无线中继网络中的频率复用与中继选择研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
协作中继作为一种虚拟多天线技术,可以在慢衰无线信道中获取显著增益。最初,大多数解决方案需要通过设计分布式空时编码方案以实现同频段上中继传输的同时进行。然而,如果存在多个中继节点相互协作,复杂的分布式空时编码需要知道网络全局信息。由于这些困难的存在,本文采用可以获得与基于空时编码的协作中继相同分集-复用增益折中的机会中继来实现协作中继,即用户只与一个“最佳”中继节点协作。协作中继充分利用无线传输的广播特性,以低成本的构建方案显著提升了系统的容量、覆盖和可靠性,在无线传感器网络、无线Ad Hoc网络、无线Mesh网络以及移动蜂窝网络中有着广泛的应用前景。因此,本文以无线中继网络为研究背景,对其无线资源管理中的频率复用和中继选择进行了全面而深入的研究。
     在无线中继网络中,中继节点的增加使得数据从源节点到达目标节点的传输占用更多的无线资源。因此,为提高频谱利用率,需要使用较小的频率复用因子,例如同一小区内的不同中继节点使用相同的频率资源与其服务的移动终端进行通信。然而,这种资源复用使得无线中继网络存在较大的共道干扰。针对这个问题,本文在固定两跳蜂窝中继网络中提出一种基于静态资源规划的频率复用方法,在两种不同的中继复用准则下分别加以阐述,并进行理论与仿真分析。该方法通过频段在划分区域的特定分配及复用和方向性天线的使用,消除了小区内干扰,并最小化小区间干扰,最终提高小区的频谱效率。通过分析干扰分布,从直传用户和中继用户的信干噪比表达式中提取出影响共道干扰的关键参数:中继站与基站的发射功率之比。在优化的中继站和基站发射功率下,提出的频率复用方法较已有方法可以获得明显的频谱效率性能提升。
     由于无线中继网络的协作分集是通过节点之间的相互合作完成的,所以中继协作策略对系统性能至关重要。中继协作策略包括协作方式和中继选择,前者决定了协作条件和协作形式,而后者决定了协作对象。中继协作策略在设计时需要根据具体应用场景综合考虑节点自身性能、网络整体性能以及节点间公平性等因素,其设计将直接影响节点乃至整个网络的性能。本文在中继选择方面的工作分别针对基于中继站协作和用户协作的两种无线中继网络为背景展开。
     首先,研究了固定两跳蜂窝中继网络下的中继选择问题。提出一种分布式中继选择方法,该方法利用基于非合作博弈论的功率分配结果,即功率-效用对,在消耗能量最小化和数据速率最大化两个优化目标下分别对发射功率和数据速率进行联合优化。同时,该方法考虑了中继站的负载情况,不会导致小区负载失衡现象的出现。相对于基于信干噪比的中继选择算法,我们设计的两种中继选择算法在其优化目标上均获得了相应的增益,并保证了小区的负载平衡。
     其次,研究了用户协作无线中继网络的中继选择问题。推导出了中继节点在既定目标速率约束下是否可用的充分条件和必要条件。充分条件的应用可以缩减最佳中继节点的搜索时间,并降低计算复杂度,但有些许性能损失。提出两种基于不同开销的半分布式中继选择算法。这两种低复杂度、低开销算法均以中断概率为优化目标,同时确保源节点之间的公平性。开销较大算法较开销较小算法可以获得更好的容量性能。之后,将这两种算法应用到固定两跳蜂窝中继网络中。在这两种网络环境下,两种算法较现有算法均可以大幅降低中断概率,保证源节点之间的公平性,且至少没有容量损失。
Cooperative relay has been proposed as a way to form virtual antenna arrays that provide dramatic gains in slow fading wireless environments. However, most of the proposed solutions require simultaneous relay transmissions at the same frequency bands, using distributed space-time coding algorithms. Careful design of distributed space-time coding for the relay channel is usually based on global knowkedge of some network parameters or is usually left for future investigation, if there is more than one cooperative relay. We adopt opportunistic relaying that elimates the need for space-time coding and provides diversity gains on the order of the number of relays in the network. This scheme first selects the best relay from a set of M available relays and then uses this "best" relay for cooperation between the source and destination. Information theoretic analysis of outage probability shows that this scheme achieves the same diversity-multiplexing gain tradeoff as achieved by more complex schemes, where coordination and distributed space-time coding for M relay nodes is required. Cooperative relay is based on the broadcast nature of the wireless medium, which can promote the capacity, coverage and reliability without requiring significant infrastructure deployment costs. Hence, cooperative relay has been widely used in wireless sensor networks, wireless Ad Hoc networks, wireless Mesh networks and mobile cellular networks. Focus on wireless relay networks, we study the frequency reuse and relay selection these two wireless resource management techniques in this thesis.
