靖边气田马五_1气藏南二区地层水特征及开发对策
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对我国西部盆地海相碳酸盐岩油气藏地层水分布复杂,每个油气藏的地层水都有其独特富存方式的特点,选择西部鄂尔多斯盆地靖边气田下古生界马五_1气藏为例,寻找在这一类地层平缓,以古岩溶岩性圈闭为主的地层中地层水分析的理论与方法,以揭示地层水的成因。解决如何认识气水分布规律、预测评价新的油气聚集区及合理开发有水气藏等复杂问题。在前人马五。气藏研究成果的基础上,结合研究区钻井、测井解释和水质分析资料,对该区产水气井的产水机理进行了分析,完成了相对富水区的分布评价;对南二区开采井的动态特征进行气藏工程分析,结合工区内富水区的分布特征,有针对性的提出了开发对策。
     研究中采取了地质、测井、数模相结合,静态分析和动态预测相结合的研究思路,立足于已有的地质和开发资料,得到了如下成果与认识:
     (1)对研究区储层的测井特征进行了系统分析,结合试油、水分析资料,利用交会图和多元识别的方法对储层流体进行了判别。综合地质、地震及动态等多种资料,基本落实了相对富水区的分布情况。
     (2)对研究区地层水的类型、特征进行认识。分析地层水水源及演化历史,开展水层的纵横对比工作,评价相对富水区的分布;分析富水区的分布规律及成因。认为研究区构造反转且构造平缓,天然气运移“能量”相对不足,造成产层中残余水饱和度过高,生产井或多、或少的有地层水产出。这是靖边气田马五_(1+2)气藏的主要产水特征之一。“相对富水区”分布受控于区域构造、储层非均质性、局部小幅度构造、储层条件变化带的遮挡等因素。
     (3)对南二区产水井动态、各井的生产动态规律、水对气井产能的影响等有水气藏的生产动态进行了分析;对计算天然气含水量的Mcketta-Wehe算图进行拟合,对Turner气井携液临界流速理论计算公式进行了分析,编制了程序计算。在以上气藏工程基础上,结合地质认识,对产水井出水机理进行了分析;对“富水区”气藏开发储量进行了复核及评价
     (4)通过地质分析和数值模拟方法,提出了相应的富水开采技术对策:通过对目前井网的合理性分析,认为目前井网不完善,在研究区的东南部及北部生产井相对较稀的地区,可以通过增加开发井,逐渐完善井网。
In view of that formation water in the marine carbonate reservoir in western-China basins has a complicated distribution, for each reservoir presents a special occurrence of formation water, the Lower Paleozoic Ma5_1 accumulation was taken as a case to study and search the theory and methodology for analysing the formation water in such gently inclined and fossil-karst-trap dominant strata so as to reveal origin sof the formation water, to recognize the regular pattern of gas-water distribution, to predicate and evaluate new oil-gas accumulation zones and to rationally exploit the water-containing gas pools. Basing on the studies of former researchers on Ma5_1 reservoir the thesis analyzed the water-producing mechanism for water-producing wells, carried out evaluation of the distribution of relatively water-rich areas, and had a gas reservoir engineering analysis for the dynamic state of southern II areas wells, and proposed an exploitation strategy in view of the distribution of water-rich areas. Basing on the geological and exploitation data available, geology, logging and numerical simulation were integrated and static analysis and dynamic prediction combined in this study, which led the following results.
     (1) Logging features of reservoir in the studied area were analyzed systematically. In combination with the well testing and water analysis information, cross plot and multivariate recognition were employed, to discriminate formation fluid. By integrating geological, seismic and dynamic-state data, the distribution of relative water-rich areas has been revealed.
     (2) Types and characteristics of the formation water were studied, including the analysis of sources and evolution of the water, vertical and lateral correlation of the aquifer beds, recognition of the distribution of relative water-rich areas and the relevant causes. It is thought that owing to the structural reversion and gentle inclination, the "energy" for gas migration is relatively insufficient which leads to an excessive residual water saturation and more or less formation water is producing from the gas wells, this is one of the main water-producing features in Ma5_1 reservoir in Jingbian gas field. The distribution of "relative water-rich areas" is controlled by such factors as regional tectonics, reservoir heterogeneity, local low-amplitude structure, sealing by reservoir alteration zone and so on.
