SMA粗集料骨架结构的细观力学模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青混合料由离散刚体和连续粘性胶结介质组成,为典型的多相复合体材料。从宏观角度看,沥青混合料对外荷载的响应呈非线性,为固体与粘弹塑性体的联合响应,而且沥青胶结体的粘弹塑性对温度非常敏感,所以该复合材料的性质十分复杂。从微观角度看,沥青混合料以粗细集料颗粒作为刚性固体、沥青材料为胶结体,并且集料体积约占沥青混合料总体积的90%。集料颗粒之间会产生嵌挤、摩擦作用。因此集料各组分的物理力学性质、几何形态、它们之间的相互作用及混合料各体积组成必然对沥青混合料的力学性质有很大影响。
     沥青混合料内部的粗集料结构既不是完全的有序也不是完全的随机排列。鉴于此,本文提出了基于蒙特卡罗法的集料空间分布模型,即由蒙特卡罗法随机产生集料粒子,考虑集料下落、滚动等堆积过程和稳定性准则等,按相容条件进行集成。SMA粗集料骨架集成的应用实践表明,该模型能根据给定的级配曲线和边界条件很好地集成混合料内部集料的空间分布形态,经计算机成像处理能清晰看出混合料级配设计的实际效果,为可视化级配设计奠定了基础。
     针对集料颗粒间摩擦、接触和嵌挤等复杂的相互作用机制,提出以集料空间分布模型确定单元的划分,进而采用离散元模拟的数值计算方法,建立了适用于离散集料微观模拟的细观力学离散单元模型,并在VC++平台上开发了相应的计算分析程序。经以单一粒径球体以及两种粒径球体组成的结构框架情况进行数值实验验证,证实所开发的程序能很好地模拟集料颗粒体在重力场内的堆积重构。基于传统窗口法的邻近元搜索算法难以适应沥青混合料集料粒径分布范围宽、单元位移大的特点,据此,本文在对窗口合理大小的选取进行了改进的基础上,提出适宜的邻近元二次搜索算法。该接触搜索算法极大地提高了计算效率,使离散单元法与随机堆积模拟的耦合计算方法能在SMA粗集料重力场内的堆积重构得以实际应用。
     本文数值模型的另一特色是针对振动堆积实验过程中复杂的振动特性,引入膨胀机制模拟物理实验中的振动作用。振动模拟驱使颗粒体进一步发生重排、空隙进一步被充填、结构更为致密。经检验,该模型能很好地再现振动堆积物理实验。
     为深入研究SMA粗集料骨架结构,开展了单一分组粒径和SMA16上限、中值及下限三种级配的粗集料干插捣堆积密度和空隙率实验,结果发现:单一分组粒径集料骨架间隙率VCA_(DRC)相差不大;SMA16三种典型级配的粗集料骨架间隙率VCA_(DRC)也比较接近;由于多组集料之间的相互充填,三种级配粗集料骨架间隙率较单一分组粒径集料的骨架间隙率小。
     在实验研究的基础上,利用本文的计算分析程序从微观层面开展单一分组粒径和SMA16三种级配的粗集料骨架结构的数值实验。从粗集料骨架间隙率VCA_(DRC)这一宏观静态指标的分析结果看,数值模拟与上述室内实验结果相吻合。同时,本文还统计分析了目前物理实验很难测得的微观结构参数——配位数,发现:(1)各分组粗集料骨架结构内部集料的配位数分布相差不大,由于单一分组粒径集料之间相互充填,与等粒径粗集料骨架结构相比,配位数分布向增大方向移动,其平均配位数相对较大;(2)相对于单一分组粒径集料骨架结构而言,SMA粗集料骨架内部集料的配位数分布范围相当宽,最大值可达23;(3)SMA混合料骨架内部集料配位数等于3的比例较高,说明由于大粒径集料颗粒的屏蔽,混合料内部较多的小集料颗粒仅起填充作用,不直接支撑其他集料颗粒,这也是SMA内部应力传递形式极为复杂的重要原因,从而在理论上证实:SMA试件其力学性能指标的测试,应考虑骨架结构的不均匀性,采用与集料组成相适应的试件尺寸。
Asphalt mixture is viewed as a composite material of multi-phases consisting of rigid solids separated by continuum of viscous cement. Due to mechanical properties of viscoelastic plasticity of asphalt binders, response of the mixtures to load is basically nonlinear and very sensitive to the temperature. On the other hand, the mechanical property of the asphalt mixture depends also upon the interlock of the particles characterized by the shape and gradation of the aggregates used in the mixture. Importance of the aggregate composition can not be overemphasized since the volume fraction of aggregates is normally around 90% of the total volume of the mixture in practice.
     Arrangement of the skeleton of the coarse aggregate of the asphalt mixture is neither completely in order nor absolutely in random. The model for the description of aggregate distribution in asphalt mixture should have random attribute thereby. Based on Monte-Carlo method, the model for the simulation of aggregates distribution is developed in this paper. While the aggregates can be positioned randomly within the mixture in this model, relocation process under gravitational stability criterion is carried out. To build the skeleton, the coarse aggregates generated by Monte-Carlo method are filled in the given space governed by the rule of compatibility. Following this procedure, skeleton of SMA16 is simulated and analyzed. The simulation results confirmed that the model is applicable to describe the location of the aggregates in the mixture according to the given grading curve and boundary restrictions. Also in this work, the computer image process is employed in the dissertation to visualize micro structure of the simulated mix.
     Mechanism of the grinding, contacting and wedging among aggregates is very complex. A mapped distribution model of aggregates mixtures have been studied using discrete element method. A micromechanical model which can be applied to discrete particles is proposed and a computer program is developed on the platform of VC++ accordingly. Numerical experiments on packing of mono-sized and binary mixtures of spherical particles confirm the applicability of the code. To solve the problem of computing time consuming in particle contact search, a novel algorithm is incorporated in the program using the technique of "irregular search window method". This paves way for practical simulation for aggregate skeleton of the asphalt mixture since the mixture normally has a wide particle size distribution which is very difficult to be handled by the traditional algorithm of neighboring element search of "regular window method". Coupled with random packing algorithm, the program achieved the goal of re-locating aggregates of SMA in gravity field.
     Another feature about the simulation philosophy in this dissertation is the use of taping mechanism to reflect vibration during packing. Particles are relocated during artificial vibration so that the mix gets denser due to the void fillings among particles. Comparing it with physical and numerical experiments, it is found that results obtained from this method match reasonably well with packing experiments.