     The cooperation between source and destination in wireless relay networks requires more wireless resources because of the relay links. Reducing frequency reuse factor is an effective way to improve spectral efficiency. For example, different relay nodes in the same cell serve their mobile stations by using the same frequency bands. However, these frequency reuse methods induce serious co-channel interference in wireless relay networks. We address this problem and propose a novel static frequcny reuse method for two-hop cellular relay networks with fixed relay stations. In this method, inter-cell interference is eliminated and intra-cell interference is minimized by special frequency bands allocation in divided regions and usage of directional antennas. This method is expounded and analyzed under two different relay reuse factors. Additionally, a key parameter, relay stations and base stations transmission power ratio r, is found in the signal to interference plus noise ratio (SINR) expressions of one-hop and two-hop mobile stations. When optimal r is used, the proposed frequency reuse method can achieve significant improvement on spectral efficiency compared to existing methods.
     Since cooperative diversity in wireless relay networks is accomplished by the cooperation among nodes, cooperative strategy is crucial to the system performance. Cooperative strategy is composed of cooperative mode and relay selection. The former one determines cooperative condition and cooperative manner, and the latter one determines cooperative objects. Cooperative strategy design should consider performance and fairness of nodes as well as system performance according to the application instances. We address the relay selection in wireless relay networks based on relay cooperation and user cooperation, separately.
     Firstly, we propose a decentralized relay selection method for two-hop cellular relay networks with fixed relay stations. By utilizing the results of non-cooperative power allocation game via pricing, i.e., power-utility pairs, joint optimation of transmission power and data rate is done under terminal energy consumption minimization and data rate maximization these two optimization objectives, in which load balancing solution is integrated. Simulations verify that the two proposed relay selection algorithms perform more advantages depending on the desired optimization objectives rather than the SINR-based relay selection algorithm, respectively.
     Secondly, beginning with the derivation of a tight threshold-based sufficient condition on the feasibility of a relay node, i.e., ensure that user relaying via the node can achieve its target rate, two semi-distributed relay selection algorithms with different system overhead are proposed for user cooperation based wireless relay networks. Both algorithms minimize outage probability and ensure the fairness among sources with low computational complexity and system overhead. The algorithm with high system overhead has better capacity than the one with low system overhead. Then, we apply these two algorithms in two-hop cellular relay networks with fixed relay stations. In these two application instances, both algorithms can decrease outage probability significantly; ensure the sources'fairness and keep capacity at least compared to existing algorithms.
引文
[1]Holma H, Toskala A. WCDMA技术与系统设计:第三代移动通信系统的无线接入.机械工业出版社,2005
    [2]李世鹤.TD-SCDMA第三代移动通信系统标准.人民邮电出版社,2003
    [3]杨大成等.CDMA2000 lx移动通信系统.机械工业出版社,2003
    [4]常永宇等.TD-HSPA移动通信技术.人民邮电出版社,2008
    [5]沈嘉,索士强,全海洋.3GPP长期演进(LTE)技术原理与系统设计.人民邮电出版社,2008
    [6]尹长川,罗涛,乐光新.多载波宽带无线通信技术.北京邮电大学出版社,2004
    [7]Meylen E C. Transmission of information in a T-terminal discrete memoryless channel [Dissertation] USA, University of California at Berkeley,1969
    [8]Meylen E C. Three-terminal communication channels. Advances in Applied probability, 1971,3(1):120-154
    [9]Sati H. Information transmission through a channel with relay. The Aloha System, University of Hawaii,1976
    [10]Cover T, Gamal A E. Capacity theorems for the relay channel. IEEE Transactions on Information Theory,1979,5(5):572-584
    [11]仇佩亮.信息论与编码.高等教育出版社,2003
    [12]Gasptpar M, Kramer G, Gupta P. The multiple-relay channel: coding and antenna-clustering capacity. In: Proceedings of IEEE International Sysmposium on Information Theory 2002 (ISIT 2002), Lausanne, Switzerland,2002.136
    [13]Gasptpar M, Vetterli M. On the capacity of Gaussian relay networks. In: Proceedings of IEEE International Sysmposium on Information Theory 2002 (ISIT 2002), Lausanne, Switzerland,2002.195-199
