无线多跳中继网络资源调度
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线多跳中继网络作为一种新兴网络架构,能够有效扩大宽带无线网络小区覆盖面积,提高链路质量,屏蔽位置和移动速度等条件影响为用户提供公平的高质量无线多媒体服务。然而,数据的多次转发引发了严重的系统容量问题。本文研究了中继网络结构特性与系统容量之间的联系,给出提高资源利用率的中继网络QoS架构,对其核心内容资源调度和准入控制问题的数学建模、算法设计和性能分析进行了全面研究。具体研究成果包括:
     首先,分析了两跳中继网络的结构及影响系统性能的因素,提出了保证用户QoS需求,随网络拓扑和干扰状况变化动态调整的自适应资源复用调度算法ARRS。为进一步研究中继网络结构与系统容量的量化关系奠定了基础。
     其次,深入分析一般化多跳中继网络结构,通过将图论染色理论扩展到加权混合图的多重染色WMMC问题,建立起中继网络结构特性与系统容量之间的联系。对WMMC问题进行了形式化定义、分类和加权色数定界的全面研究。建立起最小化调度时间为目标的中继网络调度问题和以求解加权色数为目标的WMMC问题的映射。以此为依据,设计了高效的多跳中继网络资源调度算法,并对算法性能进行了理论分析。
     最后,研究了中继网络准入控制问题,指出系统吞吐量与业务带宽需求的非线性关系造成中继网络和传统单跳网络准入控制的根本区别。建立了以资源调度为基础,结合中继选择的中继网络准入控制策略。设计了动态资源预留准入控制算法DBRAC,确保中继网络满足多媒体业务QoS需求的同时,有效的降低切换业务的阻塞率,并且提高了系统资源的利用率。构造了中继网络业务流模型,为准入控制策略性能分析提供理论基础。
As a promising network architecture, wireless multihop relay network can efficiently enhance the coverage area of broadband wireless access network, improve the transmission links quality and provide fair high quality multimedia services for mobile users ignoring their locations and speeds. However, the relaying of duplicated user data between base station and relay stations leads to serious capacity degradation. In this paper, we study the connection between relay network structure and the system capacity, construct relay network QoS architecture to improve the resource utilization, and study the modeling, algorithm design and performance analysis for resource scheduling and admission control. The contributions of our work are as follows:
     Firstly, we analyze two-hop relay network structure characteristics, based on which we propose an adaptive resource reuse scheduling (ARRS) algorithm with the goal of enhancing the system capacity for relay network, which supports arbitrary topology and relay stations mobility.
     Secondly, we analyze general multihop relay network architecture and establish the connection between relay network scheduling and graph coloring by extending the coloring problem to the direction of weighted mixed graph multicoloring (WMMC). We formulate formal definitions and classifications for WMMC and study the bounds on the weighted chromatic numbers. Thus, a relay network scheduling problem to minimize the completion time is mapped into WMMC with the object of obtaining the weighted chromatic numbers. Based on the mathematical model, we design high efficient scheduling algorithms and propose the performance analysis.
     Finally, we study the relay network admission control and point out that the nonlinear relation between system throughput and traffic connection bandwidth request tells the admission control for relay network from that for single-hop cellular network. We establish relay network admission control mechanism based on both resource scheduling and relay selection. We design dynamic bandwidth reservation admission control (DBRAC) algorithm to satisfy the QoS requirements of all services and decrease blocking probability for handoff traffics while improving the resource utilization of the system. And we develop relay network traffic flow model for analyzing the performance of admission control algorithms.
引文
[1] 3GPP TS 25.308 v5.7.0. High Speed Downlink Packet Access; Overall Description; Stage 2 (Release 5). Dec. 2004.
    [2] IEEE Std 802.16-2004. Air Interface for Fixed Broadband Wireless Access Systems. Oct. 2004.
    [3] A. Ghosh, D.R. Wolter, J.G. Andrews, R. Chen. Broadband wireless access with WiMax/802.16: current performance benchmarks and future potential. IEEE Commun. Mag., vol. 43, no. 2, pp.129-136, Feb. 2005.
    [4] Telecommunications Technology Association 2.3GHz Portable Internet Project Group (PG302). 2.3GHz Portable Internet (WiBro) Overview. Aug. 2004.
    [5] ITU-R. Framework and overall objectives of the future development of IMT-2000 and systems beyond IMT-2000. Recommendation M.1645, 2003.
    [6] IEEE 802.16. P802.16m Project Authorization Request: Advanced IEEE 802.16 Air Interface. IEEE 802.16-06/054r4, Nov. 2006.
