电法找水在赤峰元宝山地区的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内蒙古赤峰市克什克腾旗元宝山地区属严重缺水的干旱地区,为了解决该区的人畜饮水问题,我们采用传统的物探电测深,结合地质、水文地质的方法,在充分搜集研究区相关资料的基础上,进行了大范围的电测深、电测井勘测。在对所得资料定性分析的基础上,首先采用软件、量板法相结合进行初步定量解释,然后运用电反射系数(K)法和回归分析法进一步分析、解释。综合研究区物性和水文地质资料,认为研究区内第四系地层发育,含水层稳定,含水层的相对埋深主要受地貌和古地理地形制约;含水层一般随第四系厚度的增大相应的加大;含水层岩性基本相同,大都为中细砂层;区内上层滞水埋藏浅,易于开采。所圈定的汗克拉拗陷盆地、好鲁库拗陷盆地、元宝山山间盆地和其它零星分布的小盆地及盆地边缘地带,是地下水汇集的良好地段,平均涌水量大于500T/d,应作为开采地下水的主要地段。
Resistivity method of geophysical prospecting is the most traditional and effective method in the investigation of underground water resources at home and abroad. In the region of Yuanbaoshan, Koshiketeng County, Chifeng City, there is serious drought for less rain, so the drinking water for living is very limited. Therefore, exploring and developing underground water is the main approach to solving the scarcity of water resources.
    Based on geology and hydrogeology features in this region, the authors utilize the resistivity method of geophysical prospecting, combined with electrical logging, to clarify aquifers and encircle the favorable areas of underground water development. All of results were attained by ascertaining the buried depth of Quaternary, the distribution laws of aquifers and the rising or sinking conditions of bedrock in the main region of the western depression plain, the eastern plain between mountains and the southern areas between rivers.
    General introductions to hydrogeology in investigating areas: Quaternary stratum in this region mainly belongs to Zhangjiakou Formation of Upper Jurassic system, and lithology is mostly tuff, rhyolite, andesite, etc. In Late Yanshan, intrusive masses are mainly granite porphyry. Neocathaysian structural system is the main structure, and Cathaysian strutures next to it. Quaterary stratum is widely extended and of great depth, its formation types are simple. Neocathaysian structural system and Cathaysian structures control the water system of mountainous regions. It is predicted that there perhaps exists comparatively deep aquifers in the central and marginal parts of depression basin, basin between hills, basin between rivers, and masses between rivers, while in areas of nearby ridges and divides, and blind ridgy bedrocks, there is less deep aquifers, so the latter
    having weak water-bearing capacity in general. Physical characteristics in investigating areas: After studying comprehensively the following curves, that is, curves of electric logs grads in 19 boreholes, curves of resistivity sounding in 28 boreholes, curves of resistivity sounding in 10 bedrock outcrop, the following results can be attained: the main stratum in this region, which include layers of dry sands with no water, water–bearing layers of Quaternary, and pre-Quaternary lithology, are shown apparently in the interfaces of different resistance and difference of electrical property in curves of electric logs and ones of electrical sounding. The electric characteristics of different stratum are corresponded to different curves of electrical sounding nearby boreholes. That is , the main stratum of depression basins and basins among hills corresponded to KQH type; the mainly marginal stratum of the basins above corresponded to KQ type; ridgy parts of blind bedrocks and front mountain region corresponded to KQ type; in areas of lake depression, where basement stratum is intrusive rocks or other ones with high resistor, it corresponded mainly to H type; where basement stratum is Jural tuff or basalt, it corresponded to Q type. When aquifer is more than 15 meters below the earth surface,the layers of dry sands is shown maximal K in electric sounding curves with maximal apparent resistivity more than 1000Ωm; When less than 10 meters below the earth surface, the curves are shown as QQ, Q, or H type. Lithology of water-bearing layers is simple and stable, and mainly is middle or tiny sands. Aquifers in Quaternary, whose apparent resistivity is between 120 to 140Ωm, more than 2 to 10 times smaller than the upper not-water-bearing sand layers, are usually shown in the descending parts of T or Q types. The varying thickness of aquifers can be shown by the relative
    displacement of horizontal coordinate. Most bedrock in this region are acidic tuff, and the like, in Upper Jurassic system, whose base plate is major electric marker. It is deep and widely extended, which is shown in the descending parts of the near end in KQ type curves, whose apparent resistivity exists between 60 to 280Ωm. The varied stratum interval of Quaternary is shown through displacement of Point Q in horizontal coordinate. Part of bedrock in this region is intrusive rocks with high resistive, whose apparent resistivity is between 400 to 680Ωm, more than 3 to 4 times higher than the overlying water-bearing layers. It is shown in the ascending part of the near end of KQH, KH types. Analyzing and explaining datum obtained: After analyzing quantatively geophysical prospecting datum, and, combined with geology and hydrogeology datum, features of electric sounding curves in different places can be obtained as follows: Type KQ1 is mainly in the west of Changxingta investigating unit; Type KQ2 is widely distributed, mainly in the central and southern parts of this unit; Type KQ3 is mainly in the northeastern part of this unit; Type KH1 is mainly in the front mountain region of east of this unit; Type H, Type Q are sparsely scattered in marsh areas of east of this unit and marsh areas nearby rivers of front mountain regions in mid-south of Yuanbaoshan investigating unit. By use of computer, master curve method, combine with electric reflection coefficient (K) method, and regression analytic method, taking account of known geology and hydrogeology datum, the following conclusion can be reached: the developing regularities of Quaternary stratumthickness in this region is its gradual increase from 20 to 200m. In general, the thickness of aquifers increases with growing thickness of Quaternary.