     (3) Dynamic state of the water-producing wells, dynamic-state law for each gas-producing well and influence of water to the productivity of gas wells in Southern II area have been analyzed, the Mckette-Wehe alignment chart for calculating water content in gas been simulated, and the Turner formula for theoretically calculating the critical velocity of liquid-carrying flow in gas wells has been analyzed and the corresponding program and calculation have been worked out. Basing on the above-mentioned studies and combined with geologic recognition, the mechanism of water-output form water wells was analyzed, and the exploitation reserve in water-rich areas has been checked and re-evaluated.
     (4) By the geological analysis and numerical simulation, an exploitation strategy for water-rich areas was proposed accordingly. It is thought that the present well-network seems to be incomplete. It is reasonable to add development wells to the relatively well-scarce south-east and northern part of the studied area, which would enhance the well-completeness of these parts.
引文
[1]杨俊杰,裴锡古.中国天然气地质学(卷四)[M].北京:石油工业出版社,1996
    [2]戴金星,王庭斌,宋岩等.中国大中型天然气田形成条件与分布规律[M].北京:地质出版社,1997
    [3]李贤庆等著.鄂尔多斯盆地中部气田地层流体特征与天然气成藏[M].北京:地质出版社,2005
    [4]何自新,郑聪斌,王彩丽等.中国海相油气田勘探实例之二-鄂尔多斯盆地靖边气田的发现与勘探[J].海相油气地质,2005,10(2):37-44
    [5]长庆油田石油地质编写组.中国石油地质志[M],卷十二,长庆油田.石油工业出版社,1987
    [6]李贤庆,侯读杰,胡国艺等.鄂尔多斯盆地中部地区下古生界碳酸盐岩生烃潜力探讨[J].矿物岩石地球化学通报,2002,21(3):152-157
    [7]李贤庆,侯读杰,柳常青等.鄂尔多斯盆地中部气田奥陶系地层水与水溶气的地球化学特征.断块油气田[J],2001,8(3):1-6
    [8]徐国盛.含油气系统中的古水文地质分析-以陕甘宁盆地和四川盆地为例:[学位论文].成都理工学院,1998
    [9]陈安定.陕甘宁盆地中部气田奥陶系天然气的成因及运移[J].石油学报,1994,15(2):1-10
    [10]刘方槐等编著.油气田水文地质学原理[M].北京:石油工业出版社,1991
    [11]Collins A G.1975.Geochemistry of oilfield waters,chap.1,New York:W.H.Freeman and Company,267-269
    [12]汪蕴璞.四川盆地南部水化学场及其形成原因[J].武汉地质学院学报,1984,2:105-118
    [13]高锡兴.中国含油气盆地油田水[M].北京:石油工业出版社.1994
    [14]刘济民.油田水文地质勘探中水化学及其特性指标的综合应用[J].石油勘探与开发,1982,6:49-55
    [15]刘崇禧.我国陆相盆地油田水文地球化学特征[J].地球化学,1982,11(2):190-197
    [16]刘崇禧.我国中、新生代陆相盆地油田水文地球化学特征及与油气聚集的关系[J].石油勘探与开发,1983,2
    [17]刘崇禧.从大布苏湖近代地球化学特征探讨我国含盐湖盆的沉积模式与油气关系[J].石油实验地质,1988,3
    [18]杨忠辉等,油气田的水文地球化学标志及其应用[J].石油天然气地质,1982,3(4):327-334
    [19]张金来,我国油田水的基本特征及其分类讨论[J].地质论评,1979(2):64-69
    [20]张金来.中国东部中、新生代陆相广盆与槽盆油田水化学场比较[J].石油与天然气地质,1983,4(2):222-228
    [21]汪义先.泌阳凹陷油田水地球化学特征及其与油气的关系[J].石油实验地质,1983,5(4):298-303
