下一代无线蜂窝网络的高效资源复用与干扰协调技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有吞吐率高和覆盖性强的特点,OFDMA多跳中继蜂窝网络(MRCN)受到广泛关注。但其仍有三个重要问题亟待解决:首先,中继站(RS)的引入改变了传统蜂窝网络的频率规划策略,因此如何在策略设计中对中继链路进行高效的频率资源分配成为极具挑战的问题;其次,小区频率复用越紧密,同频干扰(CCI)越严重,进而对系统的整体性能产生影响;最后,在真实网络环境中,小区内用户呈非均衡分布状态。大量用户接入同一站点将导致MRCN的负载失衡,影响热点区域的系统性能,从而无法满足用户的服务质量(QoS)要求。本文基于IEEE802.16j/m标准,以下行链路的无线资源管理为基本手段,结合时分复用、空间复用、频率复用等技术,对MRCN网络中的路径选择、本地转发、资源调度、干扰协调、负载均衡、功率控制等问题的设计与优化进行深入研究。
     首先,提出OFDMA多跳中继蜂窝网络的高效资源复用策略。从路径选择和频率规划两个方面对比分析不同算法对系统性能的影响。该策略提出的高效资源复用方案以部分频率复用技术作为研究主线,分别从理论分析和性能仿真两个方面进行深入研究;并以路径选择与同频干扰的空间相关性为基础,设计合理的资源复用策略及其对应的多跳中继下行子帧结构,在保证网络的资源利用率的同时,降低干扰给相邻小区边缘用户带来的影响,有利于全局频率复用策略的实施。与常规MRCN相比,采用该策略的MRCN能够充分利用频谱资源,系统吞吐率增益达13.8%,小区覆盖率增益达5.4%。
     其次,提出OFDMA多跳中继蜂窝网络的本地转发方案。针对中继用户数据链路的优化问题,该方案允许移动台(MS)间的数据通信只需通过中继站进行本地转发传输,而无需再将数据传送给基站(BS),这样即可降低BS的空口负载,提高系统的资源利用率,同时还减少了MS之间的数据传输跳数。接着提出联合考虑本地转发模式特性和资源分配方案的路径选择算法。该算法所选出的最佳路径更有利于系统性能的优化。此外,在IEEE802.16j/m网络架构和信令机制的基础上,分析MRCN系统中实现本地转发功能的控制信令交互机制。与常规MRCN相比,本地转发技术与部分频率复用技术相结合的MRCN可获得36.2%的系统吞吐率增益。
     再次,提出OFDMA多跳中继蜂窝网络的空间复用及干扰协调策略。根据多跳蜂窝网络的特点,对空间复用方案、时分复用方案、频率复用方案进行联合设计与优化。基于部分频率复用技术提出两种策略,分别是在同扇区内BS采用部分频率复用而RS采用正交频率分配(BFRO)策略和BS与RS都采用部分频率复用(BFRF)策略。BFRO策略和BFRF策略既确保高效的资源利用率,同时也能有效降低因资源复用产生的同频干扰。此外,详细分析策略涉及的频率规划、功率控制、路径选择和区域选择、时隙资源分配等一系列关键技术问题。提出的两种策略可有效解决扇区内因空间复用产生严重干扰的问题;与正交资源分配技术和NT-RS(非透明中继站)集中分配技术相比,虽然覆盖率些微下降,但依然能满足覆盖率95%的要求,同时扇区吞吐率性能增益达16%以上。
     然后,提出OFDMA多跳中继蜂窝网络基于负载均衡的资源分配策略。考虑难以得到联合分配的最优解,在减少计算复杂度的前提下,采用分步式次优化分配。首先采用比例公平算法对子载波进行分配,并对功率分配进行数学建模。接着根据凸规划和注水算法,确定满足功率分配最优解的条件,在逼近最优解的目标下,求得基站和中继站的发射功率。提出的基于负载均衡的资源分配策略兼顾了效率与公平性,在满足系统发射功率和子载波数量的限制条件下,可适应单个小区内不同的用户分布,解决负载失衡问题。在四种典型用户分布场景中,与静态资源分配策略相比,该策略的系统吞吐率提升幅度分别为7.8%、22.6%、31.1%和46.7%。
     最后,提出OFDMA多跳中继蜂窝网络的干扰协调与负载均衡联合策略。首先,提出可降低小区边缘区域干扰并保持较高频谱效率的频率复用方式;再结合干扰协调技术,将高效的比例公平调度算法扩展到多跳中继蜂窝网络,旨在提升系统性能;其次,设计出基于负载均衡的切换机制,该机制可对业务负载进行均匀分配并满足用户的QoS要求。干扰协调与负载均衡联合策略可以根据信道质量和业务负载进行自适应的资源管理,充分利用MRCN系统的频率复用和功率控制技术,对系统性能参数进行联合优化,其目的为最大程度地提升频谱效率,改善用户传输速率的公平性,降低传输中断率,克服因干扰功率约束改变而导致的系统吞吐率和覆盖率降低。
OFDMA-based multi-hop relay cellular networks (MRCNs) have drawn tremendous attention due to its high throughput and extensive converage. However, there are still three issues not well addressed:1) with the introduction of relay stations (RSs), how to efficiently allocate frequency resource to relay links becomes a challenging design issue;2) for mobile stations (MSs) near the cell edge, co-channel interference (CCI) becomes severe, which significantly affects the network performance;3) in real network environment, users are not evenly distributed in cells/sectors, so too many users accessing one station (BS or RS) probably yields load imbalance, which makes the station congested and violates the quality of service (QoS) requirements of the users. Based on the downlink of radio resource management, with technologies such as time division duplex (TDD), spatial reuse and frequency reuse, this paper studies the design and optimization of path selection, local forwarding, resource scheduling, interference coordination (IC), load balancing (LB), and power control according to IEEE802.16j/m specification, which can be elaborated as follows:
