煤燃烧矿物组合演化及其与重金属相互作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭是我国主要能源资源,大量煤炭的消耗对环境造成了严重的污染,汞、砷、铬等重金属和飞灰颗粒物的排放已对人类健康造成了巨大的危害。矿物质是煤的重要组成部分,其在燃煤过程中迁移转化行为对煤炭的安全有效利用和污染物的排放有着重大甚至决定性的影响。由于煤中矿物组分的复杂性,传统的经典燃烧学理论已很难准确深入的揭示其转化过程,因此,采用各种新兴的研究方法和技术手段系统研究矿物质演化过程已成为本领域目前研究的热点问题之一。
     本文以飞灰形成过程中矿物质的迁移转化为主线,将矿物学和煤岩学相关理论融入到经典燃烧学中,综合利用磁选、筛分、浮沉实验等分选方法对飞灰进行了系统分选处理,结合X射线衍射矿物定量分析、场发射扫描电镜结合X射线能谱、X射线荧光探针分析等对飞灰中主要的、典型的单组分高铝灰(铝质)、高钙灰(钙质)和磁性灰(铁质)颗粒的物理化学特性、微区结构特征和形成演化过程进行了详细的研究;建立了矿物定量熔融热分析方法,分析了矿物演化对灰熔融和颗粒物形成的影响:探讨了不挥发性元素铬和半挥发性元素砷与矿物的相互作用机制;调查了易挥发性元素汞与飞灰中各组分的相互作用机制,建立了飞灰吸附汞的动力学模型,为廉价飞灰脱除烟气中汞的技术奠定了理论基础。
     通过系统的沉降炉实验,分析了典型铝质矿物的转化规律,综合运用热分析、矿物学和晶体学等多学科理论,揭示了矿物晶格转变对超细颗粒物形成的影响,建立了微观晶体学结构特征与宏观颗粒物排放的关联和关系。勃姆石脱水形成γ-Al_2O_3,随着温度升高γ-Al_2O_3转化为过渡态θ-Al_2O_3,θ-Al_2O_3微晶在高温下形核长大形成α-Al_2O_3,随着温度的进一步升高,α-Al_2O_3进一步长大粗化,形成约100nm的小晶粒;α-Al_2O_3微晶的粗化长大对0.7μm左右的亚微米细颗粒的形成有重要影响。采用低温灰化、高温煅烧、热重分析研究了含钙矿物的迁移转化,揭示了不同钙质组分的形成演化机制;钙氧化物相主要源于煤中含钙碳酸盐的分解;钙硅铝酸盐相组成复杂,主要源于内在矿物的融合凝并以及外在含钙矿物与外在硅铝质矿物的烧结;钙硫酸盐相和Ca-S-X相是含钙矿物的自脱硫产物;外在含钙矿物易形成钙硫酸盐相;而内在含钙矿物易形成Ca-S-X相;Ca-S-X相主要源于脱硫产物CaSO_4与硅铝质的结合。综合采用HSC软件热力学和动力学模型计算预测了不同形态典型矿物的迁移转化行为,基于已有的动力学参数对单个黄铁矿颗粒的分解、氧化进行了全过程模拟,详细分析了铁质组分的演化机制,从理论上揭示了含铁矿物易沉积的主要原因;外在含铁矿物在燃煤过程中大都直接氧化形成铁氧化物相;内在含铁矿物与其他内在矿物在高温下熔合形成含Fe、Al、Si的复杂的玻璃相,玻璃相的化学组成主要取决于单个煤颗粒中内在含铁矿物与粘土矿物的含量比例。
     结合低温灰化X射线衍射矿物定量分析和经典热分析理论,发展了一种矿物熔融动力学方法,计算获得了矿物熔融曲线,与常规煤灰熔融性测定方法测出的灰熔点相比,采用该方法计算的灰熔融特征曲线能更好地反映灰熔融变化规律;揭示了煤中矿物熔融多阶段反应过程,从理论上证明了矿物熔融是逐渐加剧的过程。分析了矿物迁移转化对灰熔融的影响,揭示了灰熔融对颗粒物形成的影响。
     以典型高砷煤和高铬煤为研究对象,系统研究半挥发性重金属元素砷和不挥发性元素铬在煤燃烧后飞灰颗粒的富集行为及其与矿物组分的相互作用。煤中砷、铬的赋存形态对其在飞灰中的富集分布有重要影响;灰中主要元素钙、铁对重金属元素的迁移转化有重要影响。将煤岩学相关理论应用到飞灰颗粒分类,构建了飞灰碳质有机岩相组分的分类方法,并采用固定床反应系统调查了飞灰与汞的作用机制,分析了飞灰脱汞能力的影响因素,揭示了不同飞灰碳颗粒类型脱汞能力的差异;飞灰捕获汞能力与LOI含量并无明显关联,各向异性碳颗粒尤其是多孔网状结构碳含量是决定飞灰脱汞能力的主要因素;烟气中汞浓度、烟气流量、温度等反应工况对汞的捕获和氧化有重要影响;计算了三种动力学机理模型的动力学参数,分析调查了飞灰吸附Hg~0速率的控制机理,化学吸附是飞灰吸附汞的主要机理;揭示了飞灰对汞的氧化反应机制,识别了飞灰与汞作用的四类活性位,即:低能催化氧化活性位FA①、催化氧化活性位FA②、吸附活性位FA③和高能吸附活性位FA④;飞灰对汞的氧化机制以Mars-Maessen机制为主,无机组分中活性晶格氧是Hg~0氧化的重要的氧化剂。
     全文系统的分析了燃煤典型矿物演化成灰机制,从单矿物入手深入系统的揭示了煤燃烧过程中颗粒物的形成机理,发展了基于矿物定量熔融热分析方法,阐述了灰熔融动力学机理;探讨了重金属与矿物组分的作用机制,并揭示了飞灰对汞的吸附氧化机理,为廉价燃煤污染物联合脱除控制技术开发奠定了基础。
Coal is the mainly energy source in China, huge amount of coal utilization cause serious pollution to the environment. Especially for the emission of mercury and particulate matter which have caused damage to human health. Mineral matter is the mainly composition of the coal, the partition and transformation of minerals during coal combustion are responsible to the safe utilization and pollutant emission. The transformation process of mineral during coal combustion is still not well understood because of the complex mineral composition in coal. More and more novel methods and techniques are using to study the mineral partition.
     The object of the thesis is to clarify the transformation mechanism of minerals and trace elements during coal combustion. At the first, magnetic separation, seizing, and float-sinking procedures were used to separate the fly ash. X-ray diffraction, field scanning emission microscopy combine energy dispersive spectroscopy and X-ray fluorescence were used to analyze the physical-chemical characteristics and microstructures evolution mechanism of high aluminum fly ash, high-calcium fly ash, and ferrospheres. A mineral melting thermodynamic simulation method was developed to analyzer the influence of mineral transformation on ash melting and particle formation. The interactions of trace elements arsenic, chromium and mineral elements were studied, the capture and oxidation of mercury by fly ash was investigated, a mercury adsorption dynamic model was developed, which provide basement for pollution control in coal-fired power plants.