    [14]Gasptpar M, Vetterli M. On the asymptotic capacity of wireless networks:the relay case. In:Proceedings of IEEE Conference on Computer Communications 2002 (INFOCOM 2002), New York, USA,2002.1577-1586
    [15]Gupta P, Kumar P R. Towards and information theory of large networks:an achievable rate region. IEEE Transactions on Information Theory,2003,49(8):1877-1894
    [16]Gamal A E, Zahedi S. Minimum energy communication over a relay channel. In: Proceedings of IEEE International Sysmposium on Information Theory 2003 (ISIT 2003), Yokohama, Japan,2003.344-348
    [17]Mdsen A H, Zhang J. Capcity bounds and power allocation for wireless relay channels. IEEE Transactions on Information Theory,2005,51(6):2020-2040
    [18]Wang B, Zhang J, Mdsen A H. On the capcity of MIMO relay channels. IEEE Transactions on Information Theory,2005,51(1):29-43
    [19]Gamal A E, Zahedi S. Capcity of a class of relay channels with orthogonal components. IEEE Transactions on Information Theory,2005,51(5):1815-1817
    [20]Zahedi S, Mohseni M, Gamal A E. On the capcity of AWGN relay channels with linear relaying functions. In:Proceedings of IEEE International Sysmposium on Information Theory 2004 (ISIT 2004), Chicago, USA,2004.399-403
    [21]Kramer G, Gastpar M, Gupta P. Cooperation strategies and capacity theorems for relay networks. IEEE Transactions on Information Theory,2005,51(9):3037-3063
    [22]Kramer G Models and theory for relay channels with receive constraints. In: Proceedings of 42nd Annual Allerion Conference on Communication, Control and Computing, Monticello, IL,2004.1312-1321
    [23]Smith B, Vishwanath S. Cooperative communication in sensor networks:relay channels with coorelated sources. In:Proceedings of 42nd Annual Allerion Conference on Communication, Control and Computing, Monticello, IL,2004
    [24]Winters J H. On the capacity of radio communication systems with diversity in Rayleigh fading environment. IEEE Journal on Selected Areas in Communications,1987. 5(5):871-878
    [25]Paulraj A, Nabar R, Gore D. Introduction to space-time wireless communication. Cambridge University Press,2003
    [26]Alamouti S M. A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications,1998.16(8):1451-1458
    [27]Foschini G J. Layered space-time architechture for wireless communication in a fading environment when using multiple antennas. Bell Labs Technical Journal,1996.1(2): 41-59
    [28]Zheng L, Tse D N C. Diversity and multiplexing: A fundamental tradeoff in multiple antenna channels. IEEE Transactions on Information Theory,2003,49(5):1073-1096
    [29]Zheng L. Diversity-multiplexing tradeoff: A comprehensive view of multiple antenna system. [Dissertation] USA, University of California at Berkeley,2002
    [30]Yao H, Wornell G W. Structured space-time block codes with optimal diversity-multiplexing tradeoff and minimum delay. In: Proceeding of IEEE Global Communications Conference 2003 (GLOBECOM 2003), San Francisco, USA,2003. 1941-1945
    [31]Sendonaris A, Erkip E, Aazhang B. User cooperation diversity-part I: System description. IEEE Transactions on Communications,2003,51(11):1927-1938
    [32]Sendonaris A, Erkip E, Aazhang B. User cooperation diversity-part II: Implementation aspects and performance analysis. IEEE Transactions on Communications,2003,51(11): 1939-194
    [33]Laneman J N, Tse D N C, Wornell G W. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory,2004, 50(12):3062-3080
    [34]Laneman J N. Cooperative diversity in wireless networks:algorithm and achitechture. [Dissertation] USA, Massachusetts Institute of Technology,2002
    [35]Laneman J N, Wornell G W. Distributed space-time coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory, 2003,49(10):2415-2525
    [36]Azarian, K, Gamal H E, Schniter P. On the achievable diversity-multiplexing tradeoff in half-duplex cooperative channels. IEEE Transactions on Information Theory,2005, 51(12):4152-4172
    [37]Gamal H E, Caire G, Damen M O. Lattice coding and decoding achieve the optimal diversity-multiplexing tradeoff of MIMO channels. IEEE Transactions on Information Theory,2004,50(6):968-985
    [38]Nabar R U, Bolcskei H, Kneubuhler F W. Fading relay channels:Performance limits and space-time signal design. IEEE Journal on Selected Areas in Communications,2004, 22(6):1099-1109
    [39]Jing Y, Hassibi B. Distributed space-time coding in wireless relay networks. IEEE Transactions on Wireless Communications,2006,5(12):3524-3536