    [22]黄福堂.松辽盆地北部地层水中可溶烃类的分布特征及其与油气关系[J],石油学报, 1988,9(2):37-42
    [23]黄福堂、张维芹、张国林等.松辽盆地北部地层水中“指纹”化合物的分布特征及其与油气的关系[J].石油实验地质,1993,15(3):281-289
    [24]黄福堂、张维芹、张国林等.松辽盆地北部地层水中可溶烃类分布及与油气的关系[J].石油勘探与开发,1993,20(A00):105-108
    [25]蔡春芳、梅博文、李伟.塔里木盆地油田水文地球化学[J].地球化学,1996,25(6):314-323
    [26]蔡春芳、梅博文、李伟.塔中古生界油田水化学与流体运移和演化[J].石油勘探与开发1997,24(1):18-21
    [27]李贤庆,侯读杰,唐友军等.地层流体化学成分与天然气藏的关系初探--以鄂尔多斯盆地中部大气田为例[J].断块油气田,2002,9(5):1-4
    [28]李伟,刘济民,陈晓红.吐鲁番坳陷油田水地化特征及其石油地质意义[J].石油勘探与开发,1994,2(5):12-18
    [29]李伟,李小地.应用油田水地球化学及及流体势追踪油气运聚途径[J].石油勘探与开发,1996,23(6):34-37
    [30]徐国盛,刘树根,张英俊等.川东石炭系天然气富集的水化学条件[J].石油与天然气地质,1999,16(20):15-19
    [31]姜建群,胡建武.含油气盆地分析中流体输导系统的研究[J].西北地质,2000,33(3)18-22
    [32]王志欣,信荃麟.东营凹陷压实水水动力特征[J].石油学报,1998,19(4):21-25
    [33]楼章华.松辽盆地储层成岩反应与孔隙流体地球化学性质及成因[J].地质学报,1998,72(2):144-152
    [34]李川东.裂缝性有水气藏开采技术浅析[J].天然气工业,2003;23(增刊):123-126
    [35]李士伦.天然气工程[M].北京:石油工业出版社,2000
    [36]陈立官主编.油气田地下地质学[M].北京:地质出版社.1983
    [37]赵粉霞,吴正,秦通社.长庆靖边气田产水气井开采技术措施[J].天然气工业,2005,25(2):116-118
    [38]李建奇,李安琪,张振文等,靖边气田马五_(1+2)气藏相对富水区成因及开发[J].天然气工业,2005:25(9)89-91
    [39]张宗林,赵正军,张歧等.靖边气田气井产能核实及合理配产方法[J].天然气工业,2006,26(9):106-108
    [40]赵靖舟.油气水界面追溯法-研究烃类流体运聚成藏史的一种重要方法[J].地学前缘,2001,8(4):373-378
    [41]朱广生.地震资料储层预测方法[M].北京:石油工业出版社,1995
    [42]陈寿先,俞明淑.用测井资料确定气藏气水界面方法的探讨[J].地球物理测井,1991,15(6):383-385
    [43]陈元千.天然水驱油(气)藏压力系数的推导及其应用[J].石油勘探与开发,1989,2:73-76
    [44]陈子恩.预测气水界面的通式及其应用[J].石油勘探与开发,1991,4:69-73
    [45]华永川.川东北飞仙关组鲕滩气藏气水界面预测方法[J].天然气工业,2004,24(8):76-77
    [46]伍藏原、陈文龙.利用试井数据确定凝析气藏气水界面位置[J].油气井测试,2004,13(3):16-18
    [47]陈元千.油气藏工程计算方法.北京:石油工业出版社,1990
    [48]冉宏.川东石炭系气藏原始气水界面早期预测方法[J].天然气工业,1995,15(3):56-58
    [49]冉宏.川东地区石炭系气藏气水分布特征及其成因探讨[J].天然气工业,2001,21(1):52-56
    [50]徐景祯,刘晓冬,高春文.人工神经网络模型在油气层识别技术中的应用[J].天然气工业,1996,16(4):22-24
    [51]赵军.模糊灰关联分析法在测井识别油气水层中的应用[J].测井技术,2000,24(5):337-339
    [52]潘和平,樊政军,马勇.基于信息熵识别油气层和水层的聚类方法[J].石油大学学报自然科学版,2004,28(6):31-34
    [53]朱扬明,梅博文,潘志清.储岩热解技术在石油勘探中的应用[J]。石油勘探与开发,1995,22(4):92-95
    [54]江继纲,张青.应用热解技术识别油层[J].石油勘探与开发,1996,23(3):89-92
    [55]李友川,蒋基平,席小应等.地球化学方法应用于油层水层预测初探[J].中国海上油气(地质),1998,12(3):193-199
    [56]戴鸿鸣,黄清德,王海清等.探井油层地球化学检测及实践[J].西南石油学院学报,1998,20(2):30-34
    [57]张枝焕,王铁冠,常象春等.油、水、干层的地球化学识别[J].地质论评,2001,47(5):514-520
    [58]周文,罗桂滨,陈青等.靖边气田马五_1气藏水层特征及识别[J].天然气工业,2008(1):61-63
    [59]黄平,路中侃.地震频谱分析在气水分布研究中的应用[J].石油物探,1995,34(2):71-75