     Firstly, an efficient frequency reuse scheme for OFDMA-based MRCNs is proposed. The effect of different algorithms on system performance is analyzed in terms of both path selection and frequency planning. The author also puts forward an efficient resource reuse scheme focuses on FFR in both theoretical analysis and performance simulation. Furthermore, a proper resource reuse scheme and multi-hop relay downlink sub-frame are designed to deal with the inter-cell interference for the implementation of overall frequency reuse scheme. It not only guarantees the efficient utilization of resource in networks but also protect the users in the edge of adjacent cell from interference, which is conducive to the implement of full frequency reuse scheme. Compared with the traditional MRCN, the MRCN adopting the proposed scheme is able to make full use of spectrum resource. Its throughput gain and cell coverage probability gain is13.8%and5.4%, respectively.
     Secondly, a local forwarding transmission scheme for OFDMA-based MRCN is imtroduced. For the optimization of the data transmission link of the users associated with RSs. the scheme allows the data transmission between MSs via RSs instead of the re-delivery of data to Base Station (BS). It not only mitigates the air-interface at BS. promotes the system resource utilization level, but also reduces the number of hops in the data transmission between MSs. A path selection algorithm for local forwarding mode is also proposed with jointly considering the characteristics of local forwarding mode and the resource allocation scheme, and the optimum path selected whereby can enhance the optimization of the system performance. Additionally, according to the networks structure and signaling mechanism of IEEE802.16j/m, the author analyzes the mechanism of control signaling interaction supporting administrable local forwarding. Compared with the traditional MRCN, the MRCN jointly considering local forwarding transmission and FFR can increase the system throughput by36.2%.
     Thirdly, a spatial reuse with interference coordination scheme for OFDMA-based MRCN is put forward. The scheme is designed and optimized with spatial reuse, time division multiplexing and frequency reuse considered jointly according to the characteristics of MRCNs. Based on FFR. two schemes are proposed, namely BS Adopts FFR and RS Adopts FFR (BFRF) scheme and BS Adopts FFR and RS Adopts Orthogonal Allocation (BFRO) scheme. The two proposed schemes can both mitigate the CCI and maintain high resource utilization. Moreover, the key issues on frequency planning, power control, path selection and zone selection, and slot allocation that are involved in the two proposed schemes are specifically analyzed. The two proposed schemes can give an effective resolution to the serious interference caused by intra-sector spatial reuse. Compared with the orthogonal allocation scheme and NT-RS with centralized allocation mode, the schemes, although causing a bit decrease in the coverage probability, can not only satisfy the requirement of95%, but also highly improve the sector throughput by16%.