     The transformation of typical aluminum minerals in high temperature was investigated by systematic drop tube furnace (DTF) experiments and thermo gravimetric analysis. The phase transformation of boehmite in coal during high temperature treatment is undergone four stages include: boehimte dehydroxylation, transition phaseθ-Al_2O_3 formation, crystal nucleation andα-Al_2O_3 formation, and growth ofα-Al_2O_3 crystal. The DTF experimental results indicated that the growth ofα-Al_2O_3 crystal has significant impact on PM_1 emission. Mineralogy, crystallography and other multi-disciplinary theories were combined to reveal the influence of mineral lattice changes on the formation of ultra-fine particles, and establish the relationship of micro crystal structure and macro PM emission. Besides, lower temperature ashing, high temperature thermal gravimetric analysis was conducted to describe the formation mechanism of different calcium-bearing compounds. Calcium oxide phase is mainly derived from the decomposition of excluded calcium-bearing mineral, while calcium aluminosilicate phase is formed by the fusion of included calcium-bearing minerals. And both of calcium sulphate phase and Ca-S-X phase are the self-desulphurization production of calcium-bearing mineral, calcium sulphate phase is formed by the excluded calcium-bearing minerals easily; while Ca-S-X phase may derive from the fusion of included calcium-bearing minerals' self-desulphurization production and other minerals in coal. Then, thermodynamic calculation software HSC was used to calculate and predict the transformation of different mineral speciation during coal combustion. A kinetic model for describing single pyrite partition during coal combustion was developed. The partition process of iron-bearing mineral was studied and the influence factors on pyrite oxidation and sulfur release were discussed. The results show that pyrite particle can rise to the eutectic point in a short time in furnace, excluded iron-bearing minerals oxidized to form ferro-oxides, included iron-bearing minerals mixed with other minerals to form complicated Fe-Al-Si solid solutions, the transformation processes of Fe-bearing minerals were related to temperature, atmosphere, and the occurrence of Fe-bearing minerals. The formation of Fe~(2+) intermediate products and Fe-S-0 eutectic ash particles were the important sources of the initial layer which occur in deposits formed in coal burning systems. Based on the X-ray diffraction mineral quantitative analysis of low temperature ash and classical thermal analysis theory, a mineral melting dynamic method (MQRLSTA method) was developed to calculate mineral melting curve. Compared to the ash melting points measured by conventional methods, the mineral melting curve calculated using MQRLSTA method can reflect the melting process better. Mineral melting characteristic curves indicated mineral melting is multi-stage reaction process. The influences of mineral evolutions on ash melting and particle formation were described.
     With the aim of better understanding partition of semi-volatile trace element arsenic and non-volatile element chromium, combustion of two kinds of high-arsenic coals and high chromium coals was studied in a bench-scale drop tube furnace (DTF). The occurrences of arsenic and chromium in coal have significant effects on their enrichments on particles. The distribution of mainly mineral elements calcium and iron in the particles is also an important influence factors for the emission of trace elements during coal combustion. Petrography classification standard was applied to distinguish fly ash carbon, systematic experiments of fly ash capture mercury were conducted on a fixed-bed reactor to investigated the interaction between fly ash and mercury, the results imply that the carbon content is not the only variable that controls mercury capture in fly ashes, there are likely to be significant differences between the mercury-sorbing capacities of these various carbon forms. Hg capture capacity mainly depends on the content of anisotropy carbon particles with porous network structure. Compared to the organic carbon, the inorganic composition has less influence on Hg capture capacity of fly ash. Temperature, flow and Hg concentration in flue gas and other conditions has significant effect on Hg capture and oxidation. Three dynamic models were used to calculate mercury adsorption on fly ash, the oxidation mechanism was clarified. The reaction mechanism of mercury oxidation by fly ash is mainly Mars-Maessen reaction, the lattice oxygen in inorganic component of fly ash is the mainly oxidant.
     In summary, the evolution mechanisms of typical minerals in coal have been revealed; a mineral melting dynamic analysis method has been established, which would provide a theoretical basis to study mineral ash deposition in-depth. The interaction of mineral, fly ash, and trace elements is helpful for cheap pollution emission control technology development.
引文
[1]岑可法;樊建人;池作和,筋炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算.科学出版社:北京,1994;p 595.
    [2]Benson,S.A.;Sondreal,E.A.;Hurley,J.P.,Status of coal ash behavior research.Fuel Processing Technology 1995,44(1-3):1-12.
    [3]Walsh,P.M.;Sayre,A.N.;Loehden,D.O.;Monroe,L.S.;Beer,J.M.;Sarofim,A.F.,Deposition of bituminous coal ash on an isolated heat exchanger tube:Effects of coal properties on deposit growth.Progress in Energy and Combustion Science 1990,16(4):327-345.
    [4]www.epa.gov/mercury/index.html
    [5]Gary,M.;McAfee,R.;Wolf,C.L.,Glossary of geology.American Geological Institute:Washington,DC,1972;p 805
    [6]Harvey,R.D.;Ruth,R.R.,Mineral Matter in ILLinois and Other U.S.Coals.In American Chemical Society Symposium Series,ACS,Washington,DC:Philadelphia,PA,USA,1986;pp 10-40.
    [7]Finkelman,R.B.Modes of occurrence of trace elements in coal;No.OFR-81-99;U.S.Geological Survey Open-File Report:1981;p 322.
    [8]Ward,C.R.;Taylor,J.C.,Quantitative mineralogical analysis of coals from the Callide Basin,Queensland,Australia using X-ray diffractometry and normative interpretation.International Journal of Coal Geology 1996,30(3):211- 229.
    [9]Ward,C.R.,Analysis and significance of mineral matter in coal seams.International Journal of Coal Geology 2002,50(1-4):135-168.
    [10]Given,P.H.;Yarzab,R.F.,Analysis of the organic substance in coals:problems posed by the presence of mineral matter.In Analytical Methods for Coal and Coal Products,Karr,C.,Ed.Academic Press:New York,1978;Vol.Ⅱ,pp 3-41.
    [11]Hicks,D.;Nagelschmidt,G.,The chemical and X-ray diffraction analysis of the roof and clod from some South Wales seams and of the mineral matter in the coal.Medical Research Council Special Report 1943,244,153-185.
    [12]Nelson,J.B.,Assessment of mineral species associated with coal.British Coal Utilisation Research Association Monthly Bulletin 1953,17(2):21-55.
    [13]Brown,R.H.;Durie,R.A.;Schafer,H.N.S.,The inorganic constituents in Australian coals.Part 1,The direct determination of the total mineral matter content.Fuel 1959,38:295-308.
    [14]Ward,C.R.;Taylor,J.C.;Matulis,C.E.;Dale,L.S.,Quantification of mineral matter in the Argonne Premium coals using interactive Rietveld-based x-ray diffraction.International Journal of Coal Geology 2001,46(2-4):67- 82.