     The packing experiments pounding with a pestle of a single group of aggregates and three grades (upper limit, median and lower limit grade of SMA16) of aggregates have been carried out. Experiment results show that VCA_(drc) formed by the single group of aggregates have little discrepancy. VCA_(drc) formed by the three grades are almost the same. Because of filling among several groups, VCA_(drc) formed by each grade of aggregates are all lower than VCA_(drc) formed by each single group of aggregates.
     Micro-structure of a single group of aggregates and SMA16 (three grades) are simulated using the program after the packing experiments. VCA_(drc) measured by experiment is close to VCA_(Drc) calculated by the program. Moreover, coordination number which is an important micro-structure parameter and impracticable to measure in the tests have been analyzed statistically. The following conclusions can be drawn from analyses: (1). There is little discrepancy in coordination numbers formed by the four groups of aggregates. Compared with mono-sized aggregates, curve of distributed coordination number of a single group of aggregates shifts to the larger direction because of filling among aggregates. The mean coordination number increases also. (2). Distribution of the coordination number formed by coarse aggregates skeleton of SMA covers much wider than that made up of single group of aggregates. The coordination number in SMA could be as high as 23. (3). Frequency of the coordination number equal to 3 in the coarse aggregates skeleton of SMA is relatively high. This shows that there is significant number of small particles in the mix that are not the component of the mix skeleton but the void fillings under the shelter of big aggregates. This illustrates again the complicity of load transmission within the frame of SMA. Property of in-homogeneity of SMA in lab tests should therefore be accounted for cautiously and the tested samples of the mixtures should be fabricated in proper sizes to be compatible to the composition of the aggregates.
引文
[1] Ann M B. Interim planning for a future Strategic Highway Research Program [R]. National Cooperative Highway Research Program Report 510. Washington, D.C. Transportation Research Board of the National Academies. 2003
    [2] Strategic Highway Research: Saving lives, reducing congestion and improving equality of life [R]. Special Report 260. Washington, D.C. National Academy press. 2001
    [3] 张剑飞.提高认识完善管理攻克沥青路面早期破坏顽固症——在全国沥青路面技术研讨会上的讲话.交通部网站,2005,7
    [4] 沙庆林.高等级公路半刚性基层路面[M].北京:人民交通出版社,1998
    [5] 沈金安.改性沥青与SMA路面[M].北京:人民交通出版社,1998
    [6] 赵可.沥青及沥青混合料改性研究[D].博士学位论文,西安:西安公路交通大学.1999,4
    [7] “八五”国家重点科技项目(攻关)《道路沥青及沥青混合料路用性能的研究》资料汇编,1995,11
    [8] Brown S F, Cooper. K E. The mechanical properties of bituminous materials for road-bases and base-courses. Proceedings of Association of Paving Technologists. 1984, 53
    [9] Foster C R. Development of Marshall procedures for designing asphalt paving mixtures. Information Series 84, National Asphalt Pavement Association, Riverdale, 1982
    [10] 刘立新.沥青混合料粘弹性力学及材料学原理[M].北京:人民交通出版社,2006,3
    [11] 沈金安,盖振娥.国际上对美国Superpave的反应及我国的对策[J].石油沥青,2001,15(1):1-7
    [12] 张肖宁.设计沥青混合料[J].哈尔滨建筑大学学报.2002(6),35(1):108-112
    [13] 袁迎捷.基于Superpave的沥青胶浆流变特性与级配优化研究[D].博士学位论文,西安:长安大学.2004,4
    [14] You Z P. Development of a micromechanical modeling approach to predict asphalt mixture stiffness using the discrete element method [D]. Ph.D,.University of Illinois at Urbana-Champaign Graduate College. 2003, 4
    [15] 胡霞光.沥青混合料微观力学分析综述[J].长安大学学报,2005,25(2):6-10
    [16] Reynaldo R, Shin-Che Huang, Byron E R. Maximizing resistance of asphalt mixtures by proper selection of aggregate gradation [A]. 8th ISAP, 249-269
    [17] Vallerga B A. The effects of aggregate characteristics on the stability of asphalt paving mixtures [A]. Presented at the 41st annual convention of the national sand and gravel association. 1957
    [18] 朱梦良,赵平,高心亮,黄谋钊.AK16抗滑表层的矿料级配优化[J].中国公路学报,2003,16(1):10-14
    [19] 杨群,黄晓明.沥青稳定基层混合料正交试验研究[J].公路交通科技,2000,17(4): 4-7
    [20] 葛折圣,黄晓明.沥青稳定碎石基层混合料矿料级配的优化[J].中国公路学报,2002,15(4):4-6
    [21] 朱梦良,张起森,陈强.沥青玛蹄脂碎石混合料的集料级配优化[J].中国公路学报,2001,14(2):1-5
    [22] 张争奇,覃润浦,张登良.SMA混合料路用性能研究[J].中国公路学报,2001,14(2):13-17
    [23] Barksdale R D, Itani S Y. Influence of aggregate shape on base behavior. Transportation. Research Record, 1227, Transportation Research Board, 1989
