海浪谱能量方程稳定性、敏感性分析与海浪变分同化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要完成了以下几个方面的研究:
    1)建立了推广形式的共轭变分同化方法,使之能够应用于LAGFD-WAM海浪数值
     模式;
    2)导出了扰动谱线性演化方程,分析了扰动谱增长、衰减机制,考察了涌浪情况下
     扰动谱的持续时效问题及风浪情况下扰动的演变过程;
    3)利用波谱共轭方程初步分析了同化模型中距离泛函的敏感性及敏感区域空间分
     布;
    4)将推广的共轭变分方法应用于海浪谱能量平衡方程,建立了连续形式的海浪同化
     模型,特别是严格导出了风输入、破碎、底摩擦、波波非线性相互作用和波流相
     互作用各源函数的共轭源函数表示式;
    5)分别进行了波谱层次上和有效波高层次上的同化试验,并对数值结果进行了分
     析。
    创新之处主要有以下几个方面:
    ●利用算子半群理论对共轭变分方法进行了推广;
    ●首次导出扰动谱线性演化方程,并利用其考察波谱能量平衡方程的不稳定性问
     题;
    ●在处理波波非线性相互作用时,将Hasselmann et al.[1985]离散参数化的6对相互
     作用架组源函数表示用复数解析表示,并在此基础上导出其共轭源函数;
    ●建立了连续形式的基于初始波谱优化的海浪同化模型;
    
    
    
    
    .针对观测资料类型的不同,给出了波谱层次上和有效波高层次上的同化处理
     法。
The following are the major work in this thesis which has been studied and still needs
    
     to be studied further in the future:
    
     1) An improved adjoint variational method is developed, thus it can be applied to the
    
     LAGFD-WAM Wave Numerical Model for data assimilation;
    
     2) A linear evolution equation of spectral perturbation is derived in order to analyze its
    
     increasing or decreasing mechanism. The duration of spectral perturbation is
    
     calculated under the swell situation after the linear evolution equation of spectral
    
     perturbation is simplified. The evolution of perturbation under the wind sea situation is
    
     also analyzed primarily;
    
     3) The sensitivity of distance function in the wave assimilation model is studied with the
    
     use of adjoint spectrum balance equation. Disregard its primary, the spacial value
    
     distribution of sensitivity is important for oceanic convention observation, etc.
    
     4) The improved adjoint variational method is applied to the wave energy spectrum
    
     balance equation, and then the continuous wave data assimilation model is developed.
    
     Especially the adjoint source functions of wind input function, wave breaking
    
     dissipation function, bottom friction function, wave-wave nonlinear interaction and
    
     wave-current interaction are derived rigorously;
    
    
     5) The assimilation experiments based on the level of spectrum and significant wave
    
     height are implemented and analyzed respectively.
    
     The new ideas in this thesis are stated below:
    
     The adjoint variational method is improved with the use of semigroups of linear
    
     operators for wide application;
     The linear evolution equation of spectral perturbation is derived, which is then used to
    
     analyze the instability of wave energy spectrum balance equation;
    
     The nonlinear interaction operator constructed by the superposition of a small number
    
     of discrete-interaction configurations is formularized in order to derive its adjoint
    
     operator. The adjoint operator is then derived and formularized as well;
    
     The continuous wave data assimilation model is developed to optimize the initial
    
     spectrum;
    
     Two different assimilation processes are developed under the level that the observation
    