     Fourthly, a resource allocation based on load balancing for OFDMA-based MRCNs is raised. Since it is difficult to solve a joint optimization problem, the author provides a step-by-step sub-optimal allocation scheme on the premise of reducing the computational complexity. With advance sub-channel allocation by proportional fair algorithm, the paper introduces the math modeling for power allocation algorithm. According to convex optimization and water-filling algorithm, the paper determines the certain conditions to satisfy the optimal power allocation solution, and also calculates the results of transmission power among BS and RSs for approaching the optimal solution. The proposed resource allocation scheme based on load balancing (RALB) takes efficiency and fairness into consideration. Under conditions of transmission power and number of subcarrier, the scheme is adaptable to different user distributions and can solve load unbalancing. In four different typical use distribution scenes, compared to traditional static resource allocation (SRA), the schemes can improve throughput by7.8%,22.6%,31.1%and46.7%, respectively.
     At last, a scheme jointly considering interference coordination and load balancing for OFDMA-based MRCNs is given. Firstly, present a novel frequency reuse scheme to mitigate interference and maintain high spectral efficiency; secondly, apply the efficient PF algorithm to MRCN, combined with IC; thirdly, design practical LB-based handover mechanisms which can evenly distribute the traffic load and guarantee QoS of users. The proposed scheme can do adaptive resource management according to channel quality and service load, make the best of frequency reuse and power control, and realize joint optimization of parameters of system performance, in order to promote spectrum efficiency to the most extent, improve the fairness of use transmission rate, reduce transmission outage probability, and overcome low throughput and coverage probability caused by changing interference power constraint.
引文
[1]刘辉,李国庆.基于OFDM的无线宽带网络设计与优化.西安交通大学出版社,2008,pp:13-20
    [2]田韬,张新程,周晓津,关山,WiMAX 16e无线网络技术与应用,人民邮电出版社,2009,pp:24-54.
    [3]向征,下一代无线多跳中继网络资源分配与组网技术研究,西南交通大学博士学位论文,2011年6月.
    [4]S. Pietrzyk, OFDMA for Broadband Wireless Access, Artech House,2006, pp:12-14.
    [5]H. Zeng and C. Zhu, System-Level Modeling and Performance Evaluation of Multi-hop 802.16j Systems, International Wireless Communications and Mobile Computing Conference,2008. IWCMC 2008, August 2008, pp:354-359.
    [6]H. Hu, H. Yanikomeroglu, D. Falconer, S. Periyalwar, Range Extension without Capacity Penalty in Cellular Networks with Digital Fixed Relays, IEEE Global Telecommunications Conference,2004. GLOBECOM 2004, November 2004, pp:3053-3057.
    [7]J. Song, H. Lee, D. Cho, Power Consumption Reduction by Multi-hop Transmission in Cellular Networks, IEEE 60th Vehicular Technology Conference,2004. VTC 2004-Fall, September 2004, pp:3120-3124.
    [8]李军,异构无线网络融合理论与技术实现,电子工业出版社,2009,pp:08-24.
    [9]方旭明等.下一代无线因特网技术:无线mesh网络,人民邮电出版社,2006, pp:8-9.[10] WiMAX Forum, Mobile WiMAX-Part I:A Technical Overview and Performance Evaluation, August 2006.
    [11]WiMAX Forum, WiMAX System Evaluattion Methodology, Version 2.1, July 2008.
    [12]Y. Yang, H. Hu, J. Xu, and G. Mao, Relay Technologies for WiMAX and LTE-Advanced Mobile Systems. IEEE Communications Magazine, Volume 47, Issue 10, October 2009, pp: 100-105.
    [13]杜滢,方惠英,刘扬,IEEE 802.16m宽带无线技术与系统设计,人民邮电出版 社,2010, pp:12-15.
    [14]IEEE 802.16m-08/003r7, IEEE 802.16m System Description Document (SDD), February 2009.
    [15]IEEE 802.16m-08/004r5, IEEE 802.16m Evaluation Methodology Document (EMD), January 2009.
    [16]R. Pabst. B.H. Walke, Relay-based Deployment Concepts for Wireless and Mobile Broadband Radio, IEEE Communications Magazine, Volume:42, Issue 9, September 2004, pp:80-89.
    [17]J. Jang, K. Lee, Transmit Power Adaptation for Multiuser OFDM Systems, IEEE Journal on Selected Areas in Communications, Volume 21, Issue 2, February 2003, pp: 171-178.
    [18]W. Rhee and J. Cioffi, Increase in Capacity of Multiuser OFDM System using Dynamic Sub-channel Allocation, IEEE 51st Vehicular Technology Conference,2000. VTC 2000-Spring, May 2000, pp:1085-1089.