    [24] Vuong B. Influence of density and moisture content on dynamic stress-strain behavior of a low plastic crushed rock. [J]. Road and Transportation, 1992, 1 (2)
    [25] Deshpande V S, Cenbon D. Models of particle reinforced nonlinear-viscous composite [J]. Journal of Engineering Mechanics, ASCE, 1999, 125 (3)
    [26] Fwa T F, Low B H, Tan S A. Compaction of asphalt mixture for laboratory testing: evaluation based on density profile [J]. Testing and Evaluation, 1993, 21 (5)
    [27] 袁迎捷,周进川,胡长顺.沥青混合料压实机理新解[J].公路,2002(2):50-53
    [28] Deshpande V S, Cenbon D. Uniaxial experiments on idealized asphalt mixes [J]. Journal of Materials in Civil Engineering, ASCE, 2000, 12 (3)
    [29] 沈金安.沥青及沥青混和料路用性能[M].人民交通出版社,2001
    [30] Fernando E G, Button J M, Crockford W W. Rut susceptibility of large stone mixtures [J]. Journal of Transportation Engineering, ASCE, 1997, 123 (1)
    [31] Yoggoni M, Button J M, Zollingger D G. Fractals of aggregates correlated with creep in asphalt concrete [J]. Journal of Transportation Engineering, ASCE, 1996, 122 (1)
    [32] Frost J D, Wright J R. Digital image processing: techniques and applications in civil engineering [J]. ASCE, 1993, (1): 1-15.
    [33] Kennedy T W, Huber G A, Harrigan E T. Superior performing asphalt pavements (Superpave) [R]. 1994
    [34] 汪海年,郝培文.沥青混合料微细观结构的研究进展[J].中国科技论文在线,http://www.paper.edu.cn
    [35] Zhong Q Y, Bekking W, Morin I. Application Of digital image processing to quantitative study of asphalt concrete microstructure [C]. Transportation research record, 1995:53-60
    [36] Mora C, Kwan A, Chan H. Particle size distribution analysis of coarse aggregate using digital image processing [J]. Cement and Concrete Research. 1998, 28 (6): 921-932
    [37] Kwan A, Mora C, Chan H. Particle shape analysis of coarse aggregate using digital imageprocessing [J]. Cement and Concrete Research. 1999, 29:1403-1410
    [38] Masad E, Muhunthan B, Shashidhar N, et al. Quantifying laboratory compaction effects on the internal structure of asphalt concrete [R]. Transportation Research Record 1681, National Research Council, Washington DC, 1999, 179—185.
    [39] Masad Eyad, Tashman Laith, Somedavan Niranjanan, Little Dallas. Micromechanics based analysis of stiffness anisotropy in asphalt mixture [J]. Journal of Materials in Civil Engineering, 2002, 14 (5): 374—383.
    [40] Masad E, Somadevan N. Micro-structural finite element analysis of influence of localized strain distribution on asphalt mix properties [J]. Journal of Engineering Mechanics, 2002, 128 (10): 1106-1115.
    [41] U.S Department of Transportation, etc. Simulation, Imaging and Mechanics of Asphalt Pavement. McLean, Virginia. Turner-Fairbank Highway Research Center. 1998
    [42] Wang L B, Forst J D, Shashidhar N. Microstructure study of westrack mixtures from X-ray tomography Images [A]. Transportation Research Board [C], Washington DC, 2001
    [43] Wang L B, Forst J D, Mohammad L, et al. Three-dimensional aggregate evaluation using X-ray tomography Imaging [A]. Transportation Research Board [C], Washington DC, 2002
    [44] Masad E, Button J. Implications of experimental measurements and analyses of the internal structure of HMA [A]. Transportation Research Board [C], Washington DC, 2004
    [45] 张婧娜.基于数字图像处理技术的沥青混合料微观结构分析方法研究[D].博士学位论文.同济大学,2000
    [46] Chen J S, Liao M C. Evaluation of internal resistance in hot-mix asphalt (HMA) concrete [J]. Construction and Building Materials. 2002, 16
    [47] 张肖宁,李智,虞将苗.沥青混合料的体积组成及其数字图像处理技术[J].华南理工大学学报(自然科学版),2002,30(11):113-118
    [48] 李智,徐伟,王绍怀,邹桂莲,张肖宁.不同压实成型沥青混合料的数字图像分析[J].土木工程学报,2003,36(12):68-73
    [49] 李晓军,张肖宁.CT技术在沥青胶结颗粒材料内部结构分析中的应用[J].公路交通科技,2005,22(2):14-23
    [50] Wang Duan-yi, Li Wei-jie, Zhang Xiao-ning. Evaluation of surface segregation of asphalt pavement using digital image technique [J]. Journal of South China University of Technology. 2005, 33 (1): 16-20
    [51] 杨新华,王习武,陈传尧,蒙培生.用图像处理技术实现沥青混合料有限元建模[J].中南公路工程,2005,30(3):5-7
    [52] 虞将苗,李晓军,王端宜,张肖宁.基于计算机层析识别的沥青混合料有限元模型[J].长安大学学报(自然科学版),2006,26(1):16-19
    [53] Kuo C Y, Rollings R S, Lynch L N. Morphological study of coarse aggregates using image analysis [J]. Journal of Materials in Civil Engineering. 1998, 10(3): 135-142
    [54] Brzezicki J M, Kasperkiewicz J. Automatic image analysis in evaluation of aggregate shape [J]. Journal of Computing in Civil Engineering. 1999, 13(2): 123-128
    [55] Seo, Y. A comprehensive Study of crack growth in asphalt concrete using fracture mechanics [D]. Ph.D North Carolina State University, 2003
    
