生物质基平台化合物的绿色有机合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于化石资源的大规模使用,随之引起的全球变暖、大气污染和能源危机等问题已经成为全世界关注的焦点。发展绿色可再生能源是未来发展的主要方向。生物质作为一类重要的可再生资源,其巨大应用潜力已经开始显现。从生物质资源制备化学品或者燃料已经成为各国解决能源危机的一个重要途径。其中,木质纤维素基生物质由于其产量大分布广等特点受到广泛关注,其发展和利用不仅解决了生物能源与人争粮,与粮争地的问题,还体现了“变废为宝”和环境保护等发展意识。目前,木质纤维素类原料通过水解途径可以高选择性地获得可溶性的糖类分子,进而可以转化成为用途广泛的平台分子,如5-羟甲基糠醛和乙酰丙酸等。再以这些平台分子为原料,通过基元反应的转化可以制备更多高附加值化学品,以丰富生物质基化学品产品库。
     平台分子5-羟甲基糠醛和乙酰丙酸等分子,可以通过不同基元反应制备平台分子下游化学品(毗咯烷酮,脱羰产品)和液体燃料(Y-戊内酯,2,5-二甲基呋喃和长链烷烃等)。但是目前这些转化还存在诸多待解决的问题,如催化中心金属昂贵、反应条件苛刻、产物选择性差,催化体系过于复杂和反应机理不明等。因此,发展更多高效温和催化体系来解决上述问题,为这些基元反应提供新的方法和思路显得尤为必要。基于此,本论文主要发展了多种金属中心催化体系,实现对产物分布的选择性调控,从而获得最优的反应转化参数,实现温和条件下的绿色高效转化过程。论文主要分为以下几个部分:
     在第1章中,我们主要介绍了目前生物质转化制备燃料的发展状况以及平台分子的概念。接着详细了综述了关于平台化合物中5-羟甲基糠醛和乙酰丙酸两个分子的合成的最新研究进展。同时,介绍了两个平台分子各自转化成为化学品或者燃料分子的最具代表性的研究进展。
     第2章介绍了乙酰丙酸酯类化合物通过氢转移方法制备γ,-戊内酯。利用高活性的骨架镍催化剂,第一次实现了室温条件下乙酰丙酸酯类到γ-戊内酯的定量转化。反应研究了不同金属中心负载型催化剂在异丙醇溶剂中不同氢转移活性比较。考察了不同一级醇和二级醇类对于氢转移效率的影响。提出了一条从生物质基糠醇、HMF和果糖三种分子一锅两步制备γ-戊内酯路线。
     第3章介绍了乙酰丙酸和甲酸混合液的还原胺化制备吡咯烷酮的转化过程。反应在无溶剂情况下,将乙酰丙酸、甲酸和胺类混合液在Ru系催化剂和大位阻膦配体催化下,通过原位分解甲酸产生H2,实现了乙酰丙酸和胺类的还原胺化过程,获得了最高94%的吡咯烷酮收率。考虑到糖类水解液是乙酰丙酸和甲酸的混合液,因此还考察了水相条件下不同胺类在催化体系中的兼容性,获得了一批重要的吡咯烷酮分子。最后研究了从真实葡萄糖水解液出发制备吡咯烷酮的转化过程,为生物质碳水化合物制备高附加值化学品吡咯烷酮提供了重要的方法。
     第4章介绍了平台分子5-羟甲基糠醛选择性脱羰方法。反应使用Pd负载型催化剂,实现了HMF选择性脱除羰基的过程,获得了96%的目标产物产率。反应考察了不同有机溶剂和催化剂载体对于HMF分子的稳定性的影响。同时,研究了不同载体和不同方法制备的Pd催化剂活性。发现分子筛对于反应体系的除水干燥有着重要作用。最后研究了其他生物质基醛类分子的脱羰反应,拓展了反应应用范围。
     第5章研究了5-羟甲基糠醛氢解制备燃料分子2,5-二甲基呋喃的反应。合成了双功能催化剂Ni-W2C/AC并用于HMF分子的氢解反应,在较为温和的条件下,获得96%的2,5-二甲基呋喃产品产率。对催化剂进行结构表征,进一步了解反应催化活性组分。对反应跟踪和中间体捕捉,发现反应经过5-甲基糠醛中间体,之后再进一步氢解获得DMF。同时,研究了催化剂Ni和W2C颗粒对反应所起作用,发现Ni组分主要实现醛基加氢,而W2C组分主要以Lewis酸作用协助发生氢解反应。
     第6章研究了生物质基醛类分子经过增碳反应制备高碳液体燃料的转化。反应以五碳糖糠醛为模型物,利用频哪醇偶联反应,在金属还原剂的条件下实现了糠醛自身的增碳偶联,从而获得了C10液体燃料的前体。反应考察了不同还原体系对偶联产物选择性的影响,获得了最高98%的C10偶联产物的产率。同时,考察了六碳糖分子5-甲基糠醛和来源于木质素的芳香醛类分子的增碳反应,获得了相应的C12和C14燃料前体。最后,利用Pt/C和固体酸组合催化剂,实现了这些燃料前体到高碳液体燃料的制备,合成了C10-C14的饱和烷烃分子,为生物质基平台分子制备高碳液体燃料提供了新的思路。
     第7章对全文进行了总结和展望。
     综上所述,本文主要以平台分子为研究对象,采用不同催化转化手段实现了平台分子到不同化学品或者燃料分子的绿色转化过程,研究了不同催化剂对于反应活性和选择性的影响规律。通过新催化体系的发展拓展了生物质基平台分子的转化和应用。
Due to the massive use of fossil fuels, global warming, air pollution and energy crisis has become an important issue of worldwide concern. The development of green sustainable energy system becomes an important issue in the future. Biomass, nature products from sunlight and CO2, has showed its potential of being renewable resources. Preparation of chemicals and fuels from biomass has become an important way to solve the energy crisis. Due to the large production and wild distribution, lignocellulosic biomass receive a lot of concern in these years, avoiding the previous problems that biofuels from food would compete with people about the food, and compete with food about the land. Besides, the utilization of biomass can also contribute to the environment protection and make the waste into treasure. Currently, lignocellulosic biomass can be converted to soluble sugars by hydrolysis, and subsequently converted into platform molecules, such as5-hydroxymethylfurfural and levulinic acid and so on. These platforms molecules can be transformed into more high value-added chemicals through elementary reactions, which will greatly enriched biomass-based chemicals.