    [19]J. Jang, K. Lee, Transmit Power Adaptation for Multiuser OFDM Systems, IEEE Journal on Selected Areas in Communications, Volume 21. Issue 2. February 2003, pp: 171-178.
    [20]Z. Shen, J. Andrews, B. Evans. Adaptive Resource Allocation in Multiuser OFDM Systems with Proportional Rate Constraints, IEEE Transactions on Wireless Communications, Volume 4, Issue 6, November 2005, pp:2726-2737.
    [21]I. Wong, Z. Shen, B Evans, and J. Andrews, A Low Complexity Algorithm for Proportional Resource Allocation in OFDMA Systems, IEEE International Signal Processing Systems Workshop,2004. SIPS 2004, October 2004, pp:1-6.
    [22]L. Huang, M. Rong, L. Wang, Y. Xue, and E. Schulz, Resource Scheduling for OFDMA/TDD Based Relay Enhanced Cellular Networks, IEEE Wireless Communications and Networking Conference,2007. WCNC 2007, March 2007, pp:1544-1548.
    [23]M. Kaneko and P. Popovski, Adaptive Resource Allocation in Cellular OFDMA System with Multiple Relay Stations, IEEE 65th Vehicular Technology Conference,2007. VTC2007-Spring, April 2007, pp:3026-3030.
    [24]W. Nam, W. Chang, S. Chung, and Y. Lee, Transmit Optimization for Relay-based Cellular OFDMA Systems, IEEE International Conference on Communications,2007. ICC 2007, June 2007, pp:5714-5719.
    [25]M. Kaneko, P. Popovski, Radio Resource Allocation Algorithm for Relay-aided Cellular OFDMA System, IEEE International Conference on Communications,2007. ICC 2007, June 2007, pp:4831-4836.
    [26]G. Boudreau, J. Panicker, N. Guo, R. Chang, N. Wang, and S. Vrzic, Interference Coordination and Cancellation for 4G networks, IEEE Communications Magazine, Volume 47, Issue 4, April 2009, pp:74-81.
    [27]C. Sacchi, F. Granelli, and C. Schlegel, A QoE-Oriented Strategy for OFDMA Radio Resource Allocation Based on Min-MOS Maximization, IEEE Communications Letters, Volume 15, Issue 3, May 2011, pp:494-496.
    [28]张瀚峰,王财进,吴伟陵,两跳固定中继蜂窝网络的子载波信道分配策略.吉林大学学报,2007,25(2):126-131.
    [29]J. Lee, H. Yanikomeroglu, A Novel Architecture for Multi-Hop WiMAX Systems: Shared Relay Segmentation, IEEE Wireless Communications and Networking Conference, 2010. WCNC 2010, March 2010, pp:1-6.
    [30]O. Oyman, Opportunistic Scheduling and Spectrum Reuse in Relay-based Cellular OFDMA Networks, IEEE Global Telecommunications Conference,2007. GLOBECOM 2007, November 2007, pp:3699-3703.
    [31]H. Cho and J. Andrews, Resource-Redistributive Opportunistic Scheduling for Wireless Systems, IEEE Transactions on Wireless Communications, Volume 8, Issue 7, July 2009, pp: 3510-3522.
    [32]B. Kim, J. Lee, Joint Opportunistic Sub-channel and Power Scheduling for Relay-based OFDMA Networks with Scheduling at Relay Stations, IEEE Transactions on Vehicular Technology, Volume 59, Issue 5, June 2010, pp:2138-2148.
    [33]华为技术有限公司.基于OFDMA-FDD的无线中转通信系统及方法,200510117477.9,2005年10月.
    [34]三星电子株式会社.基于正交频分多址的蜂窝通信系统的中继通信方法,200510135975.6,2005年12月.
    [35]FUJITSU CO LTD [JP], Bandwidth Reuse in a Multi-hop Mobile Relay System, EP1919142 (A2), May 2008.
    [36]SAMSUNG ELECTRONICS CO LTD [KR], Relay Communication Method for an OFDMA-based Cellular Communication System, EP1677443 (A1), July 2006.
    [37]SAMSUNG ELECTRONICS CO LTD [KR], System and Method for Sub-carrier Allocation in a Wireless Multi-hop Relay Network, EP1859549 (A1), November 2007.