    [56] 李晓军. 沥青混合料破损识别与仿真[D]. 博士后,华南理工大学,2004
    
    [57] Hartman A M, Gilchrist M D. Evaluating four-point bend fatigue of asphalt mix using image analysis [J]. Journal of Materials in Civil Engineering. 2004
    
    [58] Sepehr K, Svec 0 J, Yue Z Q, et al. Finite element modeling of asphalt concrete microstructure [A]. Proceedings of the 3rd International Conference on Computer-Aided Assessment and Control Localized Damage Conference [C]. 1994, 225
    
    [59] Sadi Kose, Murat Guler, Hussain U Bahia. Distribution of strains with in asphalt binders in HMA using imaging and finite element techniques [A]. TRB 79th Annual M eeting [C]. Washington D C, 2000.
    
    [60] Papagiannakis A, Abbas A, Masad E. Micromechanical analysis of the viscoelastic properties of asphalt concretes [A]. Transportation Research Board [C], 2002
    
    [61] Masad E, Tashman L, Somedavan N, et al. Micromechanics-based analysis of stiffness anisotropy in asphalt mixtures [J]. Journal of Materials in Civil Engineering. 2002, 14: 374-383
    
    [62] Zhong Q Y, Chen S, Tham L. Finite element modeling of geomaterials using digital image processing [J]. Computers and Geotechnics. 2003, 30 (5): 375-397
    
    [63] Soarse J B, Freitas F A, Allen D H. Crack modeling of asphalt mixtures considering heterogeneity of the material [A]. Transportation Research Board [C], 2003
    
    [64] Saad M H, Dai Q, Parameswaran V, et al. Microstructural simulation of asphalt materials: modeling and experimental studies [J]. Journal of Materials in Civil Engineering. 2004, 16(2): 107-115
    
    [65] Soranakom C, Birgisson B, Napier J A, et al. Simulation of fracture initiation in hot mix asphalt mixtures [A]. Transportation Research Board [C], 2003
    
    [66] Birgisson B, Soranakom C, Napier J, et al. Microstructure and fracture in asphalt mixtures using boundary element approach [J]. Journal of Materials in Civil Engineering. 2004, 16 (2): 116-121
    
    [67] Sitharam T G. Numerical simulation of particulate materials using discrete element modeling [J]. Current Science, 2000, 78 (7): 876-886
    
    [68] Cundall P A. A computer model for simulating progressive large scale movements in blocky rock systems [A]. Proc. Symp. Int. Soc. for Rock Mech. 1971, 1
    
    [69] Cundall P A, Strack O D L. Discrete numerical model for granular assemblies [J]. Geotechnique, 1979, 29(1): 47-65
    
    [70] Hocking G. The discrete element method of analysis of fragmentation of discontinua [J]. Engineering Computations, 1992, 9: 145-155
    
    [71] Walton O R. Particle-dynamics calculations of shear flow [M]. in Jenkins J T, Satake M (Eds.), Mechanics of Granular Materials,Elsevier,Amsterdam, 1982: 113-123
    
    [72] Cundall P A. Computer simulations of dense sphere assemblies [M]. in Satake M, Jenkis J T (Eds.), Micromechanics of Granular Material, Elsevier, Amsterdam. 1988: 113-123
    
    [73] Cundall, P.A. Formulation of a three-dimensional distinct element model-Part I .A scheme to detect and represent contacts in a system composed of many polyhedral blocks [J]. International Journal of Rock Mechanics in Mining Science & Geo-mechanics Abstract, 1988, 25 (3): 107-116
    
    [74] Hart R, Cundall P A, Lemos J. Formulation of a three-dimensional distinct element model-Part II. Mechanic calculations for motion and interaction of a system composed of many polyhedral blocks [J]. International Journal of Rock Mechanics in Mining Science & Geo-mechanics Abstract, 1988, 25 (3): 117-125
    
    [75] Rothenburg L, Bathurst R J. Micromechanical features of granular assemblies with planar elliptical particles [J]. Geotechnique, 1992, 42 (1): 79-95
    
    [76] Ng T T. Numerical simulation of granular soil using elliptical particles [J]. Computer and Geotechnics, 1994, 16: 153-169
    
    [77] Ting J M, Khwaja M, Meachum L, Rowell J D. An ellipse based discrete element model for granular materials. International Journal for Numerical and Analytical Methods in Geomechanics. 1993,17: 603-623
    
    [78] Ng,T T. Fabric study of granular materials after compaction [J]. Journal of Engineering Mechanics. 1999, 125 (12): 1390-1394
    
    [79] Lin X, Ng T T. A three-dimensional discrete element model using arrays of ellipsoids [J]. Geotechnique. 1997, 47 (2): 319-329
    
    [80] Williams J R, O'Conner R. A linear complexity intersection algorithm for DEM simulations of arbitrary geometries [J]. Engineering Computations.1995, 12: 185-201
    
    [81] Hogue C. Shape representation and contact detection for discrete elements simulations of arbitrary geometries. Engineering Computations.1998, 15 (3): 374-390
    
    [82] Favier J F, Kremmer M, Raji A O. Shape representation of axi-symmetrical, non-spherical particles in discrete element simulation using multi-element model particles [J]. Engineering Computations, 1999, 16 (4): 467-480
    