     is spectrum by SAR or significant wave height by ALT.
引文
1. Andersson, E., Pailleux, J., Thepaut, J-N., et al. Use of cloud-cleared radiances in three/four dimensional variational data assimilation. Q. J. R. Meteor. Soc., 1994, 120, 627-653.
    2. AVISO, AVISO user handbook: TOPEX/POSEIDON update product, AVI-NT-103-CN, 1996, Edition 1. 0.
    3. Bauer, E., Hasselmann, K., Young, I. R. and Hasselmann, S. Assimilation of wave data into the wave model WAM using an impulse response function method, J. Geophys. Res., 1996,101: 3801-3816.
    4. Bauer, E., Hasselmann, S., Hasselmann, K. and Graber, H. C. Validation and assimilation of Seasat altimeter wave heights using the WAM Wave Model, J. Geophys. Res., 1992,97: 12671-12682.
    5. Courtier, P. and Talagrand, O. Variational assimilation of meteorological observations with the adjoint vorticity equation. Ⅱ : Numerical results, Q. J. R. Meteorol.Soc.1987,113: 1329-1347.
    6. Courtier, P. and Talagrand, O. Variational assimilation of meteorological observations with the direct and adjoint shallow-water equations, Tellus, 1990, 42A: 531-549.
    7. de las Heras, M. and P.A.E.M Janssen. Data assimilation with a coupled wind-wave model, J. Geophys. Res., 1992, 97: 20261-20270.
    8. Derber, J. C. A variational continuous assimilation technique, Mon. Wea. Rev., 1989, 117:2437-2446.
    9. Epstein, E. S. Stochastic dynamic prediction, Tellus, 1969, 21:739-759.
    10. Esteva, D C. Evaluation of preliminary experiments assimilating Seasat significant wave height into a spectral wave model, J. Geophys. Res., 1988, 93: 14099-14105.
    11. Gustafsson, N. and Huang Xiangyu. Sensitivity experiments with the spectral HIRLAM and its adjoint, Tellus, 1996,48A: 501-517.
    12. Hall, M. C. G., Cacuci, D. G. and Schlesinger, M. E. Sensitivity analysis of a
    
    radiative-convective model by the adjoint method, J. Atmos. Sci., 1982, 39: 2038-2050.
    13. Hasselmann, K. and Hasselmann, S. On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion, J. Geophys. Res., 1991,96:10713-10729.
    14. Hasselmann, S., Hasselmann, K. et al. Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum, Part II, J. phys. Oceanogr., 1985,15: 1378-1391.
    15. Hasselmann, S., Bruning, C., Hasselmann, S. and Heimbach, P. An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectra, J. Geophys. Res., 1996, 101: 16615-16629.
    16. Hasselmann, S., Lionello, P. and Hasselmann, K. An optimal interpolation scheme for the assimilation of spectral wave data. J. Geophys. Res., 1997,102: 15823-15836.
    17. Hersbach, H. Application of the adjoint of the WAM model to inverse wave modeling. J. Geophys. Res., 1998,103: 10469-10487.
    18. Hoffman, B. N., Louis, J. N. and Nehrkorn, T. A method for implementing adjoint calculations in the discrete case, ECMWF Research Dept. Tech. Memo. 183, 1992.
    19. Hoke, J. E. and Anthes, R. A. The initialization of numerical models by a dynamic-initialization technique, MOM. Wea. Rev., 1976, 104: 1551-1556.
    20. Janssen, P.A.E.M, Lionello, P., Reistad, M. and Hollingsworth, A. Hindcasts and data assimilation studies with the WAM model during the Seasat period, J. Geophys. Res. , 1989,94: 973-993.
    21. Jarvinen, H., Thepant, J. N. and Courtier, P. Quasi-continuous variational data assimilation, ECMWF Research Dept. Tech. Memo. 210, 1992.
    22. Jones, R. H. Optimal estimation of initial conditions for numerical prediction, J. Atmos. Sci., 1965, 22:658-663.
    23. Kalman, R. E. A new approach to linear filtering and prediction problems, Transaction of the ASME, Journal of Basic Engineering, 1960, 82D: 34-45.
    
    
    24. Kalman, R. E. and Bucy, R. New results in linear filtering and prediction, Transaction of the ASME, Journal of Basic Engineering, 1961, 83D: 95-108.
    25. Komen, G. J. Introduction to wave models and assimilation of satellite data in wave models, The Use of Satellite Data in Climate Models, Proceedings of the Alpbach Conference, Eur. Space Agency Spec. Publ, 1985, ESA SP 224: 21-26.
    26. Komen, G. J., Cavaleri, L., Donelan, M. et al. Dynamics and modelling of ocean waves. 1994, Cambridge University Press, pp532.
    27. Lacarra, J. F. and Talagrand, 0. Short-range evolution of small perturbations in a barotropic model, Tellus, 1988, 40A: 81-95.
    28. Le Dimet, F. X. and Talagrand, O. Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects, Tellus, 1986, 38A: 97-110.
    29. Levis, J. and Derber, J. C. The use of adjoint equations to solve a variational adjustment problem with advective constrainsts, Tellus, 1985, 37A: 309-327.
    30. Lionello, P., Gunther, H. and Janssen, P.A.E.M. Assimilation of altimeter data in a global third-generation wave model, J. Geophys. Res., 1992,97: 14453-14474.
    31. Lorenc, A. Development of an operational variational assimilation scheme, World Meteorological Organization. The 2nd international symposium on assimilation of observations in meteorology and oceanography, 13-17 March 1995, Tokyo, Japan, 415-420.
    32. Marchuk, G. I. Numerical solution of the problems of the dynamics of the atmosphere and the ocean (In Russian). Gidrometeoizdat, Leningrad, U.S.S.R. 1974.
    33. Navon, I. M., Zou, X., Derber, J. C. and Sela, J. Variational data assimilation with an adiabatic version of the NMC spectral model, Mon. Wea. Rev., 1992, 120: 1433-1446.
    34. Parrish, D. F. and Derber, J. C. The National Meteorological Center's spectral statistical interpolation analysis system, Mon. Wea. Rev., 1992, 120: 1747-1763.
    35. Pennenko, V. V. and Obraztsov, N. N. A variational initialization method for the fields of the meteorological elements (English translation), Soviet Meteorol. Hydrol., 1976,11: 1-11.
    