引文
[1]周海军,王争明,刘东峰,等.地下水勘察中综合电法的合理应用.地下水, 2003,25(3):169-171.
    [2]张福生.电法找水的应用.煤炭技术,2002,21(10):60-61.
    [3]张贵.珠琳地区岩溶水分布规律及找水经验.水文地质工程质,2003,1:73-75.
    [4]刘建军,张桂华,郭洪彬.基岩山区构造裂隙水物探方法研究.黑龙江水专学报,2002,29(1):36-39.
    [5]常聚友.利用电测深.曲线在灰岩地区找水成败实例.勘查科学技术,1994,(4):64-65.
    [6]阮百尧.“电阻率测深曲线解释中的一种新的反演法”在勘探中的应用.桂林工学院学报,1996,16(4):387-391.
    [7]李金铭,罗延钟.电法勘探新进展.北京:地质出版社,1996:160-172.
    [8]王振东.九十年代环境与工程物探发展概况、物化探译从.1997,(5):45-57.
    [9]钱学溥.中国蓄水构造类型. 北京:科学出版社,1990,328-350.
    [10]刘光亚.基岩地下水.北京:地质出版社,1979,152-217.
    [11]陈满祥.被切割的黄土高原水文干旱的主要原因.水资源研究,1990,11(4):31-37.
    [12]刘江.黄河沿岸找水项目吴堡县寇家塬区电法勘探报告.陕西煤田地质局物探测量队2001.
    [13]乔贺堂.生产测井原理及资料解释.北京:石油工业出版社,1992.
    [14]常聚友.模糊相似比在第四系电探找水中的应用.物探化探计算技术,1996,18(3).
    [15]庞绪贵.应用灰色关联度分析对电测深找水资料进行数据处理.工程勘察,1995,(6).
    [16]武选民.干旱、半干旱地区水文地质研究现状.水文地质工程地质,1999.
    [17]籍传茂.世界各国地下水开发和国际合作指南.北京:地震出版社,1996.
    [18]裴正文.试论地球物理与现代水文、工程、环境地质.水文地质工程地质,1996,26(3):58-60.
    [19]李保国.电反射系数(K)法在解释地质效果中的应用.水文地质工程地质,2001,28(6):66-67.
    [20]河北省地质局水文地质四大队.山区找水.北京:科学出版社,1974:22-23.
    [21] 王亚丽, 王占亭, 郝立民. 低山丘陵区电法勘探定井的效果. 东北水利水电,1998,8:39-41
    [22] 柳俊杰, 刘海静, 白玉芹. 赤峰市地下水资源及动态分析研究. 内蒙古水利,2002,4:67-68
    [23]龙凡,韩天成.赤峰地区玄武岩地下水赋存类型及其地电特征.水文地质工程地质,2002,6:60-63.
    [24]张荣.边山地区找水中几个突出问题的研究.地下水,2002,24(1):39-41.
    [25] 廖资生. 地下水的分类和基岩裂隙水的基本概念. 高校地质学报,1998,4(4):473-477.
    [26]周海军,王争明,刘东峰,刘秋潮.地下水勘察中综合电法的合理应用.地下水,2003,25(3):169-171.
    [27]范建明.地下水资源勘察中物探的作用.山西水利科技,2004,5:64-65.