     The platform molecule5-(hydroxymethyl)furfural (HMF) and levulinic acid (LA) can be converted into different chemicals (pyrrolidone decarbonylation products) and fuels (y-valerolactone,2,5-dimethyl furan and long-chain alkanes) over different catalysts. However, many problems about the conversion are raised, such as the harsh reaction conditions, poor product selectivity, complex reaction systems and reaction mechanism. Thus, it is essential to develop more efficient and mild catalytic system to improve the reaction efficiency and make the conversion greener, offering more choice for the industrial production. Based on this, the main work involeves:
     In the first chapter, we introduced the current development of biofuels from biomass and the platform molecules derived from biomass. Then, we reviewed the latest development of the preparation methods and representative application examples of platform molecules HMF and LA.
     In the second chapter, we reported a new catalytic transfor hydrogenation process for the conversion of LA to GVL at room temperature. The use of highly active Raney Ni catalysts led to a quantitative conversion of LA to GVL. Various catalysts and hydrogen sources (primary and secondary alcohols) were evaluated during the reaction. Finally, a one pot two steps reaction from furfuralcohol, HMF and fructose were provided.
     In the third chapter, we present a new route about the conversion of levulinic acid and formic acid derived from acidic dehydration of biomass-based carbohydrates, to pyrrolidines over different homogeneous ruthenium catalysts with phosphine ligands under mild conditions, achieving a highest94%yield. Various amines were tested in the optimized conditions and got a small library of pyrrolidines with different function groups. The production of pyrrolidines from glucose was carried out on laboratory-scale and achieved34%yield of product.
     In the forth chapter, we present a selective decarbonylation method of HMF to the corresponding product. Supported Pd catalysts were prepared and achieved a highest96%product yield. The catalysts with different supports and preparation methods gave different performances toward decarbonylation reactions. The stability of HMF was evaluated in the presence of different solvents and supported materials at higher temperatures. Finally, the catalytic system can be successfully applied to other aldehydes derived from biomass, achieving excellent results.
     In the fifth chapter, We propose a non-noble bimetallic catalyst based on nickel-tungsten carbide for the conversion of the platform molecules5-(hydroxymethyl)furfural into the liquidfuel molecule2,5-dimethylfuran (DMF). Different catalysts, metal ratios and reaction conditions have been tested and give rise to a96%yield of DMF. The catalysts have been characterized and are discussed. The reaction mechanism is also explored through capture of reaction intermediates. The analysis of the reaction mixture over different catalysts is presented and helps to understand the role of nickel and tungsten carbideduring the reaction.
     In the sixth chapter, we describe a new carburization reaction of biomass derived aldehydes to produce liquid fuels with8-14carbons. By constructing new C-C bonds, platform molecules condensed to fuel precursors through self-coupling over different metals. The fuel precursors with10-14carbons could be easily obtained though direct self-coupling of furfural,5-methyfurfural or aromatic aldehyde, the main components of lignocellulose, under mild conditions in water. After dehydration/hydrogenation, straight or branched alkanes with8-14carbons within diesel ranged fuels were obtained in moderate to high yield.
     In the last chapter, we present the summary and outlook.
     In conclusion, this thesis mainly focused on the conversion of biomass derived platform molecules into different chemicals and fuels through different catalytic systems, the performances of different catalysts with different activities and the influence on the products were studied and explored. Through the development of new catalytic systems, more applications of platform molecule will be present.
引文
[I]Lai L, Zhang Y. The Effect of Imidazolium Ionic Liquid on the Dehydration of Fructose to 5-Hydroxymethylfurfural, and a Room Temperature Catalytic System[J]. ChemSusChem, 2010,3(11):1257-1259.
    [2]Cherubini F. The biorefinery concept:using biomass instead of oil for producing energy and chemicals[J]. Energy Conversion and Management,2010,51(7):1412-1421.
    [3]Fatih Demirbas M. Biorefineries for biofuel upgrading:a critical review[J]. Applied Energy, 2009,86:S151-S161.
    [4]Fernando S, Adhikari S, Chandrapal C, et al. Biorefineries:current status, challenges, and future direction[J]. Energy & Fuels,2006,20(4):1727-1737.
    [5]Melero J A, Iglesias J, Garcia A. Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges[J]. Energy & Environmental Science,2012,5(6): 7393-7420.
    [6]Okkerse C, Van Bekkum H. From fossil to green[J]. Green Chemistry,1999,1 (2):107-114.
    [7]Serrano-Ruiz J C, Dumesic J A. Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels[J]. Energy & Environmental Science,2011,4(1):83-99.
    [8]D(u|")rre P. Biobutanol:an attractive biofuel[J]. Biotechnology Journal,2007,2(12):1525-1534.
    [9]Ezeji T C, Qureshi N, Blaschek H P. Bioproduction of butanol from biomass:from genes to bioreactors[J]. Current opinion in biotechnology,2007,18(3):220-227.
    [10]Schirmer A, Rude M A, Li X, et al. Microbial biosynthesis of alkanes[J]. Science,2010, 329(5991):559-562.
    [11]Luque R. Algal biofuels:the eternal promise?[J]. Energy & Environmental Science,2010, 3(3):254-257.
    [12]Han J, Sun H, Ding Y, et al. Palladium-catalyzed decarboxylation of higher aliphatic esters: Towards a new protocol to the second generation biodiesel production[J]. Green Chemistry, 2010,12(3):463-467.
    [13]Kubickova I, Snare M, Er(a|")nen K, et al. Hydrocarbons for diesel fuel via decarboxylation of vegetable oils[J]. Catalysis Today,2005,106(1):197-200.