    [38]M. Salem, A. Adinoyi, M. Rahman, H. Yanikomeroglu, D. Falconer, Y. Kim, W. Shin, and E. Kim,-Fairness-aware Radio Resource Management in Downlink OFDMA Cellular Relay Networks, IEEE Transactions on Wireless Communications, Volume 9, Issue 5, May 2010, pp:1628-1639.
    [39]Y. Chang, F. Chien, and C. Kuo, Cross-layer QoS Analysis of Opportunistic OFDM-TDMA and OFDMA Networks, IEEE Journal on Selected Areas in Communications, Volume 25, Issue 4, May 2007, pp:657-666.
    [40]方国华,黄显峰,多目标决策理论、方法及其应用,科学出版社,2011,pp:01-12.
    [41]R. Kwak and J. Cioffi, Resource Allocation for OFDMA Multi-Hop Relaying Downlink Systems, IEEE Global Telecommunications Conference,2007. GLOBECOM 2007, November 2007, pp:3225-3229.
    [42]K. Jacobson and W. Krzymien, System Design and Throughput Analysis for Multi-hop Relaying in Cellular Systems, IEEE Transactions on Vehicular Technology, Volume 58, Issue 8, October 2009, pp:4514-4528.
    [43]I. Krikidis, J. Thompson, S. Mclaughlin, and N. Goertz, Max-min Relay Selection for Legacy Amplify-and-Forward Systems with Interference, IEEE Transactions on Wireless Communications, Volume:8, Issue:6, June 2009, pp:3016-3027.
    [44]黄晓燕,吴凡,下一代无线网络跨层资源管理,国防工业出版社,2011,pp:130-131。
    [45]A. Ahmed and I. Marsland, Co-Channel Interference Cancellation in Wireless Cellular Networks, IEEE 67th Vehicular Technology Conference,2008. VTC2008-Spring, May 2008, pp:698-702.
    [46]F. Sanchez, D. Perez, and J. Zhang, Frequency Planning in IEEE 802.16j Networks:An Optimization Framework and Performance Analysis, IEEE Wireless Communications and Networking Conference,2009. WCNC 2009, April 2009, pp:1-6.
    [47]O. Mubarek, H. Yanikomeroglu, and S. Periyalwar, Dynamic Frequency Hopping in Cellular Fixed Relay Networks, IEEE 61st Vehicular Technology Conference,2005. VTC2005-Spring, April 2005, pp:3112-3116.
    [48]H. Zimmermann, J. Eberspacher, and M. Lott, Frequency Reuse for Cellular Multi-hop Networks, IEEE 62nd Vehicular Technology Conference,2005. VTC2005-Fall, September 2005, pp:2297-2301.
    [49]W. Park and S. Bahk, WLC25-3:Resource Management Policies for Fixed Relays in Cellular Networks, IEEE Global Telecommunications Conference,2006. GLOBECOM 2006. November 2006, pp:1-5.
    [50]H. Nourizadeh, S. Nourizadeh, and R. Tafazolli, Performance Evaluation of Cellular Networks with Mobile and Fixed Relay Station, IEEE 64th Vehicular Technology Conference,2006. VTC2006-Fall, September 2006, pp:1-5.
    [51]C. Raman, G.Foschini, R.Valenzuela, R.Yates, and N. Mandayam, Half-Duplex Relaying in Downlink Cellular Systems.IEEE Transactions on Wireless Communications. Volume 10, Issue 5, May 2011, pp:1396-1404.
    [52]IEEE 802.16m-08/004r5, IEEE 802.16m Evaluation Methodology Document (EMD), January 2009.
    [53]M. Chowdhury, Y. Jang, and Z. Haas, Network Evolution and QoS Provisioning for Integrated Femtocell/Macrocell Networks, International Journal of Wireless & Mobile Networks, Volume 2, Issue 3, August 2010, pp:1-16.
    [54]L. Wang, W. Su, J. Huang, A. Chen, and C. Chang, Optimal Relay Location in Multi-hop Cellular Systems, IEEE Wireless Communications and Networking Conference, 2008. WCNC 2008, March 2008, pp:1306-1310.
    [55]Recommendation ITU-R M.1225, Guidelines for evaluation of radio transmission technologies for IMT-2000, February 1997.
    [56]IEEE 802.16j-06/013r3, Multi-hop Relay System Evaluation Methodology (Channel Model and Performance Metric), February 2007.