    [40]Mergen B S, Scaglione A. Randomized space-time coding for distributed cooperative communication. IEEE Transactions on Signal Processing,2007,55(10):5003-5017
    [41]Bletsas A, Lippman A, Reed D P. A Simple distributed method for relay selection cooperative diversity wireless networks, based on reciprocity and channel measurements. In:Proceedings of IEEE Vehicle Technology Conference 2005 (VTC 2005), Stockholm, Sweden,2005.1484-1488
    [42]Bletsas A, Khisti A, Reed D P, et al. A simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas in Communications,2006,24(3): 659-672
    [43]Bletsas A. Intelligent antenna sharing in cooperative diversity wirelessnetworks. [Dissertation] USA, Massachusetts Institute of Technology,2005
    [44]Cui S, Haimovich A M, Somekh O, et al. Decentralized two-hop opportunistic relaying with limited channel state information. In:Proceedings of IEEE International Sysmposium on Information Theory 2008 (ISIT 2008), Toronto, Canada,2008.1323-1327
    [45]Cui S, Haimovich A M, Somekh O, et al. Opportunistic relaying in wireless networks. IEEE Transactions on Information Theory,2009,55(11):5121-5137
    [46]Barriac G, Mudumbai R, Madhow U. Distributed beamforming for information transfer in sensor networks. In:Proceedings of Information Processing in Sensor Networks 2004 (IPSN 2004), Berkeley, USA,2004.81-88
    [47]Ochiai H, Mitran P, Poor H V, et al. Collaborative beamforming for distributed wireless ad hoc sensor networks. IEEE Transactions on Signal Processing,2005,53(11): 4110-4124
    [48]Brown D R, Prince G B, McNeill J A. A method for carrier frequency and phase synchronization of two autonomous cooperative transmitters. In:Proceedings of IEEE Workshop on Signal Processing Advances in Wireless Communications 2005 (SPAWC 2005), New York, USA,2005.260-264
    [49]Ibrahim A S, Sadek A K, Su W, et al. Cooperative communications with partial channel state information:When to cooperate. In:Proceedings of IEEE Global Communications Conference 2005 (GLOBECOM 2005), Saint Louis, USA,2005. 3068-3072
    [50]Ibrahim A S, Sadek A K, Su W, et al. Relay selection in multi-node cooperative communications:when to cooperate and whom to cooperate with. In:Proceedings of IEEE Global Communications Conference 2006 (GLOBECOM 2006), San Francisco, USA, 2006.1-5
    [51]Ibrahim A S, Sadek A K, Su W, et al. Cooperative communications with relay selection: when to cooperate and whom to cooperate with. IEEE Transactions on Wireless Communications,2008,7(7):2814-2827
    [52]Hwang K, Ko Y, Alouini M. Performance analysis of incremental relaying with relay selection and adaptive modulation over non-identically distributed cooperative paths. In: Proceedings of IEEE International Sysmposium on Information Theory 2008 (ISIT 2008), Toronto, Canada,2008.2678-2682
    [53]Hwang K, Ko Y, Alouini M. Performance analysis of opportunistic incremental relaying with adaptive modulation over cooperative networks. In:Proceedings of IEEE International Symposium on Wireless Pervasive Computing 2008 (ISWPC 2008), Santorini, Greece,2008.586-590
    [54]Tannious R, Nosratinia A. Spectrally efficient relay selection protocols in wireless networks. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing 2008 (ICASSP 2008), Las Vegas, USA,2008.3225-3228
    [55]Tannious R, Nosratinia A. Spectrally efficient relay selection with limited feedback. IEEE Journal on Selected Areas in Communications,2008,26(8):1419-1428
    [56]Liu Z, Stankovic V, Xiong Z. Wyner-Ziv coding for the half-duplex relay channel. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing 2005 (ICASSP 2005), Philadelphia, USA,2005.1113-1116
    [57]Katz M, Shamai S. Relaying protocols for two collocated users. IEEE Transactions on Information Theory,2006,52(6):2329-2344
    [58]Hunter T E, Nosratinia A. Cooperation diversity through coding. In:Proceeding of IEEE International Sysmposium on Information Theory 2002 (ISIT 2002), Lausanne, Switzerland,2002.220
    [59]Hunter T E, Nosratinia A. A coded cooperation under slow fading, fast fading and power control signals. In:Proceeding of Asiloma Conference on Systems and Computers 2002 (ACSC 2002), Lausanne, Switzerland,2002.118-122
    [60]Hunter T E, Nosratinia A. Performance analysis of coded cooperation diversity. In: Proceedings of IEEE International Communications Conference 2003 (ICC 2003), Anchorage, USA,2003.2688-2692
    [61]Nosratinia A, Hunter T E, Hedayat A. Cooperative communication in wireless networks. IEEE Communicaions Magazines,2004,42(10):74-80