    [14]T. Werpy,G Petersen, Top Value Added Chemicals From Biomass Volume I, Results of Screening for Potential Candidates from Sugars and Synthesis Gas[M].2004.
    [15]Bozell J J, Petersen G R. Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's "top 10" revisited[J]. Green Chemistry,2010,12(4):539-554.
    [16]Qian X. Mechanisms and energetics for Bronsted acid-catalyzed glucose condensation, dehydration and isomerization reactions[J]. Topics in Catalysis,2012,55(3-4):218-226.
    [17]FM Kuster B, M Tebbens L. Analytical procedures for studying the dehydration of D-fructose[J]. Carbohydrate Research,1977,54(2):158-164.
    [18]Nakamura Y and Morikawa S. The Dehydration of D-Fructose to 5-Hydroxymethyl-2-furaldehyde[J]. Bulletin of the Chemical Society of Japan,1980,53 (12):3705-3706.
    [19]Musau R M, Munavu R M. The preparation of 5-hydroxymethyl-2-furaldehyde (HMF) from D-fructose in the presence of DMSO[J]. Biomass,1987,13(1):67-74.
    [20]Carlini C, Giuttari M, Maria Raspolli Galletti A, et al. Selective saccharides dehydration to 5-hydroxymethyl-2-furaldehyde by heterogeneous niobium catalysts[J]. Applied Catalysis A: General,1999,183(2):295-302.
    [21]Armaroli T, Busca G, Carlini C, et al. Acid sites characterization of niobium phosphate catalysts and their activity in fructose dehydration to 5-hydroxymethyl-2-furaldehyde[J]. Journal of Molecular Catalysis A:Chemical,2000,151(1):233-243.
    [22]Watanabe M, Aizawa Y, Iida T, et al. Catalytic glucose and fructose conversions with TiO2and ZrO2 in water at 473K:Relationship between reactivity and acid-base property determined by TPD measurement[J]. Applied Catalysis A:General,2005,295(2):150-156.
    [23]Qi X, Watanabe M, Aida T M, et al. Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating[J]. Green Chemistry,2008,10(7):799-805.
    [24]Li Y, Lu X, Yuan L, et al. Fructose decomposition kinetics in organic acids-enriched high temperature liquid water[J]. Biomass and Bioenergy,2009,33(9):1182-1187.
    [25]Lai L, Zhang Y. The Production of 5-Hydroxymethylfurfural from Fructose in Isopropyl Alcohol:A Green and Efficient System[J]. ChemSusChem,2011,4(12):1745-1748.
    [26]Tong X, Li Y. Efficient and Selective Dehydration of Fructose to 5-Hydroxymethylfurfural Catalyzed by Bronsted-Acidic Ionic Liquids[J]. ChemSusChem,2010,3(3):350-355.
    [27]Huang Z, Pan W, Zhou H, et al. Nafion-Resin-Modified Mesocellular Silica Foam Catalyst for 5-Hydroxymethylfurfural Production from D-Fructose[J]. ChemSusChem, 2013,6(6):1063-1069.
    [28]Rigal L, Gaset A, Gorrichon J P. Selective conversion of D-fructose to 5-hydroxymethyl-2-furancarboxaldehyde using a water-solvent-ion-exchange resin triphasic system[J]. Industrial & Engineering Chemistry Product Research and Development,1981,20(4): 719-721.
    [29]Roman-Leshkov Y, Chheda J N, Dumesic J A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose[J]. Science,2006,312(5782):1933-1937.
    [30]Yang F, Liu Q, Bai X, et al. Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst[J]. Bioresource technology,2011,102(3):3424-3429.
    [31]Brasholz M, Von Kaenel K, Hornung C H, et al. Highly efficient dehydration of carbohydrates to 5-(chloromethyl) furfural (CMF),5-(hydroxymethyl) furfural (HMF) and levulinic acid by biphasic continuous flow processing[J]. Green Chemistry,2011,13(5): 1114-1117.
    [32]McNeff C V, Nowlan D T, McNeff L C, et al. Continuous production of 5-hydroxymethylfurfural from simple and complex carbohydrates[J]. Applied Catalysis A: General,2010,384(1):65-69.
    [33]Lansalot-Matras C, Moreau C. Dehydration of fructose into 5-hydroxymethylfurfural in the presence of ionic liquids[J]. Catalysis Communications,2003,4(10):517-520.
    [34]Zhao H, Holladay J E, Brown H, et al. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural[J]. Science,2007,316(5831):1597-1600.
    [35]Yong G, Zhang Y, Ying J Y. Efficient Catalytic System for the Selective Production of 5-Hydroxymethylfurfural from Glucose and Fructose[J]. Angewandte Chemie,2008, 120(48):9485-9488.
    [36]Zhang Z, Wang Q, Xie H, et al. Catalytic Conversion of Carbohydrates into 5-Hydroxymethylfurfural by Germanium (IV) Chloride in Ionic Liquids[J]. ChemSusChem, 2011,4(1):131-138.
    [37]Xie H, Zhao Z K, Wang Q. Catalytic Conversion of Inulin and Fructose into 5-Hydroxymethylfurfural by Lignosulfonic Acid in Ionic Liquids[J]. ChemSusChem,2012, 5(5):901-905.
    [38]Qi X, Guo H, Li L, et al. Acid-Catalyzed Dehydration of Fructose into 5-Hydroxymethylfurfural by Cellulose-Derived Amorphous Carbon[J]. ChemSusChem, 2012,5(11):2215-2220.
    [39]Hu S, Zhang Z, Zhou Y, et al. Conversion of fructose to 5-hydroxymethylfurfural using ionic liquids prepared from renewable materials[J]. Green Chemistry,2008,10(12):1280-1283.
    [40]Vigier K D O, Benguerba A, Barrault J, et al. Conversion of fructose and inulin to 5-hydroxymethylfurfural in sustainable betaine hydrochloride-based media[J]. Green Chemistry,2012,14(2):285-289.
