从癸二酸工业废水中回收硫酸钠的工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
癸二酸是一种重要的有机化工原料,广泛应用于生产聚酰胺工程塑料、耐高温润滑油、耐寒增塑剂、树脂等方面。在目前的工业生产工艺中,每生产1吨癸二酸,需排放约30吨废水,废水中含有的主要成分为硫酸钠、苯酚、癸二酸以及其它一些脂肪酸等。这样的废水直接排放,不仅污染环境,而且也是资源的浪费。因此,本文采用蒸发和吸附相结合的工艺处理废水,以回收其中的硫酸钠作为本文的研究重点,为工业生产提供基础工艺数据。
     通过实验确定了废水初步处理过程是每1000mL蒸发800mL,浓缩液加硫酸调节为酸性,使pH=2,降温至35℃左右,过滤除去析出的粗癸二酸杂质,得到含硫酸钠的滤液,其COD值约为4800mg/L,溶液颜色发黄,从此滤液可得纯度为98.1%的无水硫酸钠产品,但是产品颜色发黄,有异味,影响质量,所以还要进行后续处理。
     酸析滤液后续处理比较了Fenton试剂氧化处理、活性炭吸附和NKA-2树脂吸附的效果。采用Fenton氧化法处理酸析滤液,考察反应温度、反应时间、H2O2:FeSO4·7H2O摩尔比和30%H2O2用量对COD去除率的影响,确定最佳操作条件。吸附法考察了静态吸附影响因素:吸附交换时间、温度、溶液pH值和吸附剂用量对COD去除率的影响。通过单因素影响实验,确定了各个影响因素的最佳条件。以活性炭静态吸附处理的效果最好,其最佳条件为:吸附时间:2h;温度:40℃;溶液pH值:2;活性炭用量:10g/150mL酸析滤液。酸析滤液经过活性炭吸附处理以后COD值为830mg/L,COD去除率为83%。从此滤液中可得纯度为99.3%的无水硫酸钠产品,并且所得产品颜色白,无异味,收率为90.0%。动态吸附考察流速的影响,得到低流速有利于动态吸附。
     利用静态吸附实验测定了平衡浓度和平衡吸附交换量,作出吸附等温线,采用BET模型、Freundlich模型和LangmuirFreundlich模型对等温平衡吸附数据进行拟合,得到了相关模型的参数,其中BET模型最为准确。
The sebacic acid is a kind of important organic chemical material which can be widely used to produce the polyamide plastics, high temperature lubricant, cold plasticizer, resin and so on. About 30 tons wastewater will be discharged for each ton production of sebacic acid in the present industrial process. What the wastewater contain are sodium sulphate, phenol, sebacic acid and other fatty acids. The emission of this kind of wastewater not only pollutes the environment, but also loses the valuable resources which are contained in the wastewater. Therefore, evaporation and adsorption processes were used to treat the wastewater in order to recover sodium sulphate in the wastewater. The research result can provide the basic data for the industrial process in the future.
     Preliminary wastewater treatment process was determined through experiments. After 800 mL water was evaporated from per 1000 mL wastewater, sulfuric acid was added to adjust the pH of the concentrated solution to 2. Then the concentrated solution was cooled to around 35℃, and filtered to remove the precipitates of crude sebacic acid impurities. The filtrate has 4800 mg/L COD and yellow color. The anhydrous sodium sulfhate obtained from this filtrate has purity of 98.1%, but it is not qualified because of its yellow color and odour. Therefore, it is necessary to have further treatment.
     The results of Fenton reagent oxidation, the activated carbon adsorption and NKA-2 resin adsorption were compared in the follow-up handling of the filtrate. The optimum operating conditions were obtained after detecting the effect of reaction temperature, reaction time, H2O2:FeSO4·7H2O mol ratio and 30%H2O2 consumption on the COD removal in the Fenton oxidation process. In the adsorption experiment, the effect of the adsorption time, temperature, pH and the amount of adsorbent on the COD removal was detected by static adsorption experiment. The optimum static adsorption conditions were determined through single factor experiments. Activated carbon adsoption shows the best result. The optimum conditions are as follows: adsorption time: 2 h; temperature: 40℃; pH value: 2; activated carbon dosage: 10g/150mL filtrate. After activated carbon adsorption treatment, the COD of the filtrate was decreased to 830 mg/L, and the removal rate of COD is 83%. The purity of the anhydrous sodium sulphate recovered from this filtrate can reach 99.3%. The product has no smell, white color, and the yield is 90.0%. In the dynamic adsorption process, the effect of flow rate on the COD removal was studied, the conclusion shows that low flow rate is conducive to dynamic adsorption.