    
    36. Polavarapu, S., Tanguay, M., Menard, R. and Staniforth, A. The tangent linear model for semi-Lagrangian schemes: linearing the process of interpolation, Tellus, 1996, 48A: 74-95.
    37. Rabier, F., Mahfouf, J. F. and Fisher, M. Recent experimentation on 4D-Var and first results from a simplified Kalman Filter, ECMWF Research Dept. Tech. Memo. 240 1997.
    38. Ramamurthy, M. and Carr, F. Four-dimensional data assimilation in the Monsoon region. Part I: Experiments with wind data, Man. Wea. Rev., 1987, 115: 1678-1706.
    39. Sasaki, Y. Some basic formalisms in numerical variational analysis. Man. Weather Rev. 1970,98:875-883.
    40. Talagrand, O. Assimilation of observations, an introduction, Journal of the Meteorological Society of Japan, 1997, 75(1B): 191-209.
    41. Talagrand, O. and Courtier, P. Variational assimilation of meteorological observations with the adjoint vorticity equation I: Theory, Q. J. R. Meteorol. Soc., 1987,113: 1311-1328.
    42. Thacker, W. C. Fitting models to inadequate data by enforcing spatial and temporal smoothness, J. Geophys. Res., 1988,93: 10655-10665.
    43. Thomas, J. P. Retrieval of energy spectra from measured data for assimilation into a wave model, Q. J. R. Meteorol. Soc., 1988,114: 781-800.
    44. Thompson, P. D. Reduction of analysis error through constraints of dynamical consistency, J. Appl. Meteorol., 1969,8: 738-742.
    45. WAMDI Group. The WAM model-A third generation ocean wave prediction model., J.phys. Oceanogr., 1988,18: 1775-1810.
    46. Wergen, W. The effect of model errors in variational assimilation, Tellus, 1992, 44A: 297-313.
    47. Yang Yongzeng. A continuous wave assimilation prediction model based on the LAGFD-WAM Wave Model, to appear.
    48. Yang Yongzeng, Qiao Fangli and Pan Zengdi. Wave assimilation and numerical
    
     prediction,Chinese Journal of Oceanography and Limnology,2000,4:301-308.
    49. Yang Yongzeng,Yuan Yeli,Zhang Jie and Qiao Fangli,Wave data assimilation using the adjoint variational method in the LAGFD-WAM Wave Numerical Model, Proceedings of the International Conference On Marine Disasters: Forecast and Reduction,China Ocean Press,1998,77-82.
    50. Zupanski,M.and Zupanski,D.Recent developments of the NMC’S regional four-dimensional variational data assimilation system,World Meteorological Organization.The 2~nd international symposium on assimilation of observations in meteorology and oceanography,13-17 March 1995,Tokyo,Japan,367-372.
    51. 邱崇践、丑纪范,预报模式识别的扰动方法,大气科学,1988,12(3) ,225-232。
    52. 文圣常、余宙文,海浪理论与计算原理,1985,科学出版社。
    53. 袁业立、潘增弟、华锋、孙乐涛,LAGFD-WAM 海浪数值模式 I:基本物理模 型,海洋学报,1992,14 (5) ,1-7。
    54. 袁业立、潘增弟、华锋、孙乐涛,LAGFD-WAM 海浪数值模式Ⅱ:区域性特征 线嵌入格式及其应用,海洋学报,1992,14 (6) ,12-24。
    55. 袁业立,海波高频谱形式的 SAR 影象分析基础,海洋与湖沼,1997,28(增刊), 1-5。
    56. 冯士笮、孙文心,物理海洋数值计算,1992,河南科学技术出版社。
    57. 孙孚、丁平兴,海浪能量的外观分布,中国科学(B 辑),1994,24 (2) ,209-215。
    58. 张玉玲、吴辉碇、王晓林,数值天气预报,1986,科学出版社。
    59. 王赐震、于迎、徐启春,海洋预报中的初值形成问题,海洋湖沼通报,1993,2, 1-5。
    60. 王跃山,数据同化-它的缘起、含义和主要方法,海洋预报,1999,16 (1) , 11-20。
    61. 王跃山、黄润恒,用插入同化法将高度计观测同化到海浪模式 WAM 中,海洋预 报,1999,16 (2) ,1-17。
    62. 王东晓、吴国雄、朱江、兰健,大洋风生环流观测优化的伴随分析,中国科学(D 辑),2000,30 (1) ,97-106。
    