    [41]Seri K, Inoue Y, Ishida H, et al. Catalytic Activity of Lanthanide(Ⅲ) Ions for the Dehydration of Hexose to 5-Hydroxymethyl-2-furaldehyde in Water[J]. Bulletin of the Chemical Society of Japan,2001,74(6):1145-1150.
    [42]Ishida H, Seri K. Catalytic activity of lanthanoide (Ⅲ) ions for dehydration of D-glucose to 5-(hydroxymethyl) furfural[J]. Journal of Molecular Catalysis A:Chemical,1996,112(2): L163-L165.
    [43]Ishida H, Seri K. Catalytic activity of lanthanoide (Ⅲ) ions for dehydration of D-glucose to 5-(hydroxymethyl) furfural[J]. Journal of Molecular Catalysis A:Chemical,1996,112(2): L163-L165.
    [44]Dutta S, De S, Patra A K, et al. Microwave assisted rapid conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by mesoporous TiO2 nanoparticles[J]. Applied Catalysis A:General,2011,409:133-139.
    [45]Nakajima K, Baba Y, Noma R, et al. Nb2O5 nH2O as a heterogeneous catalyst with water-tolerant Lewis acid sites[J]. Journal of the American Chemical Society,2011,133(12): 4224-4227.
    [46]Kitano M, Nakajima K, Kondo J N, et al. Protonated titanate nanotubes as solid acid catalyst[J]. Journal of the American Chemical Society,2010,132(19):6622-6623.
    [47]Yan H, Yang Y, Tong D, et al. Catalytic conversion of glucose to 5-hydroxymethylfurfural over SO42-/ZrO2 and SO42-/ZrO2-Al2O3 solid acid catalysts[J]. Catalysis Communications, 2009,10(11):1558-1563.
    [48]Takagaki A, Ohara M, Nishimura S, et al. A one-pot reaction for biorefinery:combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides[J]. Chemical Communications,2009 (41):6276-6278.
    [49]Yang Y, Hu C, Abu-Omar M M. Conversion of glucose into furans in the presence of A1C13 in an ethanol-water solvent system[J]. Bioresource technology,2012,116:190-194.
    [50]Hansen T S, Mielby J, Riisager A. Synergy of boric acid and added salts in the catalytic dehydration of hexoses to 5-hydroxymethylfurfural in water[J]. Green chemistry,2011,13(1): 109-114.
    [51]Fan C, Guan H, Zhang H, et al. Conversion of fructose and glucose into 5-hydroxymethylfurfural catalyzed by a solid heteropolyacid salt[J]. Biomass and Bioenergy, 2011,35(7):2659-2665.
    [52]Binder J B, Raines R T. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals[J]. Journal of the American Chemical Society,2009,131(5): 1979-1985.
    [53]Sievers C, Musin I, Marzialetti T, et al. Acid-catalyzed conversion of sugars and furfurals in an ionic-liquid phase[J]. ChemSusChem,2009,2(7):665-671.
    [54]Li C, Zhang Z, Zhao Z K. Direct conversion of glucose and cellulose to 5-hydroxymethylfurfural in ionic liquid under microwave irradiation[J]. Tetrahedron Letters, 2009,50(38):5403-5405.
    [55]Hu S, Zhang Z, Song J, et al. Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnC14 in an ionic liquid[J]. Green Chemistry,2009, 11(11):1746-1749.
    [56]Khokhlova E A, Kachala V V, Ananikov V P. The First Molecular Level Monitoring of Carbohydrate Conversion to 5-Hydroxymethylfurfural in Ionic Liquids. B2O3-An Efficient Dual-Function Metal-Free Promoter for Environmentally Benign Applications[J]. ChemSusChem,2012,5(4):783-789.
    [57]Liu D D J, Chen E Y X. Ubiquitous aluminum alkyls and alkoxides as effective catalysts for glucose to HMF conversion in ionic liquids[J]. Applied Catalysis A:General,2012,435: 78-85.
    [58]He J, Zhang Y, Chen E Y X. Chromium (0) Nanoparticles as Effective Catalyst for the Conversion of Glucose into 5-Hydroxymethylfurfural [J]. ChemSusChem,2013,6(1): 61-64.
    [59]Zhang Z, Zhao Z K. Production of 5-hydroxymethylfurfural from glucose catalyzed by hydroxyapatite supported chromium chloride[J], Bioresource technology,2011,102(4): 3970-3972.
    [60]Takagaki A, Ohara M, Nishimura S, et al. A one-pot reaction for biorefinery:combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides[J]. Chemical Communications,2009 (41):6276-6278.
    [61]Despax S, Estrine B, Hoffmann N, et al. Isomerization of d-glucose into d-fructose with a heterogeneous catalyst in organic solvents[J]. Catalysis Communications,2013,39:35-38.
    [62]Moliner M, Roman-Leshkov Y, Davis M E. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water[J]. Proceedings of the National Academy of Sciences,2010,107(14):6164-6168.
    [63]Nikolla E, Roman-Leshkov Y, Moliner M, et al. "One-Pot" synthesis of 5-(hydroxymethyl) furfural from carbohydrates using tin-beta zeolite[J]. Acs Catalysis,2011,1(4):408-410.
    [64]Pagan-Torres Y J, Wang T, Gallo J M R, et al. Production of 5-hydroxymethylfurfural from glucose using a combination of Lewis and Bronsted acid catalysts in water in a biphasic reactor with an alkylphenol solvent[J]. Acs Catalysis,2012,2(6):930-934.
    [65]Deng T, Cui X, Qi Y, et al. Conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by ZnCl2 in water[J]. Chemical Communications,2012,48(44):5494-5496.
    [66]Moreau C, Belgacem M N, Gandini A. Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers[J]. Topics in Catalysis, 2004,27(1-4):11-30.
    [67]Vinke P, Van Dam H E, Van Bekkum H. Platinum catalyzed oxidation of 5-hydroxymethylfurfural[J]. Studies in surface science and catalysis,1990,55:147-158.
    [68]Vinke P, Van der Poel W, Van Bekkum H. On the oxygen tolerance of noble metal catalysts in liquid phase alcohol oxidations the influence of the support on catalyst deactivation[J]. Studies in Surface Science and Catalysis,1991,59:385-394.
