~7Be和~(137)Cs复合示踪坡耕地土壤侵蚀产沙的空间分布特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤侵蚀及其导致的土壤质量退化是世界性的重大环境问题之一。坡耕地作为重要的侵蚀产沙区,揭示其土壤侵蚀规律和泥沙运移方式,对建立土壤侵蚀预报模型、加强土地管理防止土壤退化具有十分重要的意义。本文以黄土丘陵沟壑区杏子河流域的典型瓦背状坡耕地为研究对象,利用~7Be和~(137)Cs在土壤剖面中分布深度和半衰期不同的特点,结合野外调查和室内分析,研究了典型瓦背状坡耕地中长期(约45a)和短期(次降雨)土壤侵蚀的空间分布特征,以期为坡面土壤侵蚀预报模型的建立和坡耕地水土流失的评价提供科学依据。
     1.研究了~7Be和~(137)Cs在土壤剖面中的分布特征。
     结果表明,~7Be在土壤剖面中的赋存量存在明显的季节性,分布范围主要集中在0~10mm。~7Be在土壤剖面中的含量随土壤深度的增加呈指数递减。~7Be在土壤剖面中的分布特点使之可以应用于示踪表层土壤的再分布规律。~(137)Cs在未扰动土壤剖面中主要分布在0~5cm范围内,同时在1~3cm的范围出现一个~(137)Cs的相对富集层,在3cm以下随土壤深度的增加呈指数递减的趋势;~(137)Cs在农耕地土壤剖面中主要分布在0~20cm范围内,由于耕作活动的不断扰动~(137)Cs的剖面分布相对均匀。
     2.分析了~(137)Cs示踪农耕地土壤侵蚀速率模型间的异同,并以土壤侵蚀的经验回归模型为参照对~(137)Cs法计算的土壤侵蚀速率进行验证。
     分析表明,尽管Walling模型、张信宝模型、杨浩模型以及周维芝模型在建立的方法上存在一定程度的差异,但是各个模型表征的土壤侵蚀速率与土壤剖面中~(137)Cs损失率的关系基本一致。因此,在利用~(137)Cs技术示踪农耕地土壤侵蚀速率时,这四个模型各自计算的土壤侵蚀速率差异较小。在估算径流小区土壤侵蚀速率中各模型与江忠善经验回归模型的结果相差都在10%左右。
     3.尝试了运用Weibull概率分布模型对北半球~(137)Cs沉降过程的拟合。
     在建立~(137)Cs土壤侵蚀模型的过程中,对~(137)Cs的沉降过程的处理是正确估算土壤侵蚀速率的基础。通过分析~(137)Cs沉降的时间分布特征,发现~(137)Cs沉降的年际分布与Weibull概率分布相似,可以用Weibull概率分布模型进行拟合。
     4.研究了次降雨坡耕地土壤侵蚀的空间发生特征。
     研究表明,坡耕地土壤侵蚀强度的空间分布与地形因素密切相关,具有明显的垂直分布特征和水平分布特征。在水平方向上,由浅沟分水脊经浅沟沟坡到浅沟中心,
    
    7Be和’37Cs复合示踪坡耕地土壤侵蚀产沙的空间分布特征
    土壤侵蚀强度逐渐增强;在垂直方向上,从分水岭到沟缘线土壤侵蚀强度呈先加强后
    减弱的趋势。其中细沟间侵蚀和细沟侵蚀对坡面侵蚀的贡献分别为35%和65%,且
    在空间发生特征上具有此消彼长的关系。
    5.研究了坡耕地中长期(约45a)土壤侵蚀产沙的空间分布特征。
     研究表明,坡耕地年平均侵蚀模数为15850叭灿2.a),具有明显的空间分异格局。
    坡面中部侵蚀相当严重,分水岭与沟缘线附近相对较轻。地形因子中的坡度是形成坡
    耕地土壤侵蚀垂直分异格局的主要影响因素。
    6.探讨了坡耕地次降雨土壤侵蚀特征与中长期(约45a)土壤侵蚀特征的相互关系。
     7Be和’37Cs示踪技术测定的是净土壤侵蚀量,可提供更为真实的侵蚀、产沙及
    沉积信息,能用于较详细描述坡面中一短时间尺度土壤再分布的空间分布,和其他方
    法相比,这是7Be和’37Cs示踪技术鲜明的特点。研究表明,坡耕地次降雨土壤侵蚀
    与长期土壤侵蚀在空间发生特征上具有一定程度的相关性。但是,次降雨侵蚀与长期
    侵蚀的严重部位不同,前者发生在10一20m处,后者发生在20一3Om处。二者的不同
    可能反映了土地利用状况和耕作活动对土壤侵蚀的影响。
Soil erosion is one of the great environmental problems in the world, especially on Loess Plateau in China. It is important to reveal the law of soil erosion and develop soil erosion forecast model, which has a bearing on preventing the loess of water and soil. The spatial distribution of soil erosion within slope land on Loess Plateau was discussed by using Be tracer, 137Cs tracer and field survey in this paper. The main results of this work are as follows:
    1. The depth distribution of 7Be and 137Cs concentration has been studied at the study field and a nearby-undisturbed site.
    The results show that the majority of 7Be is retained in the top one centimeter of soils, and the concentration of 7Be decreases exponentially with soil depth. For the cultivated study field, the depth distribution of 7Be is very similar to the undisturbed site when it isn't subjected to erosion or deposition. For the undisturbed, there is abroad peak in the 137Cs profile close to the surface and the maximum concentration is found circa 2 cm below the surface. I37Cs Concentration decreases exponentially below the peak, and l37Cs is found circa 30 cm. For the cultivated study field, the 137Cs concentration is relatively uniform within the plough layer.
    2. The difference and sameness among the existing l37Cs models have been discussed, and their precision have been validated by comparing with the regressive model of soil erosion.
    Existing calibration models, proposed by Walling, Zhang, Yang and Zhou, have been compared and evaluated. The results show that there are differences among these establishment hypotheses and ways, especially considering the temporal pattern of the 137Cs deposition flux. However, the deviation among them can be neglected when they have been used to estimate rates of soil loss. Compared with Jiang's regressive model, the soil rates by 137Cs tracer is lower about 10% than that by Jiang's regressive mode when they has been used to estimate rates of soil loss on runoff plots.
    3. It is an attempt to simulate the temporal distribution of the 