充填体中矿柱留设对地表沉降的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在矿产资源日益短缺的情况下,“三下”矿山的开采对我国的经济发展有着重要的意义。位于邯郸市武安境内的云驾岭铁矿也属于“三下”矿山,其上部为云驾岭村庄和玉石洼铁矿生活区。该矿地质储量2641万t,矿石平均品位为46.51%,是我国赋存量不多的高品位铁矿石,在国际铁矿石价格大幅增长和我国大量进口的情况下,该矿的开采有利于解决国内铁矿石的紧张局面。该矿开采有两个大方案,一是搬迁村庄,二是用“三下”开采的方法采出矿石。由于搬迁费用昂贵、选址困难,所以该矿在开采方案设计中采用嗣后充填房柱采矿法,用工程类比法确定留设21%的永久矿柱。缩小留设矿柱比例就意味着多回收矿石,为此,用FLAC软件模拟采用嗣后充填房柱法时,留设不同比例矿柱对地表沉降的影响。
     模拟工作是运用有限差分FLAC软件进行的,在对矿山工程地质、采场结构参数及原岩应力场的调研基础上,建立了力学简化模型。共建立了四个三维实体模型,依次是:21%的永久矿柱(不充填)、21%的永久矿柱(充填)、16%的永久矿柱(充填)、10%的永久矿柱(充填)。在模拟过程中,通过矿房在开挖过程中的应力和位移的变化,最终影响到地表沉降量,以此来确定既少留永久矿柱,又可保证地表村庄安全的可行方案。
     通过对四种方案的一一数值模拟,得出留设16%永久矿柱(充填),地表沉降可达建筑物II级破坏等级标准。而留设10%永久矿柱(充填),地表沉降可达建筑物IV级破坏等级标准,村庄建筑物的保护等级为III级。因此矿柱留设比例可在10%~16%之间选择,即可比原开采方案提高矿石回收率5%~11%。
In the circumstances of growing shortage of mineral resources, the exploration of under-building, under-road and under-water mine has great significance for the development of our country′s economy. The Yun Jialing iron mine which locates in Handan city also belongs to under-building, under-road and under-water mine. The iron mine coveres Yun Jialing village and Yu Shiwa iron mine uptown. Its geological reserve is 26.41 million tons. The average grade is 46.51%, and is high grade ore in China. With the great growth of the ore price and so much importing in our country, the exploitation of this iron mine would be good for resolving the domestic serious situation. There are two major exploration programmes. One is the relocation of villages, the other is the exploration of ore with the technique of under-building, under-road and under-water. The relocation costs a lot of money, which is difficult to rebuild. Therefore it adopts backfilling room-and-pillar method to mine in the designing of mining, with analog method working for reserving 21% permanent pillar. Contracting pillar means recovering more ore, therefore, with FLAC software simulation using room-and-pillar method filling later, in a different proportion pillar of the influence of surface subsidence.
     Simulation work is operated with the finite difference FLAC software. On the basis of researching engineering geology, mining structure parameters and the original rock stress, establishing simplified mechanical model. A total of four 3D solid models are established: 21% permanent pillar(not filling), 21% permanent pillar(filling), 16% permanent pillar(filling), and 10% permanent pillar(filling). In the simulation process, the change of mining stress and displacement changes ultimately affect the amount of the surface subsidence, in order to determine mining options not only stay less permanent pillar, but also guarantee the safety of the surface villages.
     Through the numerical simulation of the four options one by one, remaining 16% permanent pillar(filling), the surface subsidence reaches building broken grade II; and remaining 10% permanent pillar(filling), the surface subsidence reaches building broken grade IV. The secure grade of village building is III. Therefore there remains a pillar in the proportion of 10% to 16%, and the recovery rate can increase 5% to 11%.
引文
[1]刘沐宇,徐长佑.地下采空区矿柱稳定性分析[J].矿冶工程,2003,20(1):19-22.
    [2]刘学增,翟德元.矿柱可靠度设计[J].岩石力学与工程学报,2000,18(6):85-88.
    [3]赵奎,蔡美峰.某金矿残留矿柱回采的稳定性研究[J].有色金属,2003,55(2):83-85.
    [4]杨伟忠,王勋业.控制矿柱破坏程度的爆破技术措施研究[J].金属矿山,1994,2(13):15-19.
    [5]吕学清.矿柱设计中一个值得注意的问题[J].轻金属,1995(7):5-8.
    [6]张飞,郑德超,刘占魁,等.矿体与矿柱不垂直时矿柱强度的估算[J].化工矿山技术1996,25(4):8-9.
    [7]朱成忠,段乐珍,徐国元,等.论盘区矿柱对顶板导水裂缝带发育的影响[J].中国矿业,1996,5(23):30-33.
    [8]张连新,宁革,马汉涛,等.提高采场矿柱稳定性的技术措施[J].冶金矿山设计与建设,2004,34(3):16-18.
    [9]李俊平,冯长根.矿柱参数计算研究[J].北京理工大学学报,2003,22(5):661-664.
    [10]尤明庆,华安增.岩样单轴压缩的尺度效应和矿柱支承性能[J].煤炭学报,1997,22(1):37-41.
    [11]吴爱祥,胡华,黄仁东,等.缓倾斜薄矿体连续开采的采场稳定性数值模拟[J].东南工业大学学报,1999,30(5):457-459.