    [7] B.Walke. Mobile Radio Networks: Networking, Protocols and Traffic Performance. ISBN: 0-471-49902-1. John Wiley & Sons, Chichester, UK, 2nd edition, 2002.
    [8] WiMAX Forum. Mobile WiMAX Part I: A Technical Overview and Performance Evaluation. Feb. 2006.
    [9] H. Yanikomeroglu. Fixed and Mobile Relaying Technologies for Cellular Networks. 2nd Wksp. Apps and Svcs. in Wireless Networks, Paris, France, Jul. 2002, pp. 75-81.
    [10] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless Sensor Networks: A Survey. Computer Networks, vol. 38, no. 4, pp. 393-422, Mar. 2002.
    [11] I. F. Akyildiz, X. Wang, and W. Wang. Wireless mesh networks: a survey. Computer Networks, vol. 47, no. 4, pp. 445-487, Mar. 2005.
    [12] D. Cavalcanti, C. Cordeiro, D. Agrawal, B. Xie, and A. Kumar. Issues in Integrating Cellular Networks, WLANs, and MANETs: A Futuristic Heterogeneous Wireless Network. IEEE Wireless Communications, vol.12, no.3, pp. 30-41, Jun. 2005.
    [13] H. Luo, R. Ramjee, P. Sinha, Li Li, and S. Lu. UCAN: A Unified Cellular and Ad-Hoc Network Architecture. Proceedings of the Annual International Conference on Mobile Computing and Networking, MobiCom'03, San Diego, USA, Sep. 2003.
    [14] G. Aggelou and R. Tafazolli. On the Relaying Capacity of Next-Generation GSM Cellular Networks. IEEE Personal Communications, vol.8, no.1, pp. 40-47, Feb. 2001.
    [15] 3GPP TR 25.924 V1.0.0. Opportunity Driven Multiple Access. Dec. 1999.
    [16] Y. Lin and Y. Hsu. Multi-Hop Cellular: A New Architecture for Wireless Communications. Proceedings of IEEE INFOCOM, Tel-Aviv, Israel, Mar. 2000, pp. 1273-1282.
    [17] X.-X. Wu, S.-H. Chan, and B. Mukherjee. MADF: A Novel Approach to Add an Ad-hoc Overlay on a Fixed Cellular Infrastructure. Proceedings of IEEE Wireless Communications and Networking Conference, Chicago, USA, 2000. pp. 549-554.
    [18] H. Hsieh and R. Sivakumar. Performance Comparison of Cellular and Multi-hop Wireless Networks: A Quantitative Study. Proceedings of the Joint International Conference on Measurement and Modeling Computer Systems (ACM SIGMETRICS), Cambridge, MA, USA, Jun.2001.
    [19] H-Y. Wei and R. D. Gitlin. Two-Hop-Relay Architecture for Next-Generation WWAN/WLAN Integration. IEEE Wireless Communications, vol.11, no.2, Apr. 2004.
    [20] N. Esseling, H. S. Vandra, and B. Walke. A Forwarding Concept for HiperLAN/2. Proc. Euro. Wireless, Sep. 2000, Dresden, Germany, pp. 13-18.
    [21] H. Wu, C. Qiao, S. De, and O. Tonguz. Integrated Cellular and Ad Hoc Relaying Systems: iCAR. IEEE Journal on Selected Areas in Communication, vol.19, no. 10, pp. 2105-2115, Oct. 2001.
    [22] R. Pabst, B.H. Walke, D.C. Schultz, P. Herhold, H. Yanikomeroglu, S. Mukherjee, H. Viswanathan, M. Lott, W. Zirwas, M. Dohler, H. Aghvami, D.D. Falconer and G.P. Fettweis. Relay-based deployment concepts for wireless and mobile broadband radio. IEEE Commun. Mag., vol. 42, no. 5, pp.80 - 89, Sep. 2004.
    [23] IEEE 802.16. P802.16j Project Authorization Request: Amendment to IEEE standard for local and metropolitan area networks - Part 16: Air interface for fixed and mobile broadband wireless access systems - multihop relay specification.
    [24]B.Walke and G.Briechle.A Local Cellular Radio Network for Digital Voice and Data Transmission at 60 GHz.Proc.Int;l.Conf Cellular and Mobile Commun.,London,U.K.,Nov.1985,pp.215-25.
    [25]B.Walke,R.Pabst,and D.Schultz.A Mobile Broadband System Based on Fixed Wireless Routers.Proc.Int'l.Conf Commun.Tech.,2003,Beijing,China,pp.1310-17.
    [26]A.N.Zadeh and B.Jabbari.Performance Analysis of Multihop Packet CDMA Cellular Networks.Proc.IEEE GLOBECOM,San Antonio,TX,Nov.2001,vol.5,pp.2875-79.