    [15]Gluskoter,H.J.,Electronic low temperature ashing of bituminous coal.Fuel 1965,44:285-291.
    [16]Frazer,F.W.;Belcher,C.B.,Quantitative determination of the mineral-matter content of coal by a radiofrequency -oxidation technique.Fuel 1973,52(1):41-46.
    [17]Standards Australia:Higher rank coal--mineral matter and water of constitution.In 2000;Vol.1038,p 20
    [18]Li,Y.CCSEM analysis of minerals in pulverised coal and ash formation modelling.University of Newcastle,2000.
    [19]Vassilev,S.V.;Vassileva,C.G.,Methods for characterization of composition of fly ashes from coal-fired power stations:A critical overview.Energy & Fuels 2005,19(3):1084-1098.
    [20]Creelman,R.A.;Agron-Olshina,N.;Gottlieb,P.The characterization of coal and the products of coal combustion using QEM-SEM:Final Report;National Energy Research,Development and Demonstration Program,Australian Department of Primary Industries and Energy:Canberra,1993;p 135.
    [21]Creelman,R.A.;Ward,C.R.,A scanning electron microscope method for automated,quantitative analysis of mineral matter in coal.International Journal of Coal Geology 1996,30(3):249-269.
    [22]Galbreath,K.;Zygarlicke,C.;Casuccio,G.;Moore,T.;Gottlieb,P.;Agron-Olshina,N.;Huffman,G.;Shah,A.;Yang,N.;Vleeskens,J.;Hamburg,G.,Collaborative study of quantitative coal mineral analysis using computer-controlled scanning electron microscopy.Fuel 1996,75(4):424-430.
    [23]Reed,S.J.B.,Electron Microprobe Analysis and Scanning Electron Microscopy in Geology.Cambridge Univ.Press:Cambridge,1996;p 201.
    [24]Minkin,J.A.;Chao,E.C.T.;Thompson,C.L.,Distribution of elements in coal macerals and minerals:Determination by electron microprobe.ACS Division of Fuel Chemistry,Preprints 1979,24(1-2):242-249.
    [25]Raymond,R.;Gooley,R.,Electron probe miroanalyser in coal research.In Analytical Methods for Coal and Coal Products,Karr,C.,Ed.Academic Press:New York,1979; Vol.Ⅲ,pp 337-356.
    [26]Patterson,J.H.;Corcoran,J.F.;Kinealy,K.M.,Chemistry and mineralogy of carbonates in Australian bituminous and subbiturninous coals.Fuel 1994,73(11):1735-1745.
    [27]Patterson,J.H.;Corcoran,J.F.;Kinealy,K.M.In Carbonate mineralogy of the Hoskissons seam and equivalents in the Sydney and Gunnedah Basins,Proceedings of the 29th Newcastle Symposium,"Advances in the Study of the Sydney Basin",Newcastle,New South Wales,Boyd,R.L.;McKenzie,G.A.,Eds.Department of Geology,University of Newcastle:Newcastle,New South Wales,1995;pp 94-101.
    [28]Zodrow,E.L.;Cleal,C.J.,Anatomically preserved plants in siderite concretions in the shale split of the Foord Seam:mineralogy,geochemistry,genesis(Upper Carboniferous,Canada).International Journal of Coal Geology 1999,41(4):371-393.
    [29]Kolker,A.;Chen-Lin,C.,Cleat-filling calcite in Illinois Basin coals:trace-element evidence for meteoric fluid migration in a coal basin.Journal of Geology 1994,102(1):111-116.
    [30]Moore,D.M.;R.C.Reynolds,J.,X-Ray Diffraction and the Identification and Analysis of Clay Minerals(2nd ed.).Oxford Univ.Press:Oxford,1997;p 378.
    [31]Klug,H.P.;Alexander,L.E.,X-ray Diffraction Procedures.(2nd ed.).Wiley:New York 1974;p 656.
    [32]Renton,J.J.In Semiquantitative determination of coal minerals by X-ray diffractometry,ACS Symposium Series,1986;pp 53-60.
    [33]Russell,S.J.;Rimmer,S.M.,Analysis of mineral matter in coal,coal gasificaiton ash,and coal liquefaction residues by scanning electron microscopy and X-ray diffraction.In Analytical Methods for Coal and Coal Products,Karr,C.,Ed.Academic Press:New York 1979;Vol.3,pp 133-162.
    [34]Ward,C.R.,Minerals in bituminous coals of the Sydney basin(Australia) and the Illinois basin(U.S.A.).International Journal of Coal Geology 1989,13(1-4):455-479.
    [35]Ward,C.R.,Mineral matter in Australian bituminous coals.Proc Australas Inst Min Metall 1978,(267):7-25.
    [36]Rietveld,H.,A profile refinement method for nuclear and magnetic structures.Journal of Applied Crystallography 1969,2(2):65-71.
    [37]O'Connor,B.H.;Raven,M.D.,Applications of the Rietveld refinement procedure in assaying powdered mixtures.Powder Diffraction 1988,3:2-6.
    [38]Taylor,J.C.,Computer programs for standardless quantitative analysis of minerals using the full powder diffraction profile.Powder Diffraction 1991,6:2-9.
    [39]Bish,D.L.;Post,J.E.,Quantitative mineralogical analysis using the Rietveld full-pattern fitting method.American Mineralogist 1993,78(9-10):932-940.
    [40]Ward,C.R.;Taylor,J..C.;Cohen,D.R.,Quantitative mineralogy of sandstones by X-ray diffractometry and normative analysis.Journal of Sedimentary Research 1999,69(5):1050-1062.
    [41]Ward,C.R.;Spears,D.A.;Booth,C.A.;Staton,I.;Gurba,L.W.,Mineral matter and trace elements in coals of the Gunnedah Basin,New South Wales,Australia.International Journal of Coal Geology 1999,40(4):281-308.
    [42]Mandile,A.J.;Hutton,A.C.,Quantitative X-ray diffraction analysis of mineral and organic phases in organic-rich rocks.International Journal of Coal Geology 1995,28(1):51-69.
    [43]O'Gorman,J.V.;Walker,P.L.,Thermal behaviour of mineral fractions separated from selected American coals.Fuel 1973,52:71-79.
    [44]Mukherjee,S.N.;Banerjee,B.;Majumdar,B.K.,Transformation of coal mineral matter in relation to coal metamorphism in the Rajhara sub-basin,Daltonganj Coalfield,India.International Journal of Coal Geology 1992,21(3):197-216.
    [45]Vassilev,S.V.;Kitano,K.;Takeda,S.;Tsurue,T.,Influence of mineral and chemical composition of coal ashes on their fusibility.Fuel Processing Technology 1995,45(1):27-51.
    [46]Painter,P.C.;Coleman,M.M.;Jenkins,R.G.;Whang,P.W.;Walker,P.L.,Fourier transform infra-red study of mineral matter in coal:a novel method for quantitative mineralogical analysis.Fuel 1978,57:337-344.
    [47]Finkelman,R.B.;Fiene,F.L.;Painter,P.C.,Determination of kaolinite in coal by infra-red spectroscopy-a comment.Fuel 1981,60:643-644.