    [60]徐守余,侯加根,徐怀民.利用地震多参数预测油水边界[J].地质评论,1993,39(s1):83-87
    [61]贾国相,杨金利,赵友方.氡气勘查地球化学技术的研究与应用[J].矿产与地质,2005,19(4):403-413
    [62]美P.A.迪基.石油开发地质学[M].北京:石油工业出版社,1982
    [63]Dickey,P.A,and Carlos Soto R,1974,Chemical composition of deep subsurface waters of the western Anadarko Basin:Soc Petrol.Eng.Pap.SPE5178,18P.
    [64](美)柯林斯著.1984油田水地球化学[M].北京:石油工业出版社,1984
    [65]徐国盛,宋焕荣,周文等.鄂尔多斯盆地中部气田水化学条件与天然气聚集[J].石油试验地质,2000,22(4):330-335
    [66]晏宁平,张宗林,何亚宁等.靖边气田马五_(1+2)气藏储层非均质性评价[J].天然气工业,2007,27(5):102-103
    [67]陈凤喜,张吉,徐小蓉等.靖边气田统5井区马家沟组储层小幅度构造研究[J].石油天然气学报,2007,29(3):347-349
    [68]李传亮.气藏水侵量的计算方法研究[J].新疆石油地质,2003,24(5):430-431
    [69]张育林,余树良.采气[M].北京:石油工业出版社,1989
    [70]于俊波,艾尚军,尉可珍等.气井积液分析[J].大庆石油学院学报,2000,24(2):5-7
    [71]杨继盛.采气工艺基础[M].北京:石油工业出版社,1992
    [72]杨继盛,刘建仪.采气实用计算.北京:石油工业出版社,1994
    [73]李晓平,刘启国,孙万里等.气井凝析液量研究[J].钻采工艺,2001,24(6):30-32
    [74]张丽囡,李笑萍,赵春森等.气井产出水的来源及地下相态的判断[J].大庆石油学院学报,1993,17(2):107-111
    [75]诸林,王兵.天然气含水量的估算[J].天然气工业,1995,15(6):57-61
    [76]宁英男,张海燕,周贵江.天然气含水量图数学模拟与程序[J].石油与天然气化工,2000,29(2):75-77,95
    [77]米尔扎占扎捷A X.天然气开采工艺[M].朱恩灵,译.北京:石油工业出版社,1993
    [78]Mcketta J J,Wehe AH.Use the chart of water content of natural gas.Pet Ref,August 1958:153-154
    [79]Wichert Gordon C.Wichert Edward.Chart estimates water content of sour gas,Oil Gas J,Mar 1993:61-64
    [80]诸林,白剑,王治红.天然气含水量的公式化计算方法[J].天然气工业,2003;23(3):118-120
    [81]郎兆新.油藏工程基础[M].山东:石油大学出版社,1991
    [82]张明禄,张歧,赵正军等.靖边气田气井产能方程的建立[J].天然气工业,2006,2(9):112-114
    [83]李闽,郭平,谭光天.气井携液新观点.石油勘探与开发,2001,28(5):105-106
    [84]黄炜,杨蔚.气井井流动能分析及考虑动能项的井底流压计算方法[J].天然气工业,2001;21(4):75-77
    [85]杨蔚,黄炜.计算气井井底压力的新方法[J].天然气工业,1995;15(3):75-77
    [86]吴芒,文伯清,邹建等.排水采气井井底压力测试计算方法研究与应用-油套环空计算井底压力的方法及现场应用(之三)[J].钻采工艺,2002;25(2):20-23
    [87]童宪章等(译):气井试气理论与实践[M].石油工业出版社(北京)。
    [88]杨川东,采气工程[M].石油工业出版社,1997
    [89]周际永,伊向艺,卢渊.国内外排水采气工艺综述[J].太原理工大学学报,2005,36(Sup)44-45.51
    [90]郑聪斌等.陕甘宁盆地中部奥陶系风化壳古岩溶发育特征[J].中国岩溶,1995,14(3):280-288
    [91]何自新等.鄂尔多斯盆地奥陶系古地貌、古沟槽模式的修正及其地质意义[J].海相油气地质,2006,11(2):25-28
    [92]陈安定.陕甘宁盆地油气地化特征及其在油气来源预测中的意义[J].石油勘探与开发,1988,6:33-40
    [93]赵永胜,周文.川西坳陷须二气藏凝析水地球化学特征及成因初探[J].天然气地球化学,1995,27(6):30-33
    [94]韩大匡等.油藏数值模拟基础[M].北京:石油工业出版社,1993
    [95](美)皮斯曼(PEACEMAN,D.W.)著.油藏数值模拟基础[M].北京:石油工业出版社,1982
    [96](美)哈利德·阿齐兹(AZIZ,K.),(加)安东尼·塞特瑞(SETTARI,A.)著.油藏数值模拟[M].北京:石油工业出版社,2004
    [97]陈元千,李璗.现代油藏工程[M].北京:石油工业出版社.2001
