彦鸿,等.电力市场谈判型长期合同的贝叶斯均衡解.电力系统自动化,2003,27(16):30-34.
    [140]JONG C, HUISMAN R. Option formulas for mean-reverting power prices with spikes [EB/OL]. [2009-03-02]. http://www.ninfee.net/UserFiles/File/SAN TI_Mean-reverting_with_spikes.pdf
    [141]曹毅刚,沈如刚.基于仿射跳跃-扩散过程的电力市场电价随机模型.电力系统自动化,2006,30(13):33-37,84.
    [142]郭春燕.期望效用理论与风险排序.[硕士学位论文]石家庄,河北师范大学,2004.
    [143]LI C, GIAMPAPA, J, SYCARA K. Bilateral negotiation decisions with uncertain dynamic outside options. IEEE Transactions on Systems, Man and Cybernetics, Part C:Applications and Review,2006,36(1):31-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700