    [48]Pollack,S.S.,Estimating mineral matter in coal from its major chemical components.Fuel 1979,58:76-78.
    [49]Cohen,D.R.;Ward,C.R.,SEDNORM-a program to calculate a normative mineralogy for sedimentary rocks based on chemical analyses.Computers and Geosciences 1991,17(9):1235-1253.
    [50]Vassilev,S.V.;Vassileva,C.G.;Karayigit,A.I.;Bulut,Y.;Alastuey,A.;Querol,X.,Phase-mineral and chemical composition of composite samples from feed coals,bottom ashes and fly ashes at the Soma power station,Turkey.International Journal of Coal Geology 2005,61(1-2):35-63.
    [51]Vassilev,S.V.;Vassileva,C.G.;Karayigit,A.I.;Bulut,Y.;Alastuey,.A.;Querol,X.,Phase-mineral and chemical composition of fractions separated from composite fly ashes at the Soma power station,Turkey.International Journal of Coal Geology 2005,61(1-2):65-85.
    [52]Vassilev,S.V.;Menendez,R.;Alvarez,D.;Diaz-Somoano,M.;Martinez-Tarazona,M.R.,Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization.1.Characterization of feed coals and fly ashes.Fuel 2003,82(14):1793-1811.
    [53]Vassilev,S.V.;Menendez,R.;Borrego,A.G.;Diaz-Somoano,M.;Rosa Martinez-Tarazona,M.,Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization.3.Characterization of magnetic and char concentrates.Fuel 2004,83(11-12):1563-1583.
    [54]Vassilev,S.V.;Menendez,R.;Diaz-Somoano,M.;Martinez-Tarazona,M.R.,Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization.2.Characterization of ceramic cenosphere and salt concentrates.Fuel 2004,83(4-5):585-603.
    [55]Raask,E.,Mineral Impurities in Coal Combustion:Behaviour Problems and Remedial Measures.Hemisphere Publishing:New York,1985.
    [56]Ford,W.F.,The Effect of Heat on Ceramics.In Institute of Ceramics Textbook Series,,1967;pp 117-119.
    [57]Vassileva,C.G.;Vassilev,S.V.,Behaviour of inorganic matter during heating of Bulgarian coals:1.Lignites.Fuel Processing Technology 2005,86(12-13):1297-1333.
    [58]Bryers,R.W.,Fireside slagging,fouling,and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels.Progress in Energy and Combustion Science 1996,22(1):29-120.
    [59]Spiro,C.L.;Chen,C.C.;Gene Kimura,S.,Lavigne,R.G.;Schields,P.W.,Deposit remediation in coal-fired gas turbines through the use of additives.Progress in Energy and Combustion Science 1990,16(4):213-220.
    [60]Srinivasachar,S.;Helble,J.J.;Boni,A.A.;Shah,N.;Huffman,G.P.;Huggins,F.E.,Mineral behavior during coal combustion.2.Illite transformations.Progress in Energy and Combustion Science 1990,16(4):293-302.
    [61]Helble,J.J.;Srinivasachar,S.;Boni,A.A.,Factors influencing the transformation of minerals during pulverized coal combustion.Progress in Energy and Combustion Science 1990,16(4):267-279.
    [62]Srinivasachar,S.;Helble,J.J.;Boni,A.A.,Mineral behavior during coal combustion.1.Pyrite transformations.Progress in Energy and Combustion Science 1990,16(4):281-292.
    [63]McLennan,A.R.;Bryant,G.W.;Stanmore,B.R.;Wall,T.F.,Ash Formation Mechanisms during pf Combustion in Reducing Conditions.Energy & Fuels 2000,14(1):150-159.
    [64]ten Brink,H.M.;Eenkhoom,S.;Hamburg,G.,A fundamental investigation of the flame kinetics of coal pyrite.Fuel 1996,75(8):945-951.
    [65]Boni,A.A.;Helble,J.J.;Srinivasachar,S.;Flagan,R.C.;Huffrnan,G.P.;Huggins,F.E.;Peterson,T.W.;Wen&,J.O.L.;Sarofim,A.F.,Transformations of inorganic coal constituents in combustion systems.1989;144 p.
    [66]Srinivasachar,S.;Boni,A.,Kinetic model for pyrite transformations in a combustion environment.Fuel 1989,68,829-36.
    [67]ten Brink,H.M.;Eenkhoorn,S.;Weeda,M.,The behaviour of coal mineral carbonates in a simulated coal flame.Fuel Processing Technology 1996,47(3):233-243.
    [68]Bailey,C.W.High Temperature Transformations of Siderite and the Performance of a PF Fired Plant.The University of Newcastle,1999.
    [69]ten Brink,H.M.;Eenkhoor,S.;Weeda,M.In Flame Transformations of Coal-Siderite,Proceedings of Engineering Foundation Conference on The Impact of Ash Deposition on Coal Fired Plants,Williamson,J.;Wigley,F.,Eds.Taylor & Francis:1993;pp 373-383.
    [70]ten Brink,H.M.;Eenkhoorn,S.;Hamburg,G.,Fragmentation of calcite in a simulated coal-flame.Journal of Aerosol Science 1995,26,(Supplement 1):177-178.
    [71]Helble,J.J.Mechanisms of ash particle formation and growth during pulverized coal combustion.MIT,Massachusetts,1987.
    [72]Quann,R.J.;Neville,M.;Janghorbani,M.;Mims,C.A.;Sarofim,A.F.,Mineral Matter and Trace-Element Vaporization in a Laboratory-Pulverized Coal Combustion System.Environmental Science & Technology 1982,16(11):776-781.
    [73]Buhre,B.J.P.;Hinkley,J.T.;Gupta,R.P.;Nelson,P.F.;Wall,T.F.,Fine ash formation during combustion of pulverised coal-coal property impacts.Fuel 2006,85(2):185-193.
    [74]ten Brink,H.M.;Eenkhoorn,S.;Hamburg,G.,Fine silica from included quartz in pulverized-coal combustion.Journal of Aerosol Science 1995,26(S1):673-674.
    [75]Buhre,B.J.P.;Hinkley,J.T.;Gupta,R.P.;Wall,T.F.;Nelson,P.F.,Submicron ash formation from coal combustion.Fuel Processing Technology 2005,84:1206-1214.
    [76]Vassilcv,S.V.;Vassileva,C.G.,A new approach for the classification of coal fly ashes based on their origin,composition,properties,and bchaviour.Fuel 2007,86(10-11):1490-1512.
    [77]Zhuang,Y.;Biswas,P.,Submicrometer particle formation and control in a bench-scale pulverized coal combustor.Energy & Fuels 2001,15(3):510-516.
    [78]Vassilev,S.V.;Eskenazy,G.M.;Vassileva,C.G.,Behaviour of elements and minerals during preparation and combustion of the Pemik coal,Bulgaria.Fuel Processing Technology 2001,72(2):103-129.