    [62]Yu M, Li J. Is amplify and forward practically better than decode and forward or vice versa. In:Proceedings of IEEE Workshop on Signal Processing Advances in Wireless Communications 2005 (SPAWC 2005), New York, USA,2005.816-820
    [63]Bao X, Li J. Decode and forward:A new class of forwarding strategy for wireless relay channels. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing 2005 (ICASSP 2005), Philadelphia, USA,2005.365-368
    [64]Janani M, Hedayat A, Hunter T E, et al. Coded cooperation in wireless communications:space-time transmission and iterative decoding. IEEE Transactions on Signal Processing,2004,52(2):362-371
    [65]Alazem F, Frigon J F, Haccoun D. Adaptive coded cooperation in wireless networks. In:Proceedings of International Wireless Communications and Mobile Computing Conference 2008 (IWCMC 2008), Crete Island, Greece,2008.899-904
    [66]Molisch A F, Win M Z. MIMO systems with antenna selection-An overview. IEEE Microwave Magazines,2004,5(1):46-56
    [67]Madan R, Mehta N B, Molisch A F, et al. Energy-efficient cooperation relaying over fading channels with simple relay selection. In: Proceedings of IEEE Global Communications Conference 2006 (GLOBECOM 2006), San Francisco, USA,2006.1-6
    [68]Madan R, Mehta N B, Molisch A F, et al. Energy-efficient cooperation relaying over fading channels with simple relay selection. IEEE Transactions on Wireless Communications,2008,7(8):3013-3025
    [69]Nam S, Vu M, Tarokh V. Relay selection methods for wireless cooperative communications. In:Proceedings of IEEE Conference on Information Sciences and Systems 2008 (CISS 2008), Princeton, USA,2008.859-864
    [70]Michalopoulos D S, Karagiannidis G K, Tsiftsis T A, et al. An optimized user selection method for cooperative diversity systems. In:Proceedings of IEEE Global Communications Conference 2006 (GLOBECOM 2006), San Francisco, USA,2006.1-6
    [71]Yi Z, Kim I. Decode-and-forward cooperative networks with relay selection. In: Proceedings of IEEE Vehicle Technology Conference 2007 (VTC 2007), Baltimore, MD, 2007.1167-1171
    [72]Yi Z, Kim I. Diversity order analysis of the decode-and-forward cooperative networks with relay selection. IEEE Transactions on Wireless Communications,2008,7(5): 1792-1799
    [73]Tajer A, Nosratinia A. Opportunistic cooperation via relay selection with minimal information exchange. In:Proceedings of IEEE International Sysmposium on Information Theory 2007 (ISIT 2007), Nice, France,2007.1926-1930
    [74]Bletsas A, Shin H, Win M Z. Outage optimality of opportunistic amplify-and-forward relaying. IEEE Communications Letters,2007,11(3):261-263
    [75]Bletsas A, Shin H, Win M Z. Outage analysis for cooperative communication with multiple amplify-and-forward relays. IET Electonics Letters,2007,43(6):51-52
    [76]Bletsas A, Shin H, Win M Z. Outage-optimal cooperative communications with regenerative relays. In: Proceedings of IEEE Conference on Information Sciences and Systems 2006 (CISS 2006), Princeton, USA,2006.632-637
    [77]Bletsas A, Shin H, Win M Z, et al. Cooperative diversity with opportunistic relaying. In: Proceedings of IEEE Wireless Communications and Networking Conference 2006 (WCNC 2006), Las Vegas, USA,2006.1034-1039
    [78]Bletsas A, Shin H, Win M Z. Cooperative communication with outage-optimal opportunistic relaying. IEEE Transactions on Wireless Communications,2007,6(9): 3450-3460
    [79]Barua B, Ngo H Q, Shin H. On the SEP of cooperative diversity with opportunistic relaying. IEEE Communications Letters,2008,12(10):727-729
    [80]Le L, Hossain E. Multihop cellular networks:potential gains, research challenges, and a resource allocation framework. IEEE Communications Magazines,2007,45(9):66-73
    [81]李扬,万屹.Relay技术在B3G/4G系统中的应用.现代电信科技,1,2007:15-18
    [82]张霄竞.无线中继在下一代移动通信系统中的应用.电信科学,9,2007:62-66
    [83]宋斌,何锟.Relay技术在LTE-Advanced系统中的应用.广东通信技术,12,2009:40-43
    [84]郑毅,李中年,王亚峰,杨大成.LTE-A系统中继技术研究.现代电信科技,6,2009:45-49
    [85]R1-082975. Application scenarios for LTE-Advanced relay.2008
    [86]R1-091098. WF on relaying operation for LTE-A.2009
    [87]R1-092264. Way forward for type II relay.2009
    [88]Wang T, Giannakis G B, Wang R. Smart regenerative relays for link-adaptive cooperative communications. IEEE Transactions on Communications,2008,56(11): 1950-1960
    [89]Cao Yi Qing, Wang Ya Feng, Liang Min, Yang Da Cheng, Wang Ya Fei. Performance of retransmission partner selection scheme for cooperative HARQ. In:Proceeding of IEEE Wireless Communications, Networking and Mobile Computing 2008 (WiCOM 2008). Beijing, China,2009.1-4