    [28]顾平和.电测找水.电气时代,1998,10:12-13.
    [29]何继善.电法勘探的发展和展望.地球物理学报,1997,40:308-316.
    [30]王祥安,何喆哲,李光明.便于定性直观解释电测深曲线的作图方法.工程勘查,1997,2:66-68.
    [31]张赛珍,王庆乙,罗延钟.中国电法勘探发展概况.地球物理学报,1994,37:408-424.
    [32]李金铭.电法勘探方法发展概况.物探与化探.1996,20(4):249-258.
    [33]阎素英,韩建中.电法勘探在洪积扇中的电性特征及其富水性.山西科技2000 年增刊,2000,84.
    [34]冯礼.电法勘探在解决人畜饮水中的应用.内蒙古水利,1997,4:21-23.
    [35]王茹琳,李岳萍.电法勘探在锡林郭勒盟边境苏木找水中的应用.内蒙古水利,2003,1:72-73.
    [36]王聿军.电法在某山区的找水效果.物探与化探,1999,23(5):351-362.
    [37]马长国,高超英.电阻率法探测地下水曲线分析.吉林水利,1994,12:30-33.
    [38]贾东新,李炜.反射系数电法勘探及应用效果.河北煤炭,1998,1:25-28.
    [39]成光宇.内蒙古牧区地下水赋存规律及开发利用潜力.内蒙古水利,1999,2:23-24.
    [40]易秀.干旱半干旱地区地下水问题.干旱区研究,2001,18(3):54-57.
    [41]杨丽宇.现有井资料在地下水资源评价中的运用.水利科技与经济,2002,8(4):221.
    [42] 李晓辉, 张美玲, 谭辉红. 高电阻率水层定性识别方法研究. 测井技术,2000,24:491-555.
    [43]胡伏生,陈连竹,万力,卢明全,杜强.含水层参数不确定性与地下水开采量可靠性评价. 南京大学学报(自然科学),1999,35(6):675-682.
    [44]王志勇,刘志新.贫水丘陵地带电法找水技术及应用.江苏煤炭,2000,4:2.
    [45]武毅,朱庆俊.浅谈地下水地球物理勘查技术几个问题.水文地质工程地质,2004,3:111-114.
    [46] 吴海成, 张连李, 惠民. 水文物探技术的发展和应用. 水文地质工程地质,1998,2:56-59.
    [47] 长春地院水文物探编写组. 水文地质工程地质物探教程. 地质出版社,1980,1:74-76.
    [48]张保祥,刘春华,迟明春等.电阻率法在阿联酋沙漠地区地下水勘探中的应用.物探与化探,1999,23(5):347-350.
    [49]SemenovAG, SchirovMD, LegchenkoAV. On the technology of subterranean Water exploration founded on application of nuclear magnetic resonance to mogragh Hydroscope,Ⅸth Amperesummer school. Abstracts, Novosibirsk,1987 September(20~26):214.
    [50]ShirovMD, et al.An ewdirect non in vasive groundwater detection technology for Australia,Expl.Geophysicis,1991,22(2):333~338.
    [51]C.S.Okereke,E.O.Esu,A.E.Edet.Determination of potential groundwater sites using geological and geophysical techniques in the Cross River State, southeastern Nigeria. Journal of African Earth Sciences,1998,27(1):149-163.
    [52]Zeil.Peter,olk.Peter, aradeth, et al. eophysical methods for lineament studies in groundwater exploration. Geoexploration1991,7(1~2):165-177.
    [53]Stratagem 26716-01 Rev. Bop0eratio Manual Geometerocs and Emielectro Magneti Instruments, Inc. January 1996.
    [54]I.V.Povkh, L.A.Shljak,N.N.Pogrebnov. Mapping of underground water in the semi–arid region of the southern part of Russia using remote sensing date GIS technologies. The thirteenth international conference on applied geologic remote sensing, Canada,1-3 March 1999.
    [55]J.Moses Edwin. Groundwater prospects in a river basin: a study of soils towards generating strategies for recharging. The thirteenth international conference on applied geologic remote sensing. Canada, 1-3 March 1999.
    [56]S.K.Nag, Nabanita Ray, et al. Hydrogeomorghic and francture studies for ground–water investigation in and around Balarampur district, west Bengal. The thirteenth international conference on applied geologic remote sensing, Canada, 1-3 March 1999,1-507.
    [57]Legchnk o AV. Some aspects of the performance of the Surface NMR Method.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700