    [57]IEEE P802.16j/D7, Draft Amendment to IEEE Standard for Local and Metropolitan Area Networks Part 16:Air Interface for Fixed and Mobile Broadband Wireless Access Systems:Multi-hop Relay Specification, October 2008.
    [58]IEEE P802.16m/D6, Draft Amendment to IEEE Standard for Local and Metropolitan Area Networks Part 16:Air Interface for Fixed and Mobile Broadband wireless access systems, May 2010.
    [59]Z. Zhao, X. Fang, Y. Long, X. Hu, Y. Zhao, Y. Liu, Y. Chen, H. Qu, and L. Xu, Cost Based Local Forwarding Transmission Schemes for Two-hop Cellular Networks, IEEE 71st Vehicular Technology Conference,2010. VTC2010-Spring, May 2010, pp:1-5.
    [60]Y. Zhao, X. Fang, Y Chen, M. Pan, R. Huang, Y. Fang, An Adaptive Resource Allocation in OFDMA Multi-hop Relay Networks, IEEE 8th International Conference on Wireless and Mobile Computing, Networking and Communications,2012. WiMob 2012, October 2012, pp:1-8.
    [61]M. Salem, A. Adinoyi, H. Yanikomeroglu, and D. Falconer, Opportunities and Challenges in OFDMA-based Cellular Relay Networks:A Radio Resource Management Perspective, IEEE Transactions on Vehicular Technology, Volume 59, Issue 5, June 2010, pp: 2496-2510.
    [62]Y. Zhou and N. Zein, Simulation Study of Fractional Frequency Reuse for Mobile WiMAX, IEEE 67th Vehicular Technology Conference,2008. VTC2008-Spring, May 2008, pp:2592-2595.
    [63]R. Giuliano, G. Monti, and P. Loreti, WiMAX Fractional Frequency Reuse for Rural Environments, IEEE Wireless Communications, Volume 15, Issue 3, June 2008, pp:60-65.
    [64]T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, M. Faloutsos, Is P2P dying or just hiding, IEEE Global Telecommunications Conference,2004. GLOBECOM 2004, November 2004, pp:1532-1538.
    [65]IEEE C802.16j-06_055, Support of MS-to-MS Communications through RS, July 2006.
    [66]IEEE C802.16j-06/117, CALEA Compliance and Cross Communications, September 2006.
    [67]D. Frank, B. Manoj, and C. Murthy, Throughput Enhanced Wireless in Local Loop (TWiLL)-The Architecture, Protocols, and Pricing Schemes, IEEE 27th Annual International Conference on Local Computer Networks,2002, LCN 2002, November 2002, pp:177-186.
    [68]赵争光,OFDMA多跳中继蜂窝网络高效资源分配与优化研究,西南交通大学硕士学位论文,2010年6月.
    [69]B. Can, M. Portalski, H. Lebreton, and H. Suraweera, Implementation Issues for OFDM-Based Multihop Cellular Networks, IEEE Communications Magazine, Volume 45, Issue 9, September 2007, pp:74-81.
    [70]张新程,田韬,周晓津,LTE空中接口技术与性能,人民邮电出版社,2009,pp:68-77.
    [71]赵训威,林辉,张明.3GPP长期演进(LTE)系统架构与技术规范,人民邮电出版社,2010.pp:122-124.
    [72]胡建村,韦再雪,柴丽,《蜂窝网络高级规划与(2G\2.5G\3G\…向4G的演进)》,机械工业出版社,2009,pp:156-160.
    [73]J. Jeon, K. Son, and S. Chong, Spatial Resource Reuse in the Multi-hop Cellular Networks:Difficulties and Benefits, IEEE Global Telecommunications Conference,2008. GLOBECOM 2008, November 2008, pp:1-6.
    [74]B. Kwon, Y. Chang, and J. Copeland, A Network Entry Protocol and an OFDMA Symbol Allocation Scheme for Non-Transparent Relay stations in IEEE 802.16j MMR Networks, IEEE Military Communications Conference,2008. MILCOM 2008, November 2008, pp:1-6.
    [75]S. Alexander, O. Alanen, and H. Martikainen, Analysis of the Non-Transparent In-Band Relays in the IEEE 802.16 Multi-Hop System, IEEE Wireless Communications and Networking Conference,2010. WCNC 2010, April 2010. pp:1-6.
    [76]S. Sankaranarayanan, P. Papadimitratos, A. Mishra, and S. Hershey, A Bandwidth Sharing Approach to Improve Licensed Spectrum Utilization, IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks,2005. DySPAN 2005, November 2005, pp:279-288.