    [90]Li Y, Vucetic B, Zhou Z, et al. Distributed adaptive power allocation for wireless relay networks. IEEE Transactions on Wireless Communications,2007,6(3):948-958
    [91]Xiao L, Yik-Chung W, Serpeding E. Time synchronization in decode-and-forward cooperative communication systems. IEEE Transactions on Signal Processing,2009,57(4): 1444-1455
    [92]Ibrahim A S, Liu K J R. Mitigating channel estimating error with timing synchronization tradeoff in cooperative communications. IEEE Transactions on Signal Processing,2010,58(1):337-348
    [93]Gao F, Zhang R, Liang Y. Channel estimation for OFDM modulated two-way relay networks. IEEE Transactions on Signal Processing,2009,57(11):4443-4455
    [94]Rl-084297. Relaying with channel resource reuse and SIC for LTE-Advanced.2008
    [95]石璟.无线中继系统中的资源优化分配与合作策略研究[学位论文]浙江大学,2007
    [96]Jing Y, Jafarkhani H. Single and multiple relay selection schemes and their achievable diversity orders. IEEE Transactions on Wireless Communications,2009,8(3):1414-1423
    [97]韩静.无线中继系统中资源分配与切换机制的研究[学位论文]北京邮电大学,2008
    [98]Ahmed I, Peng M, Wang W. Performance analysis of an ARQ initialized cooperative communication protocol in shadowed Nakagami-m wireless channel. In:Proceedings of IEEE International Communications Conference 2008 (ICC 2008), Beijing, China,2008. 321-325
    [99]Mahinthan V, Rutagemwa H, Mark J W, et al. Performance of adaptive relaying schemes in cooperative diversity systems with ARQ. In: Proceedings of IEEE Global Communications Conference 2007 (GLOBECOM 2007), Washington, DC,2007. 4402-4406
    [100]Huang Fan, Wang Ya Feng, Wang Zhuo, Liang Min, Yang Da Cheng. Distributed and centralized scheduling for relaying systems under interference limited conditions. In: Proceeding of ACM International Wireless Communications and Mobile Computing 2009 (IWCMC 2009). Leipzig, Germany,2009.1269-1273
    [101]Kaneko M, Popovski P. Radio resource allocation algorithm for relay-aided cellular OFDMA system. In: Proceedings of IEEE International Communications Conference 2007 (ICC 2007), Glasgow, Scotland,2007.4831-4836
    [102]Awad M K, Shen X. OFDMA based two-hop cooperative relay network resource allocation. In: Proceedings of IEEE International Communications Conference 2008 (ICC 2008), Beijing, China,2008.4414-4418
    [103]Huang L, Rong M, Wang L, et al. Resource scheduling for OFDMA/TDD based relay enhanced cellular networks. In:Proceeding of IEEE Wireless Communications and Networking Conference 2007 (WCNC 2007), Hong Kong, China,2007.1546-1550
    [104]Kaneko M, Popovski P. Adaptive resource allocation in cellular OFDMA system with multiple relay stations. In: Proceedings of IEEE Vehicle Technology Conference 2007 (VTC 2007), Dublin, Ireland,2007.3026-3030
    [105]Kaneko M, Popovski P. Throughput-guaranteed resource allocation algorithm for relay-aided cellular OFDMA system. IEEE Transactions on Vehicular Technology,2009, 58(4):1951-1964
    [106]Hu H, Yanikomeroglu H, Falconer D, et al. Range extention without capacity penalty in cellular networks with digital fixed relays. In:Proceedings of IEEE Global Communications Conference 2004 (GLOBECOM 2004), Dallas, Texas,2004.3053-3057
    [107]Hu H. Performance analysis of cellular networks with digital fixed relays. [Dissertation] Canada, Carleton University,2003
    [108]Guan L, Zhang J, Li J, et al. Spectral efficient frequency allocation scheme in multihop cellular network. In: Proceedings of IEEE Vehicle Technology Conference 2007 (VTC 2007), Baltimore, MD,2007.1446-1450
    [109]Liu T, Rong M, Li P, et al. Radio resource allocation in two-hop cellular relying network. In: Proceedings of IEEE Vehicle Technology Conference 2006 (VTC 2006), Melbourne, Australia,2006.91-95
    [110]Liu T, Rong M, Shi H, et al. Reuse partitioning in fixed two hop cellular relaying network. In:Proceedings of IEEE Wireless Communications and Networking Conference 2006 (WCNC 2006), Las Vegas, NV,2006.177-182
    [111]Liu, T., Rong, M., Xue, Y, Wang, L. and Schulz, E.2007. User partitioning based resource assignment in half-duplex FDD relaying cellular networks. In:Proceedings of IEEE Vehicle Technology Conference 2007 (VTC 2007), Dublin, Ireland,2007.985-989
    [112]Lee W, Nguyen M, Jeong J, et al. An orthogonal resource allocation algorithm to improve the performance of OFDMA-based cellular wireless systems using relays. In: Proceedings of IEEE Consumer Communications and Networking Conference 2008 (CCNC 2008), Las Vegas, Nevada,2008.917-921