    [27]E.C.Van der Meulen.Three-terminal communication channel.Adr.Applied Probability,vol.3,pp.120-154,1971.
    [28]A.El Gamal.Capacity of a class of broadcast channels.IEEE Transactions on Information Theory,vol.25,no.2,pp.166-169,Mar.1979.
    [29]T.M.Cover and A.El Gamal.Capacity theorems for the relay channels.IEEE Transactions on Information Theory,voi.25,no.5,pp.572-584,Sep.1979.
    [30]T.M.Cover and A.El Gamal.The capacity of the semideterministic relay channels.IEEE Transactions on Information Theory,vol.28,no.3,p.536,May 1982.
    [31]Z.Zhang.Partial converse for a relay channel.IEEE Transactions on Information Theory,vol.34,no.5,pp.1106-1110,Sep.1988.
    [32]Y.Iraqi and R.Boutaba.Resource management issues in future wireless multimedia networks.J.High Speed Networking,vol.9,no.3-4,pp.231-260,2000.
    [33]V.Sreng,H.Yanikomeroglu and D.D.Falconer.Relayer Selection strategies in cellular networks with peer-to-peer relaying.IEEE 58th Vehicular Technology Conference,2003-Fall,vol.3,pp.1949-1953,Oct.2003.
    [34]D.Schultz,R.Pabst,and T.Irnich.Multi-hop based Radio Network Deployment for efficient Broadband Radio Coverage.Proc.WPMC,Yokosuka,Japan,Oct.2003
    [35]J.Cho and Z.J.Hass.On the throughput enhancement of the downstream channel in cellular radio networks.IEEE Journal on Selected Areas in Communications,vol.22,no.7,pp.1206-1219,Sep.2004.
    [36]T.Irnich,D.Schultz,R.Pabst,and P.Wienert.Capacity of a Relaying Infrastructure for Broadband Radio Coverage of Urban Areas.Proc.VTC-Fall.2003
    [37]D.Schultz,B.Walke,R.Pabst,and T.Imrich.Fixed and planned relay based radio network deployment concepts.WWRF,New York,USA,2003.
    [38]W-P Chen et al.Estimation of the initial interference matrix.IEEE C802.16j-06/148,IEEE 802.16 meeting #46,Dallas,.Nov.2006.
    [39]W-P Chen,C.Zhu,C-F Su,and J.Agre.Resource reuse and interference management mechanism.IEEE C802.16j-06/149,IEEE 802.16 meeting #46,Dallas,Nov.2006.
    [40]Peter Wang and Tony Reid.Relay-station power control and channel reuse.IEEE C802.16j-06/216,IEEE 802.16 meeting #46,Dallas,Nov.2006.
    [41]Khurram Rizvi,Yong Sun,Dharma Basgeet,Zhong Fan,Paul Strauch.Fractional Frequency Reuse for IEEE802.16j Relaying Mode.IEEE C802.16j-06/223,IEEE 802.16meeting #46,Dallas,Nov.2006.
    [42]W.H.Park,S.Bahk.Resource management policies for fixed relays in cellular networks.IEEE Global Telecommunications Conference,Nov.27-Dec.1,2006.
    [43]H.Viswanathan and S.Mukherjee.Performance of Cellular Networks with Relays and Centralized Scheduling.Proc.IEEE VTC,Orlando,FL,Oct.2003.
    [44]D.Hong and S.S.Rappaport.Traffic Model and Performance Analysis for Cellular Mobile Radio Telephone Systems with Prioritized and Non-Prioritized Handoff Procedures.IEEE Trans.Vehicular Technology,vol.35,no.3,pp.77-92,1986.
    [45]B.Epstein and M.Schwartz.Reservation strategies for multi-media traffic in a wireless environment.IEEE 45th Vehicular Technology Conference,Chicago,IL,Jul.1995.
    [46]R.Ramjee,D.Towsley,and R.Nagarajan.On Optimal Call Admission Control in Cellular Networks.Wireless Networks,vol.3,pp.29-41,I997.
    [47]B.Li,C.Lin,and S.Chanson.Analysis of a Hybrid Cutoff Priority Scheme for Multiple Classes of Traffic in Multimedia Wireless Networks.Wireless Networks(WINET),vol.4,no.4,Aug.1998.
    [48]M.Naghshineh and M.Schwartz.Distributed call admission control in mobile/wireless networks.IEEEJ Select.Areas Commun.,vol.14,pp.711-717,May 1996..
    [49]O.T.W.Yu and V.C.M.Leung.Adaptive resource allocation for prioritized call admission over an ATM-based wireless PCN.IEEE J.Select.Areas Commun.,vol.15,pp.1208-1225,Sep.1997.
    [50]Y.Fang.Thinning algorithms for call admission control in wireless networks.IEEE Transactions on Computers,vol.52,no.5,pp.685-687,May.2003.
    [51] Jianfeng Chen, Wenhua Jiao and Qian Guo. Providing Integrated QoS Control for IEEE802.16 Broadband Wireless Access Systems. IEEE 62nd Vehicular Technology Conference, vol. 2, pp. 1254-1258, Sept. 2005
    [52] Jonny Sun, Yanling Yao and Hongfei Zhu. Quality of Service Scheduling for 802.16 Broadband Wireless Access Systems. IEEE 63rd Vehicular Technology Conference, 2006. 3:1221-1225.
    [53] J. N. Laneman, D. N. C. Tse, and G. W. Wornell. Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062-3080, Dec. 2004.
    [54] J. Cai, X. Shen, J.W. Mark, et al. Resource allocation in wireless relay networks. IEEE Global Telecommunications Conference, Nov. 27-Dec.1, 2006.
    [55] Ahmed S. Ibrahim, Ahmed K. et al. Relay selection in multi-node cooperative communications: when to cooperate and whom to cooperate with. IEEE Global Telecommunications Conference, Nov. 27-Dec. 1,2006.
    [56] T. Chiu-Yam, W. Yu. Joint optimization of relay strategies and resource allocations in cooperative cellular networks. IEEE Journal on Selected areas in Communications, vol. 25, no. 2, pp. 328-339, Feb. 2007.
    [57] F.H.P. Fitzek and M.D. Katz. Cooperation in Wireless Networks: Principles and Applications. Springer, 2006, ch.12.
    [58] Amotz Bar-Noy, Magnus M.Halldorsson, Guy Kortsarz, Ravit Salman and Hadas Shachnai. Sum Multicoloring of Graphs. Journal of Algorithms, vol. 37, no. 2, pp. 422-450, Nov. 2000.
    [59] S. Acharya and B. Smith. An experiment to characterize videos stored on the web. In Proc. of ACM/SPIE Multimedia Computing and Networking, Jan. 1998.
    [60] S. Nahle, L. Iannone, B. Donnet, and T. Friedman. Investigating depth-fanout trade-off in WiMAX mesh networks, in Proc. 1st WEIRD Workshop, May 2007.
    [61] J. Tao, F. Liu, Z. Zeng, and Z. Lin. Throughput Enhancement in WiMax Mesh Networks Using Concurrent Transmission. in International Conference on Wireless Communications, Networking and Mobile Computing, Sep 2005, pp. 871-874.
    [62] M. Cao, V. Raghunathan, and P. R. Kumar. A tractable algorithm for fair and efficient uplink scheduling of multi-hop wimax mesh networks. In Proceedings of 2nd IEEE Workshop on Wireless Mesh Networks (WiMesh 2006), Sep. 2006.
    [63] Chen, J., Chi, C, Guo, Q. A bandwidth allocation model with high concurrence rate in ieee802.16 mesh mode. Proc. IEEE Asia-Pacific Conference on Communications, 2005
    [64] Y.N. Sotskov and V.S. Tanaev. Chromatic polynomial of a mixed graph. Vestsi Akademii Navuk BSSR, Seriya Fiz.-Mat Navuk 6, pp.20-23. 1976
    [65] P. Hansen, J. Kuplinsky and D. de Werra. Mixed graph colorings. Math. Meth. Oper. Res. 45, 145-160,1997.
    [66] B. Ries. Coloring some classes of mixed graphs. Discrete Applied Mathematics, vol. 155, no. 1,pp:l-6. Jan. 2007.
    [67] Y.N. Sotskov, V.S. Tanaev and F. Werner. Scheduling problems and mixed graph colorings. Optimization vol. 51, pp. 597-624, 2002.
    [68] Fawaz S. Al-Anzi. Using mixed graph coloring to minimize total completion time. Applied Mathematics and Computation, vol. 182, no. 2, pp. 1137-1148, Nov. 2006
    [69] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Reading, MA: Addison-Wesley, 2nd edition, 1989.
    [70] Parameswaran Ramanathan, Krishna M. Sivalingam, Prathima Agrawal, and Shalinee Kishore. Dynamic Resource Allocation Schemes During Handoff for Mobile Multimedia Wireless Networks. 1EEEJ. Select. Areas Commun., vol. 17, no. 7, Jul. 1999
    [71] Ahlswede R, Cai N, Li S Y R, et al. Network information flow. IEEE Transactions on Information Theory, 2000, vol. 46, pp. 1204-1216

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700