    
    63. 于卫东、袁业立、潘增弟、华锋,关于第三代海浪模式控制方程的导出,海洋与 湖沼,1997,28(增刊),13-20。
    64. 沈桐立、陈子通等,有限区域资料的同化,台风、暴雨业务数值预报方法和技术 研究,1996,气象出版社,377-396。
    65. 侯一筠、楼顺里等,浅水非线性波的演化方程,科学通报,1998,43(3) ,305-308。
    66. 高山红、吴增茂、谢红琴,Kalman 滤波在气象数据同化中的发展与应用,地球 科学进展,2000,15 (5) ,571-575。
    67. 尹宝树、王涛、范顺庭, YW-SWP 海浪数值预报模式及其应用,海洋与湖沼, 1994, 25 (3) , 350-353。
    68. 陈孔沫,一种新的台风风场分布模式,海洋科学,1990,3,1-2。
    69. 陈孔沫,新的台风风场计算方法,海洋预报,1992,9 (3) ,60-64。
    7O.齐义泉、施平、毛庆文,高度计遥感分析南海北部的海浪特征,海洋学报,1998, 20 (2) , 2O-26。
    71. 俞小鼎,集合预报,天气预报技术的若干进展,1998,气象出版社,337-364。
    72. 龚建东、李维京、丑纪范,集合预报最优初值形成的四维变分同化方法,科学通 报,1999,44(1O),1113-1116。
    73. 张宝琳、袁国兴等,偏微分方程并行有限差分方法,1994,科学出版社。
    74. 颜宏,大规模并行计算-21 世纪气象数值模拟与预报的未来,数值天气预报中的 若于新技术,1995,气象出版社,295-306。
    75. 王崇皓、郭庆雪,大气科学问题并行计算方法,数值天气预报中的若干新技术, 1995,气象出版社,307-333。
    76. 杨学胜、宋君强等,中期预报模式 T63 在银河-2 巨型机上的并行计算,台风、暴 雨业务数值预报方法和技术研究,1996,气象出版社,216-222。
    77. 乔方利、杨永增,共轭变分资料同化方法及海洋大气模型数值试验Ⅱ,模式参数 优化,海洋与湖沼,1997,28(增刊),43-48。
    78. 张杰、潘增弟、杨永增,海洋动力数据同化的一种半离散处理方法,海洋与湖沼, 1997,28(增刊),32-35。
    79. 杨永增、乔方利、潘增弟、张杰,共轭变分资料同化方法及海洋大气模型数值试验Ⅰ.初值优化,海洋与湖沼,1997,28(增刊),36-42。
    
    
    80. 杨永增、张杰, SAR 资料的海浪方向谱同化研究,卫星微波遥感技术研讨会论 文集,1998,206-211。
    81. 杨永增、张杰、冷秀华,海浪外观波数谱与谱宽度最优确定,黄渤海海洋,1999, 17 (3) , 26-30。
    82. 杨永增、袁业立、张杰,海浪有效波高资料同化与试验分析,水动力学研究与进 展 (A 辑),1999,14 (4B),181-188。
    83. 杨永增,海浪初始谱误差演变初步分析,海洋预报,2000,17 (4) ,21-27。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700