    [113]Oyman O. Opportunistic scheduling and spectrum reuse in relay-based cellular OFDMA networks. In:Proceedings of IEEE Global Communications Conference 2007 (GLOBECOM 2007), Washington, DC,2007.3699-3703
    [114]Liang Min, Wang Ya Feng, Yang Da Cheng. Spectrum reuse schemes for OFDMA cellular networks with fixed relay stations. In:Proceeding of IET International Conference on Wireless, Mobile and Multimedia Networks 2008 (ICWMMN 2008). Beijing, China, 2008.394-397
    [115]Liang Min, Liu Fang, Chen Zhe, Wang Ya Feng, Yang Da Cheng. A novel frequency reuse scheme for OFDMA based relay enhanced cellular networks. In:Proceeding of IEEE Vehicle Technology Conference 2009 (VTC 2009). Barcelona, Spain,2009.1-5
    [116]Liang Min, Wang Ya Feng, Yang Da Cheng. Spectrum reuse schemes for OFDMA cellular networks with fixed relay stations. In:Proceeding of IET International Conference on Wireless, Mobile and Multimedia Networks 2008 (ICWMMN 2008). Beijing, China, 2008.394-397
    [117]梁慜,董飞,王亚峰,杨大成.一种频率复用的方法及装置.中国.发明专利.申请号:200910085157
    [118]Yun S, Park S, Lee Y, Alsusa E, et al. Spectrum efficient region-based resource allocation with fraction loading for FH-OFDMA cellular systems. IET Electronics Letters, 2005,41(13)
    [119]Li P, Rong M, Liu T, et al. Interference modeling and analysis in two-hop cellular network with fixed relays in FDD mode. In: Proceedings of IEEE Wireless Communications, Networking and Mobile Computing 2005 (WCNM 2005), Wuhan, China, 2005.427-431
    [120]3GPP TS36.211.3rd generation partnership project technical specification group radio access network evolved universal terrestrial radio access (E-UTRA) physical channels and modulation (Release 8).2008
    [121]Zhao B, Valenti M C. Practical relay networks:a generalization of hybrid ARQ. IEEE Journal on Selected Areas in Commun,2005,23(1):7-18
    [122]Zorzi M, Rao R R. Geographic random forwarding for ad hoc and sensor networks: multihop performance. IEEE Transactions on Mobile Computing,2003,2:7-18
    [123]Kwon E, Lee J, Do M, et al. Comparison of symmetric and asymmetric routing for fixed two-hop cellular relaying network. IEEE Communications Letters,2007,11(5): 378-380
    [124]Beres E, Adve R. On selection cooperative in distributed networks. In:Proceedings of IEEE Conference on Information Sciences and Systems 2006 (CISS 2006), Princeton, USA,2006.1056-1061
    [125]Beres E, Adve R. Selection cooperation in multi-source cooperative networks. IEEE Transactions on Wireless Communications,2008,7(1):118-127
    [126]Lin Z, Erkip E, Stefanov A. Cooperative regions and partner choice in coded cooperative systems. IEEE Transactions on Communications,2006,54(7):1323-1334
    [127]Liu Y, Hoshyar R, Yang X, et al. Integrated radio resource allocation for multihop cellular networks with fixed relay stations. IEEE Journal on Selected Areas in Commun 2006,24(11):2137-2146
    [128]Zhao Y, Adve R, Lim T J. Improving amplify-and-forward relay networks:optimal power allocation versus selection. IEEE Transactions on Wireless Communications,2007, 6(8):3114-3123
    [129]Zhao Y, Adve R, Lim T J. Symbol error rate of selection amplify-and-forward relay systems. IEEE Communications Letters,2006,10(11):757-759
    [130]Lo C K, Jr R W, Vishwanath S. Hybrid-arq in multihop networks with opportunistic Relay Selection. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing 2007 (ICASSP 2007), Honolulu, USA,2007.617-620
    [131]Lo C K, Jr R W, Vishwanath S. Opportunistic relay selection with limited Feedback. In:Proceedings of IEEE Vehicle Technology Conference 2007 (VTC 2007), Dublin, Ireland,2007.135-139
    [132]Lo C K, Jr R W, Vishwanath S. The impact of channel feedback on opportunistic relay selection for hybrid-ARQ in wireless networks. IEEE Transactions on Vehicular Technology,2009,58(3):1255-1268
    [133]Tang T, Jr R W. Opportunistic Feedback for Downlink Multiuser Diversity. IEEE Communications Letters,2005,9(10):948-950
    [134]Shan H, Wang P, Zhuang W, et al. Cross-layer cooperative triple busy tone multiple access for wireless networks. In: Proceedings of IEEE Global Communications Conference 2008 (GLOBECOM 2008), New Orleans, USA,2008.1-5
    [135]Shan H, Wang P, Zhuang W. Distributed cooperative MAC for multihop wireless networks. IEEE Communications Magazines,2009,47(2):126-133
    [136]Zhang J, Zhuang H, Liang T, et al. A novel relay selection strategy for multi-user cooperative relaying networks. In:Proceedings of IEEE Vehicle Technology Conference 2009 (VTC 2009), Barcelona, Spain,2009