    [77]V. Pourahmadi, S. Fashandi, A. Saleh, and A. Khandani, Relay Placement in Wireless Networks:A Study of the Underlying Tradeoffs, IEEE Transactions on Wireless Communications, Volume 10, Issue 5, May 2011, pp:1383-1388.
    [78]Y. Zhao, X. Fang, and Z. Zhao, Interference Coordination in Compact Frequency Reuse for Multihop Cellular Networks, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Volume E93-A, Issue 11, November 2011, pp: 2312-2319.
    [79]S. Moiseev, J. Kodofon, and F. Voronezh, Analysis of the Statistical Properties of the Interference in the IEEE 802.16 OFDMA Network. IEEE Wireless Communications and Networking Conference,2006. WCNC 2006, April 2006, pp:1830-1835.
    [80]X. Zhang, M. Peng, and Z. Ding, Multi-User Scheduling for Network Coded Two-Way Relay Channel in Cellular Systems, IEEE International Conference on Communications, 2009. ICC 2009, June 2009, pp:1-6.
    [81]R. Chang, M. Hsieh and Z. Tao, A Graph Approach to Dynamic Fractional Frequency Reuse (FFR) in Multi-Cell OFDMA Networks, IEEE International Conference on Communications.2009. ICC 2009, June 2009, pp:1-6.
    [82]T. Novlan, R. Ganti and A. Ghosh, Analytical Evaluation of Fractional Frequency Reuse for OFDMA Cellular Networks, IEEE Transactions Wireless Communications, Volume 10, Issue 12, December 2011, pp:4294-4305.
    [83]S. Zhang and V. Lau, Resource Allocation for OFDMA System with Orthogonal Relay using Rateless Code, IEEE Transactions on Wireless Communications, Volume 7, Issue 11, November 2008, pp:4534-4540.
    [84]H. Zeng and C. Zhu, Resource Allocation in 802.16j Multi-Hop Relay Systems with the User Resource Fairness Constraint, IEEE Wireless Communications and Networking Conference,2009. WCNC 2009, April 2009, pp:1-6.
    [85]博赛克斯,凸优化理论,清华大学出版社,2011,pp:23-36.
    [86]W. Sang, S. Wonjin, and W. Ju. Enhanced Throughput and QoS Fairness for Two-Hop IEEE 802.16j Relay Networks, Journal of Communications and Networks, Volume 13, Issue 1. February 2011,pp:91-95.
    [87]W. Wang, Z. Guo, J. Cai, X. Shen, and C. Chen, Multiple Frequency Reuse Schemes in the Two-hop IEEE 802.16J Wireless Relay Networks with Asymmetrical Topology, Journal of Computer Communications, Volume 32, Issue 11, July 2009, pp:1298-1305.
    [88]T. Liu, M. Rong, P. Li, D.Yu, Y. Xue, and E. Schulz, Radio Resource Allocation in Two-hop Cellular Relaying Network, IEEE 63rd Vehicular Technology Conference,2006. VTC2006-Spring, May 2006, pp:91-95.
    [89]G. Micallef, P. Mogensen, H. Scheck, Cell Size Breathing and Possibilities to Introduce Cell Sleep Mode. European wireless Conference,2010. EW 2010, April 2010, pp:111-115.
    [90]M. Ritesh, B. Jaber, and S. Ashwin. Cell Association and Interference Coordination in Heterogeneous LTE-A Cellular Networks, IEEE Journal on Selected Areas in Communications, Volume 28, Issue 9, December 2010, pp:1479-1489.
    [91]Z. Yang and Z. Niu, A New Relay Based Dynamic Load Balancing Scheme in Cellular Networks, IEEE 72nd Vehicular Technology Conference,2010. VTC2010-Fall, September. 2010, pp:91-95.
    [92]H. Baek and J. Jang, Dynamic Frame Scheduling with Load Balancing for IEEE 802.16j. International Conference on Wireless Communications and Signal Processing,2009. WCSP 2009. November 2009, pp:1-5.
    [93]S. Mohamed, A. Abdulkareem, and Mahmudur R, An Overview of Radio Resource Management in Relay-Enhanced OFDMA-Based Networks, IEEE Communications Surveys & Tutorials, Volume 12, Issue 3, September.2010, pp:422-438.