    [83] Thorton C, Barnes D J. Computer simulated deformation of compact granular assemblies [J]. Acta Mechanic. 1986, 64(1-2): 45-61
    
    [84] Walton O R, Braun R L. Stress calculations for assemblies of inelastic spheres in uniform shear [J]. Acta Mechanica, 1985, 63 (1-4): 73-86
    
    [85] Lin J S, Ting J M, Vuba B, Chen S. Computer simulation of direct shear test [J]. Proceedings of Engineering Mechanics, 1992: 425-428
    
    [86] Masson S, Martinez J. Micromechanical analysis of the shear behavior of a granular material. Journal of Engineering Mechanics. 2001, 127 (10): 1007-1016
    
    [87] Hayley S. Sample size effects on constitutive relations of granular materials - a numerical simulation study with two-dimensional flow of discs [J]. Journal of Engineering Mechanics, 2001, 127 (10): 978-986
    
    [88] Williams J R, Rege N. The development of circulation cell structures in granular materials undergoing compression [J]. Powder Technology, 1997, 90: 187-194
    
    [89] Williams J R, Rege N. Granular vortices and shear band formation [A]. In: ASCE Proc. of Mechanics of Deformation and Flow of Particulate Materials, Evanston, Illinois, 1997: 62-76
    
    [90] Oda M, Kazama H. Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils [J]. Geotechnique, 1998, 48(4): 465-481
    
    [91] Iwashita K, Oda M. Micro-deformation mechanism of shear banding process based on modified distinct element method [J]. Powder Technology, 2000, 109 (1-3): 192-205
    
    [92] Mirghasemi A A, Rothenburg L. Influence of particle angularity on the physical behavior of simulated granular materials [A]. 2000 Annual Conference of the Canadian Society for Civil Engineering [C], 2000: 383-387
    
    [93] Mirghasemi A A, Rothenburg L, Matyas E L. Influence of particle shape on engineering properties of assemblies of two-dimensional polygon-shaped particles [J]. Geotechnique, 2002, 52 (3): 209-217
    
    [94] Kuhn M R, Mitchell J R. Modeling of soil creep with the discrete element method [J]. Engineering Computations, 1992, 9(2): 277-287
    
    [95] Taylor L M, Preece D S. Simulation of blasting induced rock motion using spherical element models [A]. Proc. 1st US Conf. Discrete Element Methods, Golden, CO. 1989: 252-263
    
    [96] Anandarajah A. Discrete element method for simulating behavior of cohesive soil [J]. Journal of Geotechnical Engineering. 1994, 120 (9): 1593-1613
    
    [97] Anandarajah A. Numerical simulation of one-dimensional behavior of kaolinite [J]. Geotechnique, 2000, 500 (5): 509-519
    
    [98] Yao M, Anandarajah A. Three-dimensional discrete element method of analysis of clays [J]. Journal of Engineering Mechanics. 2003, 129 (6): 585-596
    
    [99] Ting J M ,Meachum L, Rowell J D. Effect of particle shape on the strength and deformation mechanisms of ellipse-shaped granular assemblages [J]. Engineering Computations, 1995, 12 (2): 99-108
    
    [100] Ng T-T. Fabric evolution arrays with different particles shapes [J]. Journal of Engineering Mechanics. 2001, 127 (10): 994-999
    
    [101] Ting J M, Greco C. Discrete numerical model for soil mechanics [J]. Journal Geotechnique Engineering. 1989, 115(3): 379-398
    
    [102] Horner D A. Application of DEM to micromechanical theory for large deformations of granular media [D]. Ph. D, 1997, University of Michigan, Ann Arbor, Michigan.
    