    [79]Zeng,R.S.;Zhuang,X.G.;Koukouzas,N.;Xu,W.D.,Characterization of trace elements in sulphur-rich Late Permian coals in the Heshan coal field,Guangxi,South China.International Journal of Coal Geology 2005,61(1-2):87-95.
    [80]Gerhard,L.;Kautz,K.;Pickhardt,W.;Scholz,A.;Zimmermeyer,G.,Study of the Trace Element Distribution During the Combustion of Coal at Three Power Plants.VGB Kraftwerkstechnik 1985,65(8):753-763.
    [81]Meij,R.,Tracking trace elements at a coal-fired power plant equipped with a wet flue-gas desulphurisation facility.Kema Scientific & Technical Reports 1989,7(5):267-292.
    [82]Meij,R.,Mass balance study of trace elements in a coal-fired power plant with a wet FGD facility.International Conference Proceedings on Elemental Analysis of Coal and lts By-Products 1992,299.
    [83]Frandsen,F.;Dam-Johansen,K.;Rasmussen,P.,Trace elements from combustion and gasification of coal - an equilibrium approach.Progress in Energy and Combustion Science 1994,20(2):115-138.
    [84]Ratafiabrown,J.A.,Overview of Trace-Element Partitioning in Flames and Furnaces of Utility Coal-Fired Boilers.Fuel Processing Technology 1994,39(1-3):139-157.
    [85]Katrinak,K.A.;DeWall,R.A.;Timpe,R.C.,Trace element content of individual mineral grains in cleaned Illinois Basin coal.Abstracts of Papers of the American Chemical Society 1996,212,5-Fuel.
    [86]Senior,C.L.;Zeng,T.;Che,J.;Ames,M.R.;Sarofim,A.F.;Olmez,I.;Huggins,F.E.;Shah,N.;Huffrnan,G.P.;Kolker,A.;Mroczkowski,S.;Palmer,C.;Finkelman,R., Distribution of trace elements in selected pulverized coals as a function of particle size and density.Fuel Processing Technology 2000,63(2):215-241.
    [87]Zhang,J.Y.;Ren,D.;Zheng,C.G.;Zeng,R.S.;Chou,C.L.;Liu,J.,Trace element abundances in major minerals of Late Permian coals from southwestern Guizhou province,China.International Journal of Coal Geology 2002,53(1):55-64.
    [88]Martinez-Tarazona,M.R.;Spears,D.A.,The fate of trace elements and bulk minerals in pulverized coal combustion in a power station.Fuel Processing Technology 1996,47(1):79-92.
    [89]Senior,C.L.;Bool,L.E.,Ⅲ;Srinivasachar,S.;Pease,B.R.;Pore,K.,Pilot scale study of trace element vaporization and condensation during combustion of a pulverized sub-bituminous coal.Fuel Processing Technology 2000,63(2):149-165.
    [90]Bogdanovic,I.;Fazinic,S.;Itskos,S.;Jaksic,M.;Karydas,F.;Katselis,V.;Paradellis,T.;Tadie,T.;Valkovic,O.;Valkovic,V.,Trace element characterization of coal fly ash particles.Nuclear Instruments & Methods in Physics Research,Section B:Beam Interactions with Materials and Atoms 1995,99(1-4):402.
    [91]Cereda,E.;Marcazzan,G.M.B.;Pedretti,M.;Grime,G.W.;Baldacci,A.,Occurrence mode of major and trace elements in individual fly-ash particles.Nuclear Instruments & MethOds in Physics Research,Section B:Beam Interactions with Materials and Atoms 1995,104(1-4):625.
    [92]Seames,W.S.,An initial study of the fine fragmentation fly ash particle mode generated during pulverized coal combustion.Fuel Processing Technology 2003,81(2):109-125.
    [93]Seames,W.S.;Wendt,J.O.L.,Partitioning of arsenic,selenium,and cadmium during the combustion of Pittsburgh and Illinois #6 coals in a self-sustained combustor.Fuel Processing Technology 2000,63(2):179-196.
    [94]魏凤.燃煤亚微米颗粒的形成和团聚机制的研究.博士学位论文,华中科技大学,武汉,2005.
    [95]Xu,X.;Zhuo,Y.;Duan,Y.,Onsite mercury emission test for coal-fired power plants.In China Workshop on Mercury Control from Coal Combustion,Beijing,China,2005.
    [96]Maroto-Valer,M.M.;Zhang,Y.;Granite,E.J.;Tang,Z.;Pennline,H.W.,Effect of porous structure and surface functionality on the mercury capacity of a fly ash carbon and its activated sample.Fuel 2005,84(1):105-108.
    [97]Pavlish,J.H.;Sondreal,E.A.;Mann,M.D.;Olson,E.S.;Galbreath,K.C.;Laudal,D.L.;Benson,S.A.,Status review of mercury control options for coal-fired power plants. Fuel Processing Technology 2003,82(2-3):89-165.
    [98]Lu,Y.;Rostam-Abadi,M.;Chang,R.;Richardson,C.;Paradis,J.,Characteristics of Fly Ashes from Full-Scale Coal-Fired Power Plants and Their Relationship to Mercury Adsorption.Energy Fuels 2007,21(4):2112-2120.
    [99]Chen,X.Impacts of fly ash composition and fluc gas coponents on mercury speciation.University of Pittsburgh,2007.
    [100]Lopez-Anton,M.A.;Diaz-Somoano,M.;Martincz-Tarazona,M.R.,Retention of Elemental Mercury in Fly Ashes in Different Atmospheres.Energy Fuels 2007,21(1):99-103.
    [101]Lopez-Anton,M.A.;Diaz-Somoano,M.;Martinez-Tarazona,M.R.,Mercury Retention by Fly Ashes from Coal Combustion:Influence of the Unburned Carbon Content.Ind.Eng.Chem.Res.2007,46(3):927-931.
    [102]Goodarzi,F.;Hower,J.C.,Classification of carbon in Canadian fly ashes and their implications in the capture of mercury.Fuel 2008,87(10-11):1949-1957.
    [103]Dunham,G.E.;DeWall,R.A.;Senior,C.L.,Fixed-bed studies of the interactions between mercury and coal combustion fly ash.Fuel Processing Technology 2003,82(2-3):197-213.
    [104]Norton,G.A.;Yang,H.;Brown,R.C.;Laudal,D.L.;Dunham,G.E.;Erjavcc,J.,Heterogeneous oxidation of mercury in simulated post combustion conditions.Fuel 2003,82(2):107-116.
    [105]Ghorishi,S.B.;Kecncy,R.M.;Serrc,S.D.;Gullett,B.K.;Jozcwicz,W.S.,Development of a Cl-Imprcgnated Activated Carbon for Entrained-Flow Capture of Elemental Mercury.Environ.Sci.Technol.2002,36(20):4454-4459.
    [106]Hutson,N.D.;Attwood,B.C.;Scheckel,K.G.,XAS and XPS Characterization of Mercury Binding on Brominated Activated Carbon.Environ.Sci.Technol.2007,41(5):1747-1752.