     The equilibrium concentration and equalibrium adsorption capacity was determined through static adsorption experiments. The models of BET, Freundlich and LangmuirFreundlich are applied to regress parameters of models, and the BET model shows the best result.
引文
[1]汪多仁,癸二酸的生产与尼龙系列产品开发,塑料开发,1998,24(1):873~877
    [2] Shende P G, Jadhav A B, Dabhade S B. Polyesteramide resins from dehydrated castor oil and various dibasic acids. Pigment and Resin Technology, 2002, 31(5): 310~314
    [3] Abdel R M E. Synthesis and characterization of some degradable polyesters. Materials Research Innovations, 2006, 10: 54~57
    [4] Tang J C, Zhang Z G, Song Z F, et al. Synthesis and characterization of elastic aliphatic polyesters from sebacic acid, glycol and glycerol. European Polymer, 2006, 42: 3360~3366
    [5]朱银惠,李海燕,朱银菊,癸二酸的生产方法及应用,河北化工,2005,24:5~7
    [6] Mukherjea R N. Some new uses of castor oil in chemical industries. Journal of the Institution of Engineers (India), 1989, 69(2): 64~67
    [7] Yamataka K, Kazunori Y, Matsuoka T, et al. Process for producing sebacic acid. US 4237317,1980-12-02
    [8] Ito K, Dogane I, Tanaka K. New process for sebacic acid. Hydrocarbon Processing, 1985, 64 (10): 83~84
    [9] Tanaka K, Shioda K. Production of sebacic acid. JP 62048645, 1987-03-03
    [10]王先会,王金波,李振乾,由生产癸二酸的副产物制备脂肪酸的工艺方法,中国专利,97101671.2,2000-1-19
    [11]朱占宇,蓖麻油制癸二酸反应历程探讨,天津化工,1991(3):26~31
    [12] Vasishtha A K,Trivedi R K, Das G. Sebacic acid and 2-octanol from castor oil. JAOCS, 1990, 67(5): 333~337
    [13]谢良芝,癸二酸生产中含甲酚废水治理方法的介绍,天津化工,1990,8:33~36
    [14]柯伟卿,癸二酸生产中甲酚废水治理方法的进展,化工环保,1996,16:80~84
    [15]惠博然,关于从蓖麻油生产癸二酸的废水的综合利用,轻工环保,1989,119(1):21~22
    [16]陈美玲,含酚废水处理技术的研究,现状及发展趋势,化学工程师,2003,95(2):48~51
    [17]陈国树,环境分析化学,南昌:江西科技出版社,1988
    [18]王莉莉,环境污染与防治,1995,17(5):29
    [19]张伟,生物法处理含酚废水的研究,油气田环境保护,1999,9(2):23~25
    [20]郭家兴,用蓖麻油酸自癸二酸生产废水中萃取甲酚时的影响因素及萃取条件的优化,日用化学工业,1991,4:16~18
    [21] R.E凯斯廷,合成聚合物膜,北京:化学工业出版杜,1992
    [22]肖庚富,王家玲,曝气浸没固定生物膜法及其在污水处理中的应用,环境科学与技术,1993,63(4):1~5
    [23] Biruk S.et al. Technol Segregated characterization of recombinant expoxide hydrolase synthesis via the baculovirus/insect cell expression system. Adsorpt. Sci, 1989 ,6(4):l82