    [103] Alaa K A, Sukumaran B, Hoang V V. Evaluating the Influence of Particle Shape on Liquefaction Behavior Using Discrete Element Modeling [A]. Proceedings of the Thirteenth (2003) International Offshore and Polar Engineering Conference [C]. Honolulu, Hawaii, USA, 2003:1089-1096
    [104] Bathurst R J, Rothenburg L. Micromechanical aspects of isotropic granular assemblies with linear contact interactions [J]. Journal of Applied Mechanics. 1988, 55(1): 17-23
    [105] Liu, Lian feng. Simulation of microstructural evolution during isostatic compaction of monosized spheres [J]. Journal of Physics D: Applied Physics, 2003, 36 (15): 1881-1889
    [106] Antony S J, Kuhn M R, Barton D C, Bland R. Strength and signature of force networks in axially compacted sphere and non-sphere granular media: Micromechanical investigations [J]. Journal of Physics D: Applied Physics, 2005, 38 (21): 3944-3952
    [107] Lorig L J, Brady B H G. A hybrid computational scheme for excavation and support design in jointed rock media [C]. ISRM Symposium: Design and Performance of Underground Excavation, British Geotechnical Society, London, 1984:105-112
    [108] Fu T. Experimental study and discrete element simulation of sand-steel interface behavior [D]. Ph. D, University of Ottawa, Ottawa, Ontarrio, Canada, 1998
    [109] Jensen R P. Numerical and analytical modeling of the micro-structural behavior of a particulate media-structure interface [D]. University of Wisconsin, 1998
    [110] Frost J D, Gregory L H, Evans T M, DeJong J T. Interface behavior of granular soils [J]. Engineering, Construction and Operations in Challenging Environments Earth and Science 2004: Proceedings of the Ninth Biennial ASCE Aerospace Division International Conference, 2004: 65-72
    [111] Walton O R. Numerical simulation of inclined chute flows of monodisperse inelastic, frictional spheres [J]. Mechanics of Materials, 1993, 16:239-247
    [112] Hanes D M, Walton O R. Simulations and physical measurements of glass spheres flowing down a bumpy incline [J]. Powder Technology, 2000, 109(1-3): 133-144
    [113] Karion A, Hunt M L. Wall stresses in granular Couette flows of mono-sized particles and binary mixtures [J]. Powder Technology, 2000, 109 (1-3): 145-163
    [114] Mustoe G G W, Miyata M. Material flow analysis of noncircular-shaped granular media using discrete element methods [J]. Journal of Engineering Mechanics. 2001, 127 (10): 1017-1026
    [115] 吴清松,胡茂彬.颗粒流的动力学模型和实验研究进展力学进展[J].2002,32(2):250-258
    [116] Lorig L J, Brady B H G, Cundall P A. Hybrid discrete element-boundary element analysis of jointed rock [J]. International Journal Rock Mechanics in Mining Science & Geomechanics Abstract. 1986, 23 (4): 303-312
    [117] Horner D A, Carrillo A R, Peters J F, et al. High resolution soil vehicle interaction modeling [J]. Mech. Struct. And Machines, 1998, 26 (3): 305-318
    [118] Horner D A, Peters J F, Carrillo A R. Large scale discrete element modeling of vehicle-soil interaction [J]. Journal of Engineering Mechanics. 2001, 127 (10): 1027-1032
    [119] 周晓青,王元汉.离散单元法与边界元法的外部耦合计算.岩石力学工程学报[J].1996(9),15(3):231-235
    [120] 金峰,贾伟伟,王光纶.离散元—边界元动力耦合模型[J].水利学报.2001(1),1:23-27
    [121] 金峰,王光纶,贾伟伟.离散元-边界元动力藕合模型在地下结构动力分析中的应用 水利学报[J].2002,2:24-28
    [122] Hart K, Peric D, Owen D R J. A combined finite/discrete element simulation of shot peening processes. Part Ⅰ: studies on 2D interaction laws [J]. Engineering Computations. 2000, 17 (5): 593-619
    [123] Han K, Peric D, Owen D R J. A combined finite/discrete element simulation of shot peening processes. Part Ⅱ: 3D interaction laws [J]. Engineering Computations. 2000, 17 (65): 680-702
    [124] Owen D R J, Feng Y T. Parallelised finite/discrete element simulation of multi-fracturing solids and discrete systems [J]. Engineering Computations. 2001, 18 (3): 557-576
    [125] 王泳嘉.离散单元法—一种适用于节理岩石力学分析的数值方法[A].第一届全国岩石力学数值计算及模型试验讨论文集[C].峨嵋:西南交通大学出版社.1986:32-37
    [126] 王泳嘉,刑纪波.离散单元法及其在岩土力学中的应用[M].沈阳:东北工学院出版社,1991
    [127] 刘建武.静力松弛离散单元法及其在岩体工程稳定分析中的应用[D].硕士学位论文.武汉:中国科学院武汉岩土力学研究所,1988
    [128] 魏群.散体单元法的基本原理,数值方法及程序[M].北京:科学出版社,1991
    [129] 刘连峰.三维离散单元法及其在边坡工程中的应用[D].博士学位论文.沈阳:东北大学,1995
    [130] 焦玉勇.三维离散单元法及其应用[D].博士学位论文.武汉:中国科学院武汉岩土力学研究所,1998
    [131] 安关峰,殷坤龙,唐辉明.黄土坡滑坡的离散元研究[J].中国地质大学学报,2002,27(4):464-466
    [132] 刘礼领,殷坤龙.离散单元法在水库库岸滑坡稳定性分析中的应用[J].水文地质工程地质,2003,4:63-66
    [133] 汪远年,李世海.断续节理岩体随机模型三维离散元数值模拟[J].岩石力学与工程学报,2004,23(21):3652-3658
    [134] 陈春光,姚令侃,王沁.三维离散单元法在泥石流堆积研究中的应用[J].2003,12(4):55-61
    [135] 蒋金泉,曲华,谭云亮.综放顶煤放出规律与放煤步距的离散元仿真研究[J].岩石力学与工程学报,2004,23(18):3070-3075
    [136] 焦玉勇,葛修润,刘泉声,冯树仁.三维离散单元法及其在滑坡分析中的应用[J]. 岩土程学报,2000,22(1):101-104
    [170]焦玉勇,葛修润,谷先荣.三维离散元法中地下水及锚杆的模拟[J].岩石力学与工程学报,2000,18(1):6-11