    [69]Lilga M A, Hallen R T, Gray M. Production of oxidized derivatives of 5-hydroxymethylfurfural (HMF)[J]. Topics in Catalysis,2010,53(15-18):1264-1269.
    [70]Gorbanev Y Y, Klitgaard S K, Woodley J M, et al. Gold-Catalyzed Aerobic Oxidation of 5-Hydroxymethylfurfural in Water at Ambient Temperature[J]. ChemSusChem,2009,2(7): 672-675.
    [71]Casanova O, Iborra S, Corma A. Biomass into Chemicals:Aerobic Oxidation of 5-Hydroxymethyl-2-furfural into 2,5-Furandicarboxylic Acid with Gold Nanoparticle Catalysts[J]. ChemSusChem,2009,2(12):1138-1144.
    [72]Taarning E, Nielsen I S, Egeblad K, et al. Chemicals from renewables:aerobic oxidation of furfural and hydroxymethylfurfural over gold catalysts[J]. ChemSusChem,2008,1(1-2): 75-78.
    [73]Davis S E, Houk L R, Tamargo E C, et al. Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts[J]. Catalysis Today,2011,160(1):55-60.
    [74]Kroger M, Pr(u|")βe U, Vorlop K D. A new approach for the production of 2, 5-furandicarboxylic acid by in situ oxidation of 5-hydroxymethylfurfural starting from fructose[J]. Topics in Catalysis,2000,13(3):237-242.
    [75]Ribeiro M L, Schuchardt U. Cooperative effect of cobalt acetylacetonate and silica in the catalytic cyclization and oxidation of fructose to 2,5-furandicarboxylic acid[J]. Catalysis Communications,2003,4(2):83-86.
    [76]Amarasekara, A. S. In Renewable Polymers. Synthesis, Processing, and Technology; Mittal,V., Ed.; Scrivener Publishing LLC:Beverly, MA,2012; Chapter 9.
    [77]Grushin, V; Herron, N.; Halliday, G. A. (E. I. du Pont de Nemours & Co.) Int. Patent WO 2003024947,2003.
    [78]Cottier L, Descotes G, Lewkowski J, et al. ULTRASONICALLY ACCELERATED SYNTHESES OF FURAN-24-DICARBALDEHYDE FROM 5-HYDROXYMETHYL-2 -FURFURAL[J]. Organic preparations and procedures international,1995,27(5):564-566.
    [79]Lilga, M. A.; Hallen, R. T.; Hu, J.; White, J. F.; Gary, M. J. (Battelle Memorial Institute) Int. Patent WO 2008/054804,2008.
    [80]Amarasekara A S, Green D, McMillan E. Efficient oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran using Mn (Ⅲ)-salen catalysts[J]. Catalysis Communications,2008,9(2): 286-288.
    [81]Yoon H J, Choi J W, Jang H S, et al. Selective Oxidation of 5-Hydroxymethylfurfural to 2, 5-Diformylfuran by Polymer-Supported IBX Amide[J]. Synlett,2011,2011(02):165-168.
    [82]Haas, T.; Tacke, T.; Pfeffer, J. C.; Klasovsky, F.; Rimbach, M.; Volland, M.; Ortelt, M. (Evonik Degussa, GmbH) WO 2012004069,2012.
    [83]Durand, G.; Faugeras, P.; Laporte, F.; Moreau, C.; Neau, M.-C.; Roux, G.; Tichit, D.; Toutremepuich, C. (Agrochimie) Int. Patent WO 9617836,1996.
    [84]Martin, T. S. A. (Episucres S. A.) Ger. Patent DE 19615878,1997.
    [85]Nie J, Liu H. Aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on supported vanadium oxide catalysts:Structural effect and reaction mechanism[J]. Pure & Applied Chemistry,2012,84(3).
    [86]Halliday G A, Young R J, Grushin V V. One-pot, two-step, practical catalytic synthesis of 2, 5-diformylfuran from fructose[J]. Organic letters,2003,5(11):2003-2005.
    [87]Hu, C.; Xiang, X.; Yang, Y.; Guo, B.; Tong, D.; Zhu, L. (Sichuan University) Chin. Patent CN 101768142,2010.
    [88]Carlini C, Patrono P, Galletti A M R, et al. Selective oxidation of 5-hydroxymethyl-2-furaldehyde to furan-2,5-dicarboxaldehyde by catalytic systems based on vanadyl phosphate[J]. Applied Catalysis A:General,2005,289(2):197-204.
    [89]Hanson S K, Wu R, Silks L A P. Mild and Selective Vanadium-Catalyzed Oxidation of Benzylic, Allylic, and Propargylic Alcohols Using Air[J]. Organic letters,2011,13(8): 1908-1911.
    [90]Navarro O C, Canos A C, Chornet S I. Chemicals from Biomass:Aerobic Oxidation of 5-Hydroxymethyl-2-Furaldehyde into Diformylfurane Catalyzed by Immobilized Vanadyl-Pyridine Complexes on Polymeric and Organofunctionalized Mesoporous Supports[J]. Topics in Catalysis,2009,52(3):304-314.
    [91]Partenheimer W, Grushin V V. Synthesis of 2,5-Diformylfuran and Furan-2,5-Dicarboxylic Acid by Catalytic Air-Oxidation of 5-Hydroxymethylfurfural. Unexpectedly Selective Aerobic Oxidation of Benzyl Alcohol to Benzaldehyde with Metal= Bromide Catalysts[J]. Advanced Synthesis & Catalysis,2001,343(1):102-111.
    [92]Sanborn, A. (Archer Daniels Midland Company) Int. Patent WO 2010132740,2009.
    [93]Yadav, G. D.; Sharma, R. V. Int.Patent WO 2012073251,2012.
    [94]Takagaki A, Takahashi M, Nishimura S, et al. One-pot synthesis of 2,5-diformylfuran from carbohydrate derivatives by sulfonated resin and hydrotalcite-supported ruthenium catalysts[J]. ACS Catalysis,2011,1(11):1562-1565.