    [24] RADKE C J, PRAUSNITZ T M. Adsorption of organic solutes from dilute aqueous solution on GAC. Ind Eng Chem Fund, 1972,11(3):445~451
    [25]国家环保局,化学工业废水处理,北京:中国环境科学出版社,1991
    [26]王秋泉,郭晓明,郭建梅等,新型树脂XF-2处理和回收含酚废水中酚的研究,沈阳化工学院学报,1995,9(2):121~127
    [27]熊忠,林衍,Fenton试剂在废水处理中的应用,广州环境科学,2002,17(3) :1~4
    [28]王春敏,张捷,类Fenton试剂及其在废水处理中的应用,山西化工,2006,26(2):40~42
    [29]张玲玲,李亚峰,孙明等,Fenton氧化法处理废水的机理及应用,辽宁化工,2004,33(12):734~737
    [30]丁恒如,吴春华,龚云峰等,工业用水处理工程,北京:清华大学出版社,2005,158~166
    [31]王宜辰,Freundlich吸附等温式的理论推导,烟台师范学院学报(自然科学版),1993,9(4):77
    [32] G.乔巴诺格劳斯等,废水工程处理及回用(第四版)(史忠义等),北京:化学工业出版社,2004,828~829
    [33]张颖,癸二酸生产废水处理工艺的研究,硕士学位论文,天津大学,2007
    [34]于罗庚,双效蒸发回收废水中的硫酸钠,中国医药工业杂志,1992,23(6):274~278
    [35]中华人民共和国国家质量监督检验检疫总局,GB/T 6009-2003,工业无水硫酸钠,北京:中国标准出版社,2003-8-25
    [36]陈传好,谢波,任源等,Fenton试剂处理废水中各影响因子的作用机制,环境科学,2000,21(3):93~96
    [37]杨新萍,王世和,Fenton试剂处理有机氯农药废水的研究,环境污染治理技术与设备,2006,7(6):60~64
    [38]何莼,徐科峰,奚红霞等,均相和非均相Fenton型催化剂催化氧化含酚废水,华南理工大学学报(自然科学版),2003,31(5):51~54
    [39]程丽华,黄君礼,王丽等,Fenton试剂的特性及其在废水处理中的应用,化学工程师,2001,84(3):24~25
    [40]李国柱,张凤宝,张国亮等,用氧化-絮凝法处理DSD酸还原废水的实验室及工业实验,工业水处理,25(9):30~33
    [41]张婷婷,张爱丽,周集体,活性炭吸附分离-生物再生法处理高盐苯胺废水,化工环保,2006,26(2):107~110
    [42]梁存珍,王东升,桑义敏等,粉末炭去除饮用水中土霉味物质的影响因素研究,中国给水排水,2007,23(9):15~18
    [43]张海珍,大孔树脂对邻苯二甲酸的吸附研究,广州环境科学,2006,21(2):23~26
    [44]许月卿,赵仁兴,白天雄等,大孔吸附树脂处理含磺胺废水的研究,离子交换与吸附,2003,19(2):163~168
    [45]龙超,张全兴,许昭怡等,树脂吸附法处理高浓度DSD酸氧化工序生产废水的研究,离子交换与吸附,2002,18(1):45~50
    [46]许磊,徐敏,刘晓勤等,水中丙酮在活性炭上吸附平衡与动力学研究,南京工业大学学报,2003,25(3):45~48
    [47]许保玖,龙腾锐,当代给水与废水处理原理(第二版),北京:高等教育出版社,2000,126~133
    [48]陆启玉,油脂化工产品生产技术,北京:化学工业出版社,2004,180~181
    [49]黄文强,吸附分离材料,北京:化学工业出版社,2005,48~51
    [50] W.韦斯利·艾肯费尔德(小),工业水污染控制(陈忠明,李赛君等),北京:化学工业出版社,2004,259~260
    [51] RAUCQ DIDIER, POURCELLY GERALD, GAVACH CLAUDE. Production of sulphuric acid and caustic soda from sodium sulphate by electromembrane processes. Comparison between electro-electrodialysis and electrodialysis on bipolar membrane. Desalination,1993,91(2):163~175
    [52]马承愚,彭英利,高浓度难降解有机废水的治理与控制,北京:化学工业出版社,2007,50~55
    [53]王玉珰,计算H2O2含量的经验公式,理化检验-化学分册,2001,37(2):86~87
    [54]《供水水文地质手册》编写组,供水水文地质手册第二册水文地质计算,北京:地质出版社,1977,854,860

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700