    [137]崔玉柱,张楚汉,金峰,王光纶.拱坝-地基破坏的数值模型与溃坝仿真[J].水利学报,2002,6:1-8
    [138]倪小东.运用离散元法研究土体管涌机理[D].硕士学位论文,南京:河海大学,2006
    [139]李伟.冲击减振理论的离散单元法研究及应用[D].博士学位论文,西安:西安交通大学,1997
    [140]刘凯欣,郑文刚,高凌天.脆性材料动态破坏过程的数值模拟[J].计算力学学报,2003,20(2):127-132
    [141]唐志平.三维离散元方法及其在冲击力学中的应用[J].中国科学(E辑).2003,33(11):989-998
    [142]Zhou Jian, Su Yan, Chi Yong. Simulation of soil properties by particle flow code [J]. Chinese Journal of Geotechnical Engineering, 2006, 28 (3): 390-396
    [143]张锐.基于离散元细观分析的土壤动态行为研究[D].博士学位论文,吉林:吉林大学,2005
    [144]Chang K G. Micromechanical simulation of hot mix asphalt [D]. Ph. D, New Jersey Institute of Technology, Newark, New Jersey, 1995
    [145]Chang K G, Meegoda J N. Micromechanical simulation of hot mix asphalt [J]. Journal of Engineering Mechanics, 1997, 123 (5): 495-503
    [146]Buttar W G, You Z P. Discrete element modeling of asphalt concrete [A]. Transportation Research Record [C], 2001
    [147]王端宜,张肖宁,王绍怀.用虚拟试验方法评价沥青混合料的级配类型[J].华南理工大学学报,2003,31(2):48-51
    [148]Stewart I J, Brown E T. A static relaxation method for the analysis of excavation in discontinue rock [M]. Design and Performance of Underground Excavations. Cambridge, 1984:149-155
    [149]Otter J R H, Cassell A C, Hobbs R E. Dynamic relaxation [J]. Proc. Int. Civ. Engrs. 1966, 35:633-665
    [150]王泳嘉,邢纪波.离散单元法的基本原理及其应用[A].第一届全国计算岩土力学研讨会论文集(一)[C].峨嵋:西南交通大学出版社.1987:124-129
    [151]Brown E T.主编,余诗刚,王可钧 译.工程岩石力学中的解析与数值计算方法[M].北京:科学出版社,1991
    [152]吴家龙.弹性力学[M].上海:高等教育出版社.2001:267-271
    [153]Lorig L J. A hybrid Computational model for excavation and support design in jointed media [D]. Ph.D. Thesis, University of Minnesota, 1984
    [154]李华,孔宪立.离散单元法:参数选择与讨论[A].第一届全国计算岩土力学研讨 会论文集(一)[C].峨嵋:西南交通大学出版社.1987:187-195
    [155] Ginsberg J H, Genin J. Dynamics [M]. Second Edition. New York: Jhon Willey and Sons. 1984:895-899
    [156] Gencer M. Progressive failure in stratified and joined rock [J]. Rock Mechanics and Rock Engineering, 18(4)
    [157] German R M. Particle packing characteristic [M]. Princeton Publication, New Jersey.
    [158] Visscher WM, Bolsterli M. Random packing of equal and unequal spheres in two and three dimensions [J]. Nature, 1972, 239:504-507
    [159] Meakin P, Jullien R. Restructure effects in the rain model for random deposition [J]. Journal of Physique, 1987, 48:1651-1687
    [160] Barker G C, Grimson M J. Sequential random close packing of binary disc mixtures [J]. J. Phys. Condens. Matter. 1989, 1:2279-2789
    [161] Bennett C H J. Serially deposition amorphous aggregates of hard spheres [J]. Journal of Applied Physics. 1972, 43 (6): 2727-2734
    [162] Yen K Z Y, Chaki T K. A dynamic simulation of particle rearrangement in powder packings with realistic interactions [J]. Journal of Applied Physics. 1992(4), 71(7): 3164-3173
    [163] Jullien R, Pavlocitch A, Meakin P. Random packing of spheres built with sequential model [J]. Journal of Physics A: Math. Gen. 1992, 25:4103-4113
    [164] Aparicio N D, Cocks C F. On the representation of random packings of spheres for sintering simulations [J]. Acta Metall. Mater. 1995, 43(10): 3873-3884
    [165] Coelho D, Thovert J F, Adler P M. Geometrical and transport properties of random packings of spherical particles [J]. Physical Review E. 1997(2), 55(2): 1959-1978
    [166] Clarke A S, Wiley J D. Numerical simulation of the dense random packing of a binary mixture of hard spheres: amorphous metals [J]. Physical Review B. 1987(5), 35(14): 7350-7356
    [167] Latham J P, Lu Y, Munjiza A. A random method for simulating loose packs of angular particles using tetrahedral [J]. Geotechnique, 2001, 51(10): 871-879
    [168] Mason G. Computer simulation of hard disc packings of varying packing density [J]. Journal of Colloid Interface Science. 1976, 56(3): 483-491
    [169] Clarke A S, Jonsson H. Structural changes accompanying densification of random hard-sphere packings [J]. Physical Review E. 1993(2), 47(6): 3975-3984
    [170] 裴鹿成.蒙特卡罗方法及其在粒子输运问题中的应用[M].张孝译.北京:科学出版社,1980.
    [171] 陆阳,周永江,张蓉.SMA粗集料结构的数值模拟[J].中国公路学报.2006,19(1):38-46
    [172] Tang Z P, Horie Y, Psakhie S G. Discrete Meso-element modeling of shock processes in powders [A]. Graham R A, et al. Shock Compression of Solids, Ⅳ, [M]. Springer-Verlag, 1997:143.176
    [173] 王泳嘉,刘连峰.三维离散单元法软件系统TRUDEC的研制[J].岩石力学与工程学报.1996,15(3):201-210
    [174] 杨全文.离散元法干颗粒接触模型研究及微机可视化程序设计[D].硕士学位论文.北京:中国农业大学.2001
    [175] 陈龙斌,胡晓军,唐志平.离散元数值模拟中查找邻居元关系的改进算法[J].计算力学学报.2000,17(4):497-499
    [176] 陈春光.泥石流与主河水流交汇模型及耦合计算方法[D].博士学位论文.成都:西南交通大学,2004
    [177] 钱能.C++程序设计教程[M].北京:清华大学出版社,1999
    [178] 弗朗索瓦·德拉拉尔[法] 著.廖欣,叶枝荣,李启令 译 混凝土混合料的配合[M].北京:化学工业出版社.2004
    [179] Edwards S.F. Equations of granular materials [J]. Phys. A: Stat. Mech. Appl. 1999,274: 310-319