    [107]Vidic,R.D.;Silcr,D.P.,Vapor-phase elemental mercury adsorption by activated carbon impregnated with chloride and chelating agents.Carbon 2001,39(1):3-14.
    [108]Huggins,F.E.;Yap,N.;Huffman,G.P.;Senior,C.L.,XAFS characterization of mercury captured from combustion gases on sorbents at low temperatures.Fuel Processing Technology 2003,82(2-3):167-196.
    [109]Li,Y.H.;Lee,C.W.;Gullctt,B.K.,Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorption.Fuel 2003,82(4):451-457.
    [110]Miller,S.J.;Dunham,G.E.;Olson,E.S.;Brown,T.D.,Fluc gas effects on a carbon-based mercury sorbent.Fuel Processing Technology 2000,65-66:343-363.
    [111]Presto,A.A.;Granite,E.J.,Impact of Sulfur Oxides on Mercury Capture by Activated Carbon.Environ.Sci.Technol.2007,41(18):6579-6584.
    [112]Laumb,J.D.;Benson,S.A.;Olson,E.A.,X-ray photoelectron spectroscopy analysis of mercury sorbent surface chemistry.Fuel Processing Technology 2004,85(6-7):577-585.
    [113]Laudal,D.L.;Brown,T.D.;Nott,B.R.,Effects of flue gas constituents on mercury speciation.Fuel Processing Technology 2000,65-66:157-165.
    [114]Ghorishi,S.B.;Lee,C.W.;Jozewicz,W.S.;Kilgroe,J.D.,Effects of fly ash transition metal content and flue gas HC1/SO2 ratio on mercury speciation in waste combustion.Environmental Engineering Science 2005,22(2):221-231.
    [115]Zhao,Y.;Mann,M.D.;Pavlish,J.H.;Mibeck,B.A.F.;Dunham,G.E.;Olson,E.S.,Application of Gold Catalyst for Mercury Oxidation by Chlorine.Environ.Sci.Technol.2006,40(5):1603-1608.
    [116]Carey,T.R.;Hargrove Jr,O.W.;Richardson,C.F.;Chang,R.;Meserole,F.B.,Factors Affecting Mercury Control in Utility Flue Gas Using Activated Carbon.Journal of the Air & Waste Management Association 1998,48(12):1166-1174.
    [117]Li,Y.H.;Lee,C.W.;Gullett,B.K.,The effect of activated carbon surface moisture on low temperature mercury adsorption.Carbon 2002,40(1):65-72.
    [118]Hall,B.;Schager,P.;Weesmaa,J.,The homogeneous gas phase reaction of mercury with oxygen,and the corresponding heterogeneous reactions in the presence of activated carbon and fly ash.Chemosphere 1995,30(4):611-627.
    [119]Dai,S.;Ren,D.;Chou,C.-L.;Li,S.;Jiang,Y.,Mineralogy and geochemistry of the No.6 Coal(Permsylvanian) in the Junger Coalfield,Ordos Basin,China.International Journal of Coal Geology 2006,66(4):253-270.
    [120]Zhao,Y.C.;Zhang,J.Y.;Sun,J.M.;Bai,X.F.;Zheng,C.G.,Mineralogy,chemical composition,and microstructure of ferrospheres in fly ashes from coal combustion.Energy & Fuels 2006,20(4):1490-1497.
    [121]代世峰;任德贻;李生盛;Chenlin,Chou.,鄂尔多斯盆地东北缘准格尔煤田煤中超常富集勃姆石的发现.地质学报 2006,80(2):294-300.
    [122]Levin,I,;Brandon,D.,Metastable Alumina Polymorphs:Crystal Structures and Transition Sequences.Journal of the American Ceramic Society 1998,81(8):1995-2012.
    [123]Dynys,F.W.;Halloran,J.W.,Alpha Alumina Formation in Alum-Derived Gamma Alumina Journal of the American Ceramic Society 1982 65(9):442-448.
    [124]Zhao,Y.;Zhang,J.;Sun,J.;Bai,X.;Zheng,C.,Mineralogy,chemical composition,and mierostrueture of ferrospheres in fly ashes from coal combustion.Energy and Fuels 2006,20(4):1490-1497.
    [125]赵永椿;张军营;王宗华;胡念武;郑楚光.烯煤高钙颗粒的物理化学特征及形成演化机制研究,燃烧源可吸入颗粒物的形成与控制技术基础研究学术研讨会文集,北京,2006;pp 76-87.
    [126]赵永椿;张军营;高全;郭欣;郑楚光,燃煤飞灰中磁珠的化学组成及其演化机理研究.中国电机工程学报 2006,26(01):82-86.
    [127]赵永椿;张军营;王宗华;胡念武;郑楚光,燃煤高钙灰的组成及其演化机制的研究.中国电机工程学报 2007,27(29):12-16.
    [128]盛昌栋;吕玉红;李意.O_2/CO_2煤粉燃烧时矿物质的转变和细灰颗粒的生成特性,中国工程热物理学会燃烧学学术会议,武汉,2006;pp 156-162.
    [129]Mayoral,M.C.;Izquierdo,M.T.;Andres,J.M.;Rubio,B.,Aluminosilicates transformations in combustion followed by DSC.Thermochimica Acta 2001,373(2):173-180.
    [130]Querol,X.;Fernandez Turiel,J.L.;Lopez Soler,A.,The behaviour of mineral matter during combustion of Spanish subbituminous and brown coals.Mineralogical Magazine 1994,58(1):119-133.
    [131]O'Gorman,J.V.;Walker,P.L.,Thermal behaviour of mineral fractions separated from selected American coals.Fuel 1973,52(1):71-79.
    [132]Yen,F.S.;Lo,H.S.;Wen,H.L.;Yang,R.J.θ- to α-phase transformation subsystem induced by α-Al_2O_3-seeding in boehmite-derived nano-sized alumina powders.Journal of Crystal Growth 2003,249(1-2):283-293.
    [133]Youn,H.-J.;Jang,J.W.;Kirn,I.-T.;Hong,K.S.,Low-Temperature Formation of α-Alumina by Doping of an Alumina-Sol.Journal of Colloid and Interface Science 1999,211(1):110-113.
    [134]Fu Su,Y.;Wei Chien,C.;Janne Min,Y.;Chen Tsung,H.,Crystallite Size Variations of Nanosized Fe_2O_3 Powders during γ- to α-Phase Transformation.Nano Letters 2002,2(3):245-252.
    [135]Yen,F.S.;Chang,J.L.;Yu,P.C.,Relationships between DTA and DIL characteristics of nanosized alumina powders during θ- to a-phase transformation.Journal of Crystal Growth 2002,246(1-2):90-98.
    [136]古堂生;林光明,非晶态和晶态纳米氧化铝粉的相变与红外光谱.无机材料学报1997,12(6):840.
    [137]Liu,X.;Xu,M.;Yao,H.;Yu,D.;Gao,X.;Cao,Q.;Cai,Y.,Effect of Combustion Parameters on the Emission and Chemical Composition of Particulate Matter during Coal Combustion.Energy & Fuels 2007,21(1):157-162.