    [98]黄福堂等.油田地层水中微量金属元素的组成与分布特征研究[J].国外油田工程,1998,(6):19-21
    [99]孙向阳、刘方槐.沉积盆地中地层水化学特征及其地质意义[J].油气天勘探与开发,2001,24(4):47-53
    [100]郝玉鸿.气井工作制度对弹性二相法计算动态储量的影响[J].天然气工业.1998,18(5):86-87
    [101]朱蓉.塔河油田奥陶系油气藏流体赋存分布规律及控水对策研究:[学位论文].浙江大学.2007
    [102]楼章华、金爱民、田炜卓等.论陆相含油气沉积盆地地下水动力场与油气运移、聚集[J].地质科学,2005,40(3):305-318
    [103]Kharaka Y K,Law L M,Carothers W W,Goerlitz D F.1986.Role of organic species dissvivolved in formation water form sedimentary basins in mineral diagenesis,In:Gautier D.L.ds.Role of Organic Matter in Sediment Diagenesis,Soc.Eoon.Paleontol.Mineral.Spec.Publ,38:111-122
    [104]Knauth L P and beeunas M A.1986.Isotope geochemistry of fluid inclusions in Permian halite with implications for the isotopic history of ocean water and origin of saline formation waters.Geochimica et Cosmochimica Acta,50:419-433
    [105]Connolly C A,Walter L M,Baadsgaard h,et al.1990.Origin and evolution of formation water,Alberta Bsia,Western Canada Sedimentary basin.Applied Geochemistry.5:375-395
    [106]Connolly C A,Walter L M,Baadsgaard h,et al.1990.Origin and evolution of formation water,Alberta Bsia,Western Canada Sedimentary basin.Ⅱ.Isotope systematics and water mixing.Applied Geochemistry,5:397-413
    [107]Fisher J B and Boles J R.1990.Water-rock interaction in Tertiary sandstones.San Joaquin basin.Califormia.U.S.A:Diagenetic conuois on water composition.Chemical Geology,82:83-101
    [108]Land L S.1995.Na-Ca-Cl saline formation water,Frio Formation(Oligoeene),South Texas,USA;Products of diagenesis Geochimica et Cosmochimica Acta,59(11):2163-2174
    [109]Land L S.and Macpherson G L.1992.Origin of saline formation water,Cenozoic section,Gulf of mexico sedimentary basin.AAPG Bull,76(9):1344-1362
    [110] Hanor J S.1994.Origin of saline fluids in sedimentary basins.In: Pamell M,ed, Geofluids; origin, migration and evolution of fluids in sedimentary basins. Geological Special Puliacation. 78:151-174
    [111] Hanor J S.1994.Physical and chemical control on the composion of waters in sedimentary basins.Marine and Petroleum Geology, 11(1):31-45
    
    [112] Robinson J N el al. Charts help estimate H_2O content of sour-gases.Oil Gas J.Feb.l978;77-78
    [113] Turner R G,et al.Analysis and prediction of minimum flow rate for the continuous removeal of liquids from gas wells. J PT,1969,1475-1482.