    [95]Skowroski R, Cottier L, Descotes G, et al. Selective Anodic Oxidation of 5-Hydroxymethylfurfural[J]. Synthesis,1996,1996(11):1291-1292.
    [96]Roman-Leshkov Y, Barrett C J, Liu Z Y, et al. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates[J]. Nature,2007,447(7147):982-985.
    [97]Thananatthanachon T, Rauchfuss T B. Efficient Production of the Liquid Fuel 2,5-Dimethylfuran from Fructose Using Formic Acid as a Reagent[J]. Angewandte Chemie,2010, 122(37):6766-6768.
    [98]Chidambaram M, Bell A T. A two-step approach for the catalytic conversion of glucose to 2, 5-dimethylfuran in ionic liquids[J]. Green Chemistry,2010,12(7):1253-1262.
    [99]De S, Dutta S, Saha B. One-Pot Conversions of Lignocellulosic and Algal Biomass into Liquid Fuels[J]. ChemSusChem,2012,5(9):1826-1833.
    [100]Jae J, Zheng W, Lobo R F, et al. Production of Dimethylfuran from Hydroxymethylfurfural through Catalytic Transfer Hydrogenation with Ruthenium Supported on Carbon[J]. ChemSusChem,2013,6(7):1158-1162.
    [101]Hansen T S, Barta K, Anastas P T, et al. One-pot reduction of 5-hydroxymethylfurfural via hydrogen transfer from supercritical methanol[J]. Green Chemistry,2012,14(9):2457-2461.
    [102]Nilges P, Schroder U. Electrochemistry for biofuel generation:production of furans by electrocatalytic hydrogenation of furfurals[J]. Energy & Environmental Science,2013,6(10): 2925-2931.
    [103]Heeres H, Handana R, Chunai D, et al. Combined dehydration/(transfer)-hydrogenation of C6-sugars (D-glucose and D-fructose) to y-valerolactone using ruthenium catalysts [J]. Green Chemistry,2009,11(8):1247-1255.
    [104]Tabasso S, Montoneri E, Carnaroglio D, et al. Microwave-assisted flash conversion of non-edible polysaccharides and post-harvest tomato plant waste to levulinic acid[J]. Green Chemistry,2014,16(1):73-76.
    [105]MartinaAlonso D, Marcel R aGallo J. Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts [J]. Catalysis Science & Technology,2013, 3(4):927-931.
    [106]Hegner J, Pereira K C, DeBoef B, et al. Conversion of cellulose to glucose and levulinic acid via solid-supported acid catalysis[J]. Tetrahedron Letters,2010,51(17):2356-2358.
    [107]Potvin J, Sorlien E, Hegner J, et al. Effect of NaCl on the conversion of cellulose to glucose and levulinic acid via solid supported acid catalysis[J]. Tetrahedron Letters,2011,52(44): 5891-5893.
    [108]Son P A, Nishimura S, Ebitani K. Synthesis of levulinic acid from fructose using Amberlyst-15 as a solid acid catalyst[J]. Reaction Kinetics, Mechanisms and Catalysis,2012, 106(1):185-192.
    [109]Van de Vyver S, Thomas J, Geboers J, et al. Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly (arylene oxindole) s[J]. Energy & Environmental Science,2011,4(9):3601-3610.
    [110]Weingarten R, Conner W C, Huber G W. Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst[J]. Energy & Environmental Science,2012,5(6):7559-7574.
    [111]Chen H, Yu B, Jin S. Production of levulinic acid from steam exploded rice straw via solid superacid[J]. Bioresource technology,2011,102(3):3568-3570.
    [112]Upare P P, Yoon J W, Kim M Y, et al. Chemical conversion of biomass-derived hexose sugars to levulinic acid over sulfonic acid-functionalized graphene oxide catalysts[J]. Green Chemistry,2013,15(10):2935-2943.
    [113]Lin H, Strull J, Liu Y, et al. High yield production of levulinic acid by catalytic partial oxidation of cellulose in aqueous media[J]. Energy & Environmental Science,2012,5(12): 9773-9777.
    [114]Li J, Ding D, Xu L, et al. The breakdown of reticent biomass to soluble components and their conversion to levulinic acid as a fuel precursor[J]. RSC Advances,2014,4(29): 14985-14992.
    [115]Dunlop A, Madden J, (Quaker Oats Co.), US 2786852,1957.
    [116]Upare P P, Lee J M, Hwang D W, et al. Selective hydrogenation of levulinic acid to y-valerolactone over carbon-supported noble metal catalysts[J]. Journal of Industrial and Engineering Chemistry,2011,17(2):287-292.
    [117]Schuette H A, Thomas R W. Normal valerolactone. Ⅲ. Its preparation by the catalytic reduction of levulinic acid with hydrogen in the presence of platinum oxide[J]. Journal of the American Chemical Society,1930,52(7):3010-3012.
    [118]Christian Jr R V, Brown H D, Hixon R M. Derivatives of y-Valerolactone,1,4-Pentanediol and 1,4-Di-(β-cyanoethoxy)-pentanel[J]. Journal of the American Chemical Society,1947, 69(8):1961-1963.
    [119]Manzer L E. Catalytic synthesis of a-methylene-γ-valerolactone:a biomass-derived acrylic monomer[J]. Applied Catalysis A:General,2004,272(1):249-256.
    [120]Al-Shaal M G, Wright W R H, Palkovits R. Exploring the ruthenium catalysed synthesis of γ-valerolactone in alcohols and utilisation of mild solvent-free reaction conditions[J]. Green Chemistry,2012,14(5):1260-1263.
    [121]Yan Z, Lin L, Liu S. Synthesis of y-valerolactone by hydrogenation of biomass-derived levulinic acid over Ru/C catalyst[J]. Energy & Fuels,2009,23(8):3853-3858.
    [122]Ayoub P, Lange J, (Shell International Research Maatschappij B. V., The Netherlands), WO 2008142127A1,2008.