    [138]Ninomiya,Y.;Zhang,L.A.;Sato,A.;Dong,Z.B.,Influence of coal particle size on particulate matter emission and its chemical species produced during coal combustion.Fuel Processing Technology 2004,85(8-10):1065-1088.
    [139]Vassilev,S.V.;Menendez,R.,Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization.4.Characterization of heavy concentrates and improved fly ash residues.Fuel 2005,84(7-8):973-991.
    [140]欧阳东;陈楷,低温焚烧稻壳灰的显微结构及其化学活性.硅酸盐学报 2003,31(11):1121-1124.
    [141]Yang,R.T.;Shen,M.S.,Calcium silicates--a new class of highly regenerative sorbents for hot gas desulfurization.AIChE Journal 1979,25(5):811-819.
    [142]Liu,H.Heterogeneous reaction mechanism and modeling of inorganic constituents during coal combustion with desulfurization and solid residues utilization.Huazhong University of Science and Technology,Wuhan,2006.
    [143]杨立寨,祁海鹰,氧化铁促进石灰中温烟气脱硫的机理性研究.工程热物理学报2002,23(2):241-244.
    [144]Giere,R,;Carleton,L.E.;Lumpkin,G.R.,Micro- and nanochemistry of fly ash from a coal-fired power plant.American Mineralogist 2003,88(11-12):1853-1865.
    [145]Liu,X.;Li,Y.;Zhang,N.,Influence of MgO on the formation of Ca3SiO5 and 3CaO-3Al_2O_3-CaSO_4 minerals in alite-sulphoaluminate cement.Cement and Concrete Research 2002,32(7):1125-1129.
    [146]Liu,X.;Li,Y.,Effect of MgO on the composition and properties of alite-sulphoaluminate cement.Cement and Concrete Research 2005,35(9):1685-1687.
    [147]Waanders,F.B.;Vinken,E.;Marts,A.;Mulaba-Bafubiandi,A.F.,Iron minerals in coal,weathered coal and coal ash - SEM and Mossbauer results.Hyperfine Interactions 2003,148(1-4):21-29.
    [148]Vassilev,S.V.;Vassileva,C.G.,Occurrence,abundance and origin of minerals in coals and coal ashes.Fuel Processing Technology 1996,48:85-106.
    [149]Sokol,E.V.;Kalugin,V.M.;Nigmatulina,E.N.;Volkova,N.I.;Frenkel,A.E.;Maksimova,N.V.,Ferrospheres from fly ashes of Chelyabinsk coals:Chemical composition,morphology and formation conditions.Fuel 2002,81(7):867- 876.
    [150]McLennan,A.R.;Bryant,G.W.;Bailey,C.W.;Stanmore,B.R.;Wall,T.F.,Index for Iron-Based Slagging for Pulverized Coal Firing in Oxidizing and Reducing Conditions.Energy Fuels 2000,14(2):349-354.
    [151]Li,Y.;Gupta,R.P.;Wall,T.F.,A mathematical model of ash formation during pulverized coal combustion.Fuel 2002,81(3):337-344.
    [152]Huffman,G.P.;Huggins,F.E.;Dunmyre,G.R.,Investigation of the high-temperature behaviour of coal ash in reducing and oxidizing atmospheres.Fuel 1981,60(7):585-597.
    [153]Huggins,F.E.;Kosmack,D.A.;Huffman,G.P.,Correlation between ash-fusion temperatures and ternary equilibrium phase diagrams.Fuel 1981,60(7):577-584.
    [154]Hansen,L.A.;Frandsen,F.J.;Dam-Johansen,K.;Henning Sund,S.,Quantification of fusion in ashes from solid fuel combustion.Thermochimica Acta 1999,326(1-2):105-117.
    [155]Hansen,L.A.;Frandsen,F.J.;Dam-Johansen,K.;Sorensen,H.S.;Skrifvars,B.J.,Characterization of Ashes and Deposits from High-Temperature Coal-Straw Co-Firing.Energy Fuels 1999,13(4):803-816.
    [156]Reid,W.T.,The relation of mineral composition to slagging,fouling and erosion during and after combustion.Progress in Energy and Combustion Science 1984,10(2):159-169.
    [157]Wall,T.F.,Mineral matter transformations and ash deposition in pulverised coal combustion.Symposium(International) on Combustion 1992,24(1):1119-1126.
    [158]Satava,V.,Mechanism and kinetics from non-isothermal TG traces.Thermochimica Acta 1971,2(5):423-428.
    [159]Doyle,C.D.,Kinetic analysis of thermogravimetric data.Journal of Applied Polymer Science 1961,5(15):285-292.
    [160]Seames,W.S.The partitioning of trace elements during pulverized coal combustion.Univ.of Arizona,Ann Arbor,MI,2000.
    [161]Ninomiya,Y.;Zhang,L.;Sato,A.;Dong,Z.,Influence of coal particle size on particulate matter emission and its chemical species produced during coal combustion.Fuel Processing Technology 2004,85(8-10):1065-1088.
    [162]Zhang,L.;Ninomiya,Y.,Emission of suspended PM10 from laboratory-scale coal combustion and its correlation with coal mineral properties.Fuel 2006,85(2):194-203.
    [163]Linak,W.P.;Miller,C.A.;Seames,W.S.;Wendt,J.O.L.;Ishinomori,T.;Endo,Y.;Miyarnae,S.,On trimodal particle size distributions in fly ash from pulverized-coal combustion.Proceedings of the Combustion Institute 2002,29(1):441-447.
    [164]Mahuli,S.;Agnihotri,R.;Chauk,S.;Ghosh-Dastidar,A.;Fan,L.S.,Mechanism of Arsenic Sorption by Hydrated Lime.Environ.Sci.Technol.1997,31(11):3226-3231.
    [165]Seames,W.S.;Wendt,J.O.L.In The partitioning of arsenic during pulverized coal combustion,Edinburgh,United Kingdom,2000;Combustion Institute:Edinburgh,United Kingdom,2000;pp 2305-2312.
    [166]Sterling,R.O.;Helble,J.J.,Reaction of arsenic vapor species with fly ash compounds:Kinetics and speciation of the reaction with calcium silicates.Chemosphere 2003,51(10):1111-1119.
    [167]Wei,F.Study on sub-micron particle formation and agglomeration mechanism from coal combustion.Huazhong University of Science and Technology,Wuhan,2005.
    [168]Zielinski,R.A.;Foster,A.L.;Meeker,G.P.;Brownfield,I.K.,Mode of occurrence of arsenic in feed coal and its derivative fly ash,Black Warrior Basin,Alabama.Fuel 2007,86(4):560-572.
    [169]Querol,X.;Juan,R.;Lopez-Soler,A.;Fernandez-Turiel,J.L.;Ruiz,C.R.,Mobility of trace elements from coal and combustion wastes.Fuel 1996,75(7):821-838.