    [114] Chapman, R.E, Effects of oil and gas accumulation on Water Movement, Bull. AAPG,No.1, 1980
    [115] Arkadakskiy, Serguey V; Rostron, Ben J; Jensen, Gavin. Fingerprinting formation-waters using stable isotopes: examples from petroleum exploration and production. Geological Society of America, 39 (6) pp.116, Oct 2007
    
    [116] Alfred Mayer—Gurr. Petroleum Engineering. Geology of Petroleum. VOL. 3, 1976
    [117] Guerrero E T. How to Estimate Original Dry Gas in place by Material Balance for Gas Reservoir with Water Drive. OGJ. Jan. 3, 1996. P. 76-82
    [118] Roger J. Barnaby, Gregg C. Oetting and Guoqiu Gao.2004.Strontium isotopic signatures of oil-field waters: Applications for reservoir characterization. AAPG Bull. 88 (12) : 1677-1704
    [119] P. Birkle, J. J. Rosillo Aragon, E. Portugal, etal. 2002. Evolution and Origin of Deep Reservoir Water at the Activo Luna Oil Field, Gulf of Mexico, Mexico. AAPG Bull.86 (3) :457-484
    [120] V. Woule Ebongue, N. Jendrzejewski, F. Walgenwitz, etal. 2005. Chlorine isotope residual salt analysis: A new tool to investigate formation waters from core analyses. AAPG Bull. 89(8):1005-1018
    [121] Anfort S J,Stefan Bachu,L.R.Bentley.2001.Regional-scale hydrogeology of the Upper Devonian-Lower Cretaceous sedimentary succession, south-central Alberta basin, Canada. AAPG Bull,85(4):637-660
    
    [122] Gino Di Lullo,et al.2003.控制产水回顾.国外石油动态, 143(9):18-21
    [123] Bachu S. K Michael. 2003. Possible controls of hydrogeological and stress regimes on the Producibility of coalbed methane in Upper Cretaceous-Tertiary strata of the Alberta basin, Canada. AAPG Bull, 87(11):1729-1754
    [124] Sorenson R P. 2005. A dynamic model for the Permian Panhandle and hugoton fields, western Anadarko basin. AAPG Bull, 89(7):921-938
    [125] Yahi N, Schaefer R G and Littke R. 2001. Petroleum generation and accumulation in the Berkine basin, Eastern Algeria. AAPG Bull., 85: 1439-1467
    [126] Rowan E L, GoldhaberM B and Hatch J R. 2002. Regional fluid flow as a factor in the thermal history of the Illinois basin:Constraints from fluid inclusions and the maturity of Pennsylvanian coals. AAPG Bull., 86:615-629
    [127] Davis,M Kathleen; Evensen,Joseph. Formation water signatures of the FT Worth basin relevant to gas production from barnett shale. Geological Society of America, 39 (6) , pp.463, Oct 2007
    [128] Fay, Mathew; Larter, Steve. Impact of formation water chemistry on biodegraded oil in southern Alberta and SE Saskatchewan.Reservoir, 34 (4) , pp.20, Apr 2007
    [129] Bernhard H. Hartmann, Karl Ramseyer, and Albert Matter. Diagenesis and Pore-Water Evolution in Permian Sandstones, Gharif Formation, Sultanate of Oman.Journal of Sedimentary Research, May 2000; 70: 533 - 544.
    [130] Jennifer C. McIntosh, Lynn M. Walter and Anna M. Martini. Extensive microbial modification of formation water geochemistry: Case study from a Midcontinent sedimentary basin, United States. GSA Bull, May 2004; 116: 743 - 759.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700