    [123]Manzer L, Hutchenson K, (E.I. Du Pont De Nemours & Co., USA), US 20040254384A1, 2004.
    [124]Bourne R A, Stevens J G, Ke J, et al. Maximising opportunities in supercritical chemistry: the continuous conversion of levulinic acid to γ-valerolactone in CO2[J]. Chemical communications,2007 (44):4632-4634.
    [125]Mehdi H, Fabos V, Tuba R, et al. Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass:From sucrose to levulinic acid, γ-valerolactone,1,4-pentanediol,2-methyl-tetrahydrofuran, and alkanes[J]. Topics in Catalysis,2008,48(1-4):49-54.
    [126]Deng L, Li J, Lai D M, et al. Catalytic conversion of biomass-derived carbohydrates into γ-valerolactone without using an external H2 supply [J]. Angewandte Chemie International Edition,2009,48(35):6529-6532.
    [127]Deng L, Zhao Y, Li J, et al. Conversion of Levulinic Acid and Formic Acid into γ-Valerolactone over Heterogeneous Catalysts[J]. ChemSusChem,2010,3(10):1172-1175.
    [128]Braden D J, Henao C A, Heltzel J, et al. Production of liquid hydrocarbon fuels by catalytic conversion of biomass-derived levulinic acid[J]. Green chemistry,2011,13(7):1755-1765.
    [129]Du X L, He L, Zhao S, et al. Hydrogen-Independent Reductive Transformation of Carbohydrate Biomass into γ-Valerolactone and Pyrrolidone Derivatives with Supported Gold Catalysts[J]. Angewandte Chemie,2011,123(34):7961-7965.
    [130]Du X L, Bi Q Y, Liu Y M, et al. Conversion of Biomass-Derived Levulinate and Formate Esters into γ-Valerolactone over Supported Gold Catalysts[J]. ChemSusChem,2011,4(12): 1838-1843.
    [131]Dunlop A and Smith S, US Patent 2,676,186, Ref. Zh.Khim.16N 34P,1955.
    [132]Van Es D, Van der Klis F. and Van Haveren J, U.S. Patent WO 2012/044168 A1, PCT/NL2011/050659,2011.
    [133]Podolean I, Kuncser V, Gheorghe N, et al. Ru-based magnetic nanoparticles (MNP) for succinic acid synthesis from levulinic acid[J]. Green Chemistry,2013,15(11):3077-3082.
    [134]Fang Y, Zeng X, Yan P, et al. An acidic two-step hydrothermal process to enhance acetic acid production from carbohydrate biomass[J]. Industrial & Engineering Chemistry Research, 2012,51(12):4759-4763.
    [135]CarlosaSerrano-Ruiz J. Catalytic upgrading of levulinic acid to 5-nonanone[J]. Green Chemistry,2010,12(4):574-577.
    [136]Luo W, Deka U, Beale A M, et al. Ruthenium-catalyzed hydrogenation of levulinic acid: Influence of the support and solvent on catalyst selectivity and stability [J]. Journal of Catalysis,2013,301:175-186.
    [137]Pan T, Deng J, Xu Q, et al. Catalytic conversion of biomass-derived levulinic acid to valerate esters as oxygenated fuels using supported ruthenium catalysts[J]. Green Chemistry, 2013,15(10):2967-2974.
    [138]Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals[J]. Chemical Reviews,2007,107(6):2411-2502.
    [139]Manzer L E. Production of 5-methyl-N-aryl-2-pyrrolidone and 5-methyl-N-cycloalkyl-2-pyrrolidone by reductive amination of levulinic acid with aryl amines:U.S. Patent 6,743,819[P].2004-6-1.
    [140]W. L. Shilling, US Patent 32355562,1996.
    [141]L. R. Crook, B. A. Jansen, K. E. Spencer and D. H. Watson, GB Patent 1036694,1996.
    [1]Mehdi H, Fabos V, Tuba R, et al. Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass:From sucrose to levulinic acid, y-valerolactone,1,4-pentanediol,2-methyl-tetrahydrofuran, and alkanes[J]. Topics in Catalysis,2008,48(1-4):49-54.
    [2]Bond J Q, Alonso D M, Wang D, et al. Integrated catalytic conversion of y-valerolactone to liquid alkenes for transportation fuels[J]. Science,2010,327(5969):1110-1114.
    [3]Wright W R H, Palkovits R. Development of Heterogeneous Catalysts for the Conversion of Levulinic Acid to y-Valerolactone[J]. ChemSusChem,2012,5(9):1657-1667.
    [4]Deng L, Li J, Lai D M, et al. Catalytic conversion of biomass-derived carbohydrates into y-valerolactone without using an external H2 supply[J]. Angewandte Chemie International Edition,2009,48(35):6529-6532.
    [5]Al-Shaal M G, Wright W R H, Palkovits R. Exploring the ruthenium catalysed synthesis of y-valerolactone in alcohols and utilisation of mild solvent-free reaction conditions[J]. Green Chemistry,2012,14(5):1260-1263.
    [6]Hengne A M, Rode C V. Cu-ZrO2 nanocomposite catalyst for selective hydrogenation of levulinic acid and its ester to γ-valerolactone[J]. Green Chemistry,2012,14(4):1064-1072.
    [7]Du X L, Bi Q Y, Liu Y M, et al. Conversion of Biomass-Derived Levulinate and Formate Esters into y-Valerolactone over Supported Gold Catalysts[J]. ChemSusChem,2011,4(12): 1838-1843.
    [8]Chia M, Dumesic J A. Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to y-valerolactone over metal oxide catalysts[J]. Chemical Communications,2011,47(44):12233-12235.
    [1]Guo Y, Li K, Clark J H. The synthesis of diphenolic acid using the periodic mesoporous H3PW12O40-silica composite catalysed reaction of levulinic acid[J]. Green Chemistry,2007, 9(8):839-841.
    [2]Podolean I, Kuncser V, Gheorghe N, et al. Ru-based magnetic nanoparticles (MNP) for succinic acid synthesis from levulinic acid[J]. Green Chemistry,2013,15(11):3077-3082.