    [170]Kolker,A.;Huggins,F.E.;Palmer,C.A.;Shah,N.;Crowley,S.S.;Huffman,G.P.;Finkelman,R.B.,Mode of occurrence of arsenic in four US coals.Fuel Processing Technology 2000,63(2):167-178.
    [171]Zeng,T.;Sarofma,A.F.;Senior,C.L.,Vaporization of arsenic,selenium and antimony during coal combustion.Combustion and Flame 2001,126(3):1714-1724.
    [172]Jadhav,R.A.;Fan,L.S.,Capture of Gas-Phase Arsenic Oxide by Lime:Kinetic and Mechanistic Studies.Environ.Sci.Technol.2001,35(4):794-799.
    [173]Ren,D.;Xu,D.;Zhao,F.,A preliminary study on the enrichment mechanism and occurrence of hazardous trace elements in the Tertiary lignite from the Shenbei coalfield,China.International Journal of Coal Geology 2004,57(3-4):187-196.
    [174]Goodarzi,F.;Huggins,F.E.,Speciation of chromium in feed coals and ash byproducts from Canadian power plants burning subbituminous and bituminous coals.Energy &Fuels 2005,19(6):2500-2508.
    [175]程俊峰;徐明厚;曾汉才,高温下Cr的氧化动力学研究.中国电机工程学报 2002,22(8):135-138.
    [176]余亮英;陆继东;吴戈;冯伟;陈文;沈凯,燃煤过程中痕量重金属的形态与分布研究.动力工程 2004,24(5):640-645.
    [177]Seneviratne,H.R.;Charpenteau,C.;George,A.;Millan,M.;Dugwell,D.R.;Kandiyoti,R.,Ranking Low Cost Sorbents for Mercury Capture from Simulated Flue Gases.Energy & Fuels 2007,21(6):3249-3258.
    [178]Hassett,D.J.;Eylands,K.E.,Mercury capture on coal combustion fly ash.Fuel 1999,78(2):243-248.
    [179]Serre,S.D.;Silcox,G.D.,Adsorption of Elemental Mercury on the Residual Carbon in Coal Fly Ash.Ind.Eng.Chem.Res.2000,39(6):1723-1730.
    [180]Hower,J.C.;Mercedes Maroto-Valer,M.;Taulbee,D.N.;Sakulpitakphon,T.,Mercury capture by distinct fly ash carbon forms.Energy and Fuels 2000,14(1):224-226.
    [181]Galbreath,K.C.;Zygarlicke,C.J.,Mercury transformations in coal combustion flue gas.Fuel Processing Technology 2000,65-66:289-310.
    [182]Chen,L.;Zhuo,Y.;Zhao,X.;Yao,Q.;Zhang,L.,Thermodynamic Comprehension of the Effect of Basic Ash Compositions on Gaseous Mercury Transformation.Energy Fuels 2007,21(2):501-505.
    [183]Hower,J.C.;Suarez-Ruiz,I.;Mastalerz,M.,An Approach Toward a Combined Scheme for the Petrographic Classification of Fly Ash:Revision and Clarification.Energy & Fuels 2005,19(2):653-655.
    [184]Suátrez-Ruiz,I.;Hower,J.C.;and Thomas,G.A.,Petrology and chemistry of fly ashes derived from the combustion of complex coal blends in Spanish power plants.In AshTech 2006 - International Conference on Coal Fired Power Station Ash,Birmingham(UK),2006;pp 1-16.
    [185]Senior,C.L.;Johnson,S.A.,Impact of Carbon-in-Ash on Mercury Removal across Particulate Control Devices in Coal-Fired Power Plants.Energy Fuels 2005,19(3):859-863.
    [186]M.Antonia,L.-A.;Patricia,A.-V.;Mercedes,D.-S.;Isabel,S.-R.;M.Rosa,M.-T.,The influence of carbon particle type in fly ashes on mercury adsorption.Fuel In Press,Corrected Proof.
    [187]Wang,L.;Chen,C.,Elemental mercury adsorption by residual carbon separated from fly ash.Beijing Keji Daxue Xuebao/Journal of University of Science and Technology Beijing 2004,26(4):353-356.
    [188]Galbreath, K. C.; Zygarlicke, C. J.; Tibbetts, J. E.; Schulz, R. L.; Dunham, G E.,Effects of NO_X, α-Fe_2O_3,γ-Fe_2O_3, and HCl on mercury transformations in a 7-kW coal combustion system. Fuel Processing Technology 2005, 86(4): 429-448.
    [189] Yamaguchi, A.; Tochihara, Y.; Ito, S. In Mercury oxidation with catalytic materials in combustion flue gases, Combined Power Plant Air Pollutant Control Mega Symposium, 2004; pp 1363-1372.
    [190] Yamaguchi, A.; Akiho, H.; Ito, S., Mercury oxidation by copper oxides in combustion flue gases. Powder Technology 2008,180(1-2): 222-226.
    [191] Pitoniak, E.; Wu, C.-Y; Londeree, D.; Mazyck, D.; Bonzongo, J.-C; Powers, K.;Sigmund, W., Nanostructured Silica-Gel Doped with TiO_2 for Mercury Vapor Control.Journal of Nanoparticle Research 2003, 5(3): 281-292.
    [192] Lee, T. G; Biswas, P.; Hedrick, E., Overall Kinetics of Heterogeneous Elemental Mercury Reactions on TiO_2 Sorbent Particles with UV Irradiation. Ind. Eng. Chem.Res. 2004,43(6): 1411-1417.
    [193] Li, Y; Wu, C. Y, Role of Moisture in Adsorption, Photocatalytic Oxidation, and Reemission of Elemental Mercury on a SiO_2-TiO_2 Nanocomposite. Environ. Sci.Technol. 2006,40(20): 6444-6448.
    [194] Agarwal, H.; Stenger, H. G; Wu, S.; Fan, Z., Effects of H_2O, SO_2, and NO on Homogeneous Hg Oxidation by Cl_2. Energy Fuels 2006,20(3): 1068-1075.
    [195] Agarwal, H.; Romero, C. E.; Stenger, H. G, Comparing and interpreting laboratory results of Hg oxidation by a chlorine species. Fuel Processing Technology 2007, 88(7):723-730.
    [196] Zhao, Y; Mann, M. D.; Olson, E. S.; Pavlish, J. H.; Dunham, G E., Effects of sulfur dioxide and nitric oxide on mercury oxidation and reduction under homogeneous conditions. J Air Waste ManagAssoc 2006, 56(5): 628-35.
    [197] Presto, A. A.; Granite, E. J.; Karash, A., Further Investigation of the Impact of Sulfur Oxides on Mercury Capture by Activated Carbon. Ind. Eng. Chem. Res. 2007, 46(24):8273-8276.
    [198] Granite, E. J.; Pennline, H. W.; Hargis, R. A., Novel Sorbents for Mercury Removal from Flue Gas. Ind. Eng. Chem. Res. 2000,39(4): 1020-1029.
    [199] Presto, A. A.; Granite, E. J., Survey of Catalysts for Oxidation of Mercury in Flue Gas.Environ. Sci. Technol. 2006,40(18): 5601-5609.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700