    [94]S. Hanmok and H. Jae, Joint Resource Allocation for Multiuser Two-Way OFDMA Relay Networks with Proportional Fairness, IEEE 76th Vehicular Technology Conference, 2011. VTC2011-Fall, September 2011, pp:1-5.
    [95]向征,方旭明,徐鹏.OFDMA无线多跳蜂窝网中的节能型资源分配策略.西南交通大学学报,2011,46(5):787-792.
    [96]3GPP TR 36.814. Further Advancements for EUTRA:Physical Layer Aspects. Valbonne:3GPP Organizational Press, June 2009.
    [97]K. Seong, M. Mohseni, and J. Cioffi, Optimal Resource Allocation for OFDMA Downlink Systems, IEEE International Symposium on Information Theory,2006. ISIT 2006, July 2006, pp:1394-1398.
    [98]K. Nassar, B. Pascal, and C. Philippe, Resource Allocation for Downlink Cellular OFDMA Systems-Part I:Optimal Allocation, IEEE Transactions on Signal Processing, Volume 58, Issue 2, February 2010, pp:720-734.
    [99]L. Wang, Y. Ji, F. Liu, and J. Li, Performance Improvement through Relay-Channel Partitioning and Reuse in OFDMA Multi-hop Cellular Networks, IEEE International Wireless Communications and Mobile Computing Conference,2008. IWCMC 2008, August 2008, pp:177-182.
    [100]M. Liang, F. Liu, Z. Chen, Y. Wang, and D. Yang, A Novel Frequency Reuse Scheme for OFDMA Based Relay Enhanced Cellular Networks, IEEE 69th Vehicular Technology Conference,2009. VTC2009-Spring, April 2010, pp:1-5.
    [101]W. Lee, M. Nguyen, and J. Jeong, An Orthogonal Resource Allocation Algorithm to Improve the Performance of OFDMA-based Cellular Wireless Systems using Relays, IEEE Consumer Communications and Networking Conference,2008. CCNC 2008, January 2008, pp:917-921.
    [102]Z. Zhao, X. Fang, Y. Zhu, and Y. Long, Two Frequency Reuse Schemes in OFDMA-TDD Based Two-Hop Relay Networks, IEEE Wireless Communications and Networking Conference,2010. WCNC 2010, April 2010, pp:1-6.
    [103]T. Nguyen and Y. Han, A Proportional Fairness Algorithm with QoS Provision in Downlink OFDMA Systems, IEEE Communication Letters, Volume 10, Issue 11, November 2006, pp:760-762.
    [104]Y. Zhou and N. Zein, Simulation Study of Fractional Frequency Reuse for Mobile WiMAX, IEEE 67th Vehicular Technology Conference,2008. VTC2008-Spring, May 2008, pp:2592-2595.
    [105]A. Sang, X. Wang, M. Madihian, and D. Gitlin, Coordinated load balancing, handoff/cell-site selection, and scheduling in multi-cell packet data systems, IEEE 10th Annual International Conference on Mobile Computing and Networking,2004, MobiCom 2004, September 2004, pp:302-314.
    [106]H. Zhang and S. Rangarajan, Joint Load Balancing, Scheduling, and Interference Mitigation in Multi-cell and Multicarrier Wireless Data Systems, IEEE 7th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, 2009, WiOPT 2009, June 2009, pp:1-10.
    [107]H. Wu, C. Qiao, S. De, and O. Tonguz, Integrated Cellular and Ad Hoc Relaying Systems:iCAR, IEEE Journal on Selected Areas in Communications, Volume 19, Issue 10, October 2001, pp:2105-2115.
    [108]G. Li, and H. Liu, Downlink radio resource allocation for multi-Cell OFDMA system, IEEE Transactions on Wireless Communications, Volume 5, Issue 12, December 2006, pp: 3451-3459.
    [109]Z. Zhang, Y. He, and E. Chong, Opportunistic Downlink Scheduling for Multiuser OFDM Systems, IEEE Wireless Communications and Networking Conference,2005. WCNC 2005, March 2005, pp:1206-1212.
    [110]K. Son, S. Chong, and G. Veciana, Dynamic Association for Load Balancing and Interference Avoidance in Multi-cell Networks, IEEE Transactions on Wireless Communications, Volume 8, Issue 7, July 2009, pp:3566-3576.
    [111]G. Pollhi, Trends in handover design, IEEE Communications Magazine, Volume 34, Issue 3, March 1996, pp:82-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700