    [12]唐春安,乔河.矿柱破坏过程及其声发射规律的数值模拟[J].煤炭学报,1999,24(3):266-269.
    [13] S K PAVE. The layer form tilts to one side the assurance of the best room mineral pillar of the mineral body[D]. Technique thesis, 2004.
    [14] M F HUNDLE. Deep plank form mineral body alignment stable mineral pillar and protection the mineral pillar design guidebook[D]. Technique thesis, 2003.
    [15] R C PAKALNIS. The evaluation of the mineral pillar strength a research(2)[J]. CIMBulletin, 2004 (4): 32-35.
    [16] P J LUNDER. New method of the certain hard rock mineral mountain mineral pillar strength[D]. Technique thesis, 2003.
    [17] U-K. Using a research of case that the number emulation method estimates the well tube public security mineral pillar stability[J]. Int J Rock Mech MinSic, 1995(7): 2-8.
    [18]郭忠林,臧士勇.缓倾斜矿体回采试验研究[J].云南冶金,2003,30(4):1-7.
    [19]郑学敏.特大采空区下矿柱回采的安全性评价[J].矿业研究与开发,2003,22(6):16-18.
    [20]张连新,宁革.提高采场矿柱稳定性的技术措施[J].冶金矿山设计与建设,2004,34(3):16-18.
    [21] SALAMON. MDG, Stability, instability and design of pillar workings[J]. Int J Rock Mech MinSic, 1990, 7(06): 613-631.
    [22] PRITCHARD C J, HEDLEY D G F. Progressive pillar failure and rockbursting at Dension Mine[J]. Rockbursts and seis micity in mines, 2004: 11-16.
    [23] FERRERO A M. The oretical and experimental study on geometric instability of pillars in discontinuous rock[J], Proceeding of 8th Int Con on Mech, 1995: 555-558.
    [24] LUNDER P J, PAKALNIS R C. Determination of the strength of hard-rock mine pillar[J]. CIMBulletin, 2003(1): 51-55.
    [25] REN DEHUI. Pressure and control atand mining[M]. Chongqing: Chongqing University Press, 1990.
    [26]洪靖文.采动覆岩动态移动破坏规律及开采沉陷预计系统研究[D].北京:中国矿业大学,1999.
    [27]贺跃光.工程开挖引起的地表移动与变形模型及监测技术研究[D].长沙:中南大学,2003.
    [28]王孝存.团城铁矿地压显现与岩移规律研究[D].沈阳:东北大学,2003.
    [29] BRADY H G, BROWN E T. Underground opencast rock mechanics[M]. London: Coal industry publisher, 1990.
    [30]刘宝深,廖国华,颜荣贵,等.采煤岩层及地表移动的基本规律[R].长沙岩石力学工程技术咨询公司,1987.
    [31] LI WENXIU. Fuzzy probability analysis for displacement of rock mass[J]. Scientia Sinica, 1987, 30 (10): 1119~1120.
    [32] C H.克米沙洛夫,乔福样译.开采周围岩体控制[M] .北京:煤炭工业出版社,1988.
    [33]胡晋山.山区地面建筑物保护煤柱设计研究[D].太原:太原理工大学,2001.
    [34]杨伦,于广明.采矿下沉的再认识[A].第七届国际矿测学术会文集,1987.
    [35]司明强.人工神经网络在高速公路沉降预测中的应用[D].上海:同济大学,2004.
    [36] HOEK E, BROWN E T. Empirical Strength Criterion for Rock Masses[J]. Jour. Of the Geotechnical Engineering Division, 1980, 106(GT9): 1013~1035.
    [37] NGUYEN V U. Back calculation of slope failure by the secant method[J]. Geotechnique, 1984, 34(3): 223~227.
    [38] LI WENXIU. Fuzzy models for estimation of surface ground subsidence[C]. Vol. I, Pennsylvania, USA: Inc. Bethlehem, 1989(5): 317~328.
    [39]陈允芳.采煤和地下水疏降共同引起的地表沉陷研究[D].泰安:山东科技大学,2003.
    [40]张玉卓,仲惟林,姚建国,等.岩层移动的位错理论解及边界元计算[J].煤炭学报,1987,12(2):21~30.
    [41]谢康和,周健.岩土工程有限元分析理论与应用[M].北京:科学出版社,2002.
    [42]顾尔柞.有限差分基础[M] .上海:上海交通大学出版社,1988.
    [43]徐珍泉.数值分析中岩石力学参数选取的若干问题研究[D].北京:北京科技大学,2001.
    [44]刘三枝.相似理论在开采沉陷参数计算中的应用[D].焦作:焦作工学院,2003.
    [45]任涛.地理信息系统技术在地表沉降监测预报中的应用研究[D].北京:北京科技大学,2005.
    [46]成枢.岩层地表移动数值分析新方法[M].徐州:中国矿业大学出版社,1998.
    [47]艾欢宁,张玉福.“三下”压煤开采经验谈[J].山西煤炭管理干部学院学报,2003(2):25.
    [48]刘波,韩彦辉. FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.
    [49]周华强.南洺河铁矿全尾砂胶结充填方案设计研究报告[R].中国矿业大学,2005,9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700