    [180] Latham, J P, Munjiza A, Lu Y. On the prediction of void porosity and packing of rock particulates [J]. Powder Technology. 2002, 125(1): 10-27
    [181] Alberts L J H. Initial porosity of random packing: computer simulation of grain rearrangement [D]. Ph.D Thesis, Delft University of Technology. 2005
    [182] Macrae J. C., Gray W. A. Significance of the properties of materials in the packing of real spherical particles [J]. British Journal of Applied Physics. 1961, 12:164-172
    [183] Simth W O, Foote P D, Busang P F. [J]. Physical Review. 1929, 34:1271
    [184] Bernal J. D., Mason J. Co-ordination of randomly packed spheres [J]. Nature. 1960, 188:910-911
    [185] Bernal J D, Cherry I A, Finney J L, Knight K R. An optical machine for measuring sphere coordinates in random packings [J]. Journal of Physics E: Scientific Instruments, 1970, 3:388-390
    [186] Scott G D. Packing of equal spheres [J]. Nature, 1960, 188:908-909
    [187] Scott G D. Radial distribution of the random close packing of equal spheres [J]. Nature, 1962, 194: 956-957.
    [188] Scott G D, Kilgour D M. The density of random close packing of spheres [J]. Journal of Physics D: Applied Physics. 1969, 2:863-866
    [189] Onoda G Y, Liniger E G. Phys. Rev. Lett. 1990, 64:2727
    [190] Beard C E, Weyl P K. Influence of texture on porosity and permeability of unconsolidated sand [J]. The American Association of Petroleum Geologists Bulletin, 1973, 57:349-369
    [191] Finney J L. Random packing and the structure of simple liquids: Ⅰ. The geometry of random close packing. Proceedings of the Royal Society of London. 1970, 319:479-493
    [192] Uri L, Dysthe D K, Feder J. Complex behaviour and structure of ductile granular material [J]. Geophysical Research Abstracts. 2004, 6
    [193] Cheng Y F, Guo S J, Lai H Y. Dynamic simulation of random packing of spherical particles [J]. Powder Technology. 2000, 107(1-2): 123-130
    [194] Liu L F, Zhang Z P, Yu A B. Dynamic simulation of centripetal packing of mono-sized spheres [J]. Physica A. 1999, 268(3-4): 433-453
    [195] Pryor W A. Permeability-porosity patterns and variations in some Holocene sand bodies [J]. The American Association of Petroleum Geologists Bulletin, 1973, 57:162-189
    [196] 交通部公路科学研究所.公路工程集料试验规程(JTG E42-2005)[M].北京:人民交通出版社.2005
    [197] Nolan G T, Kavanagh P. E. Computer simulation of random packing of hard spheres [J]. Powder Technology. 1992, 72:149-155
    [198] Rothenburg L, Kruyt N P. Critical state and evolution of coordination number in simulated granular materials [J]. Int. J. Solids and Structures. 2004, 41(21): 5763-5774
    [199]. Smith W O, P. Foote, P D, Busang P F. Coordination number of binary mixtures of spheres [J]. Phys. Rev. 1929, 34:1271-1277
    [200]. Jullien R, Meakin P, Pavlovitch A. Growth of packing Disorder and Granular Media [M]. Amsterdam: Elsevier 1993:35-50
    [201]. Arakawa M and Nishino M. Coordination number in a random mixtures of hard spheres [J]. J. Soc. Mater. Sci. Japan. 1973, 22:658-663
    [202]. Pinson D, Zou R P, Yu A. B. etc. Coordination number of binary mixtures of spheres [J]. J. Phys. D: Appl. Phys. 1998, 31(4): 457-462
    [203]. Zou R P, Bian X, Pinson D, Yu A B, Zulli P. Coordination number of ternary mixtures of spheres [J]. Part. Part. Syst. Charact. 2003, 20(5): 335-341
    [204] Zhang Z P, Liu L F, Yuan Y D, Yu A B A simulation study of the effects of dynamic variables on the packing of spheres [J]. Powder Technology. 2001, 116(1): 23-32
    [205] Fu G, Dekelbab W. 3-D random packing of polydisperse particles and concrete aggregate grading. Powder Technology. 2003, 133:147-155
    [206] Standish N., Borger D. E. The porosity of particulate mixtures [J]. Powder Technology. 1979, 22:121-125
    [207] Yu A.B., Standish N. Porosity calculations of multi-component mixtures of spherical particles [J]. Powder Technnology. 1987, 52: 233-241.
    [208] Furnas C C. Flow of gases through beds of broken solids [J]. U.S. Bureau of Mines Bulletin. 1929, 130: 144.
    [209] Westman A E R, Hugill H R. The packing of particles [J]. Journal of American Ceramic Society. 1930, 13:767-779
    [210] Fraser H.J. Experimental study of the porosity and permeability of classic sediments [J]. Journal of Geology. 1935, 43:910-1010
    [211] 朱梦良,张起森,陈强 沥青玛蹄脂碎石混合料的集料级配优化[J].中国公路学 报,2001,14(2):1-5
    [212]黄晚清,陆阳,何昌轩,黄碧霞.球体颗粒随机堆积的三维动态模拟[C].2005全国博士生学术论坛(交通运输工程学科)论文集.2005:1454-1458
    [213]黄晚清,陆阳,何昌轩.散体结构微观数值模拟[C].2006全国博士生学术论坛(力学、土木、水利工程学科)论文集.2006.
    [214]张争奇,袁迎捷,王秉纲.沥青混合料旋转压实密实曲线信息及其应用[J].中国公路学报,2005,18(3):1-6
    [215]赵可,卢永贵,魏如喜.SMA高温稳定性研究[J].中国公路学报,2004,17(2):11-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700