    [137]Liang Min, Huang Fan, Wang Ya Feng, Yang Da Cheng. Power-based routing for two-hop OFDMA cellular networks with fixed relay stations. In:Proceeding of IEEE Wireless Communications, Networking and Mobile Computing 2008 (WiCOM 2008). Dalian, China,2008.1-4
    [138]梁慜,王亚峰,杨大成.OFDMA无线中继网络中继选择算法研究.哈尔滨工业大学学报,41(11),2009:120-124
    [139]Saraydar C U, Mandayam N B, Goodman D J. Efficient power control via pricing in wireless data networks. IEEE Transactions on Communications,2002,50(2):291-303
    [140]Saraydar C U, Mandayam N B, Goodman D J. Pricing and power control in a multicell wireless data network. IEEE Journal on Selected Areas in Communications,2001, 19(10):1883-1892
    [141]Alpcan T, Basar T, Dey S. A power control game based on outage probabilities for multicell wireless data networks. IEEE Transactions on Wireless Communications,2006, 5(4):890-899
    [142]张天魁,曾志民,唐南等.一种用于OFDMA系统的多小区自适应资源分配算法.北京邮电大学学报,2007,5(30):67-71
    [143]张天魁,曾志民,张颖莹.基于博弈论的OFDMA系统多小区功率协调分配算法.通信学报,2008,29(1):22-29
    [144]Shi J, Yu G, Zhang Z, et al. Partial channel state information based cooperative relaying and partner selection. In:Proceeding of IEEE Wireless Communications and Networking Conference 2007 (WCNC 2007), Hong Kong, China,2007.976-980
    [145]Song S, Son K, Lee H, et al. Opportunistic relaying in cellular network for capacity and fairness improvement. In:Proceeding of IEEE Global Communications Conference 2007 (GLOBECOM 2007), Washington, DC, USA,2007.4407-4412
    [146]Nosratinia A, Hunter T E. Distributed protocols for user cooperation in multi-user wireless networks. In: Proceeding of IEEE Global Communications Conference 2004 (GLOBECOM 2004), Dallas, Texas,2004.3788-3792
    [147]Nosratinia A, Hunter T E. Grouping and partner selection in cooperative wireless networks. IEEE Journal on Selected Areas in Communications,2007,25(2):369-378
    [148]Liu D, Hao J, Yue G A practical cooperative diversity scheme based on opportunistic relaying with acknowledgement and random backoff. In:Proceedings of IEEE International Conference on Wireless and Mobile Communications 2008 (ICWMC 2008), Athens, Greece,2008.65-70
    [149]Hwang K, Ko Y An Efficient Relay Selection Algorithm for Cooperative Networks. In:Proceedings of IEEE Vehicle Technology Conference 2007 (VTC 2007), Baltimore, USA,2007.81-85
    [150]Kim J, Kim D. Performance analysis for amplify-and-forward opportunistic relaying with quality based channel state reporting. In: Proceedings of IEEE International Conference on Advanced Communication Technology 2008 (ICACT 2008), Gangwon-do, South Korea,2008.798-801
    [151]Bletsas A, Khisti A, Win M Z. Opportunistic cooperative diversity with feedback and cheap radios. IEEE Transactions on Wireless Communications,2008,7(5):1823-1827
    [152]Michalopoulos D S, Karagiannidis G K, Tsiftsis T A. Introducing PHY-layer fairness in amplify and forward cooperative diversity systems. In:Proceedings of IEEE International Communications Conference 2007 (ICC 2007), Glasgow, Scotland,2007. 4040-4045
    [153]Michalopoulos D S, Karagiannidis G K.PHY-layer fairness in amplify and forward cooperative diversity systems. IEEE Transactions on Wireless Communications,2008,7(3): 1073-1083
    [154]Chen C, Zheng B, Zhao X, et al. A novel weighted cooperative routing algorithm based on distributed relay selection. In: Proceedings of IEEE International Symposium on Wireless Pervasive Computing 2007 (ISWPC 2007), San Juan, Puerto Rico,2007.224-229
    [155]Fareed M M, Uysal M. A novel relay selection method for decode-and-forward relaying. In:Proceedings of IEEE Canadian Conference on Electrial and Computer Engineering 2008 (CCECE 2008), Niagara Falls, Canada,2008.135-139
    [156]Cai J, Shen X, Mark J W, et al. Semi-distributed user relaying algorithm for amplify and forward wireless relay networks. IEEE Transactions on Wireless Communications, 2008,7(4):1348-1357
    [157]梁慜,王亚峰,杨大成.多用户协同无线网络下中继选择算法研究.高技术通讯.已录用
    [158]梁慜,董飞,王亚峰,杨大成.一种中继选择的方法及装置.中国.发明专利.申请号:200910085198
    [159]Tang J, Zhang X. Cross-layer resource allocation over wireless relay networks for quality of service provisioning. IEEE Journal on Selected Areas in Communications,2007, 25(4):645-656
    [160]Krikidis I, Thompson J, Goertz N. A cross-layer approach for cooperative networks. IEEE Transactions on Vehicular Technology,2008,57(5):3257-3263

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700