    [3]Bart H J, Reidetschlager J, Schatka K, et al. Kinetics of esterification of levulinic acid with n-butanol by homogeneous catalysis [J]. Industrial & engineering chemistry research,1994, 33(1):21-25.
    [4]Du X L, He L, Zhao S, et al. Hydrogen-Independent Reductive Transformation of Carbohydrate Biomass into y-Valerolactone and Pyrrolidone Derivatives with Supported Gold Catalysts[J]. Angewandte Chemie,2011,123(34):7961-7965.
    [5]Fukuda H, Casas A, Batlle A. Aminolevulinic acid:from its unique biological function to its star role in photodynamic therapy[J]. The international journal of biochemistry & cell biology, 2005,37(2):272-276.
    [6]Manzer L E. Production of 5-methyl-N-(methyl aryl)-2-pyrrolidone,5-methyl-N-(methyl cycloalkyl)-2-pyrrolidone and 5-methyl-N-alkyl-2-pyrrolidone by reductive amination of levulinic acid with cyano compounds:U.S. Patent 6,841,520[P].2005-1-11.
    [7]W. L. Shilling, US Patent 32355562,1996.
    [8]L. R. Crook, B. A. Jansen, K. E. Spencer, D. H. Watson, GB Patent 1036694,1996.
    [9]L. E. Manzer, F. E. Herkes, US Patent 2004192933,2003.
    [10]Loges B, Boddien A, Junge H, et al. Controlled generation of hydrogen from formic acid amine adducts at room temperature and application in H2/O2 fuel cells[J]. Angewandte Chemie International Edition,2008,47(21):3962-3965.
    [11]Fellay C, Dyson P J, Laurenczy G. A Viable Hydrogen-Storage System Based On Selective Formic Acid Decomposition with a Ruthenium Catalyst[J]. Angewandte Chemie,2008, 120(21):4030-4032.
    [12]Mehdi H, Fabos V, Tuba R, et al. Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass:From sucrose to levulinic acid, y-valerolactone,1,4-pentanediol,2-methyl-tetrahydrofuran, and alkanes[J]. Topics in Catalysis,2008,48(1-4):49-54.
    [1]Lejemble P, Maire Y, Gaset A, et al. An improved method to prepare catalysts for the selective decarbonylation of furan-2-carboxaldehyde into furan. Chemistry Letters,1983, 12(9):1403-1406.
    [2]Chambel P, Oliveira M B, Andrade P B, et al. Identification of 5,5'-oxy-dimethylene-bis (2-furaldehyde) by thermal decomposition of 5-hydroxymethyl-2-furfuraldehyde[J]. Food chemistry,1998,63(4):473-477.
    [3]Geilen F, vom Stein T, Engendahl B, et al. Highly Selective Decarbonylation of 5-(Hydroxymethyl) furfural in the Presence of Compressed Carbon Dioxide[J]. Angewandte Chemie International Edition,2011,50(30):6831-6834.
    [4]Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. science,1998,279(5350):548-552.
    [1]Thananatthanachon T, Rauchfuss T B. Efficient Production of the Liquid Fuel 2, 5-Dimethylfuran from Fructose Using Formic Acid as a Reagent[J]. Angew. Chem. Int. Ed., 2010,49,6616-6618.
    [2]Chidambaram M, Bell A T. A two-step approach for the catalytic conversion of glucose to 2, 5-dimethylfuran in ionic liquids[J]. Green Chemistry,2010,12(7):1253-1262.
    [3]De S, Dutta S, Saha B. One-Pot Conversions of Lignocellulosic and Algal Biomass into Liquid Fuels[J]. ChemSusChem,2012,5(9):1826-1833.
    [4]Hansen T S, Barta K, Anastas P T, et al. One-pot reduction of 5-hydroxymethylfurfural via hydrogen transfer from supercritical methanol[J]. Green Chemistry,2012,14(9):2457-2461.
    [5]Jae J, Zheng W, Lobo R F, et al. Production of Dimethylfuran from Hydroxymethylfurfural through Catalytic Transfer Hydrogenation with Ruthenium Supported on Carbon[J]. ChemSusChem,2013,6(7):1158-1162.
    [6]Ji N, Zheng M, Wang A, et al. Nickel-Promoted Tungsten Carbide Catalysts for Cellulose Conversion:Effect of Preparation Methods[J]. ChemSusChem,2012,5(5):939-944.
    [7]Zheng M Y, Wang A Q, Ji N, et al. Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol[J]. ChemSusChem,2010,3(1):63-66.
    [1]Huber G W, Chheda J, Barrett C B, et al. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates[J]. Science,2005,308:1446-2079.
    [2]Bond J Q, Alonso D M, Wang D, et al. Integrated catalytic conversion of y-valerolactone to liquid alkenes for transportation fuels[J]. Science,2010,327(5969):1110-1114.
    [3]CarlosaSerrano-Ruiz J, Wang D, Dumesic J A, Catalytic upgrading of levulinic acid to 5-nonanone[J]. Green Chemistry,2010,12(4):574-577.
    [4]Nilges P, dos Santos T R, Harnisch F, et al. Electrochemistry for biofuel generation: Electrochemical conversion of levulinic acid to octane[J]. Energy & Environmental Science, 2012,5(1):5231-5235.
    [5]Corma A, de la Torre O, Renz M, et al. Production of High-Quality Diesel from Biomass Waste Products[J]. Angewandte Chemie,2011,123(10):2423-2426.
    [6]Subrahmanyam A V, Thayumanavan S, Huber G W. C-C Bond Formation Reactions for Biomass-Derived Molecules[J]. ChemSusChem,2010,3(10):1158-1161.
    [7]Yang W, Sen A. Direct Catalytic Synthesis of 5-Methylfurfural from Biomass-Derived Carbohydrates[J]. ChemSusChem,2011,4(3):349-352.
    [8]Silva E A, Zabkova M, Araujo J D, et al. An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin[J]. Chemical Engineering Research and Design, 2009,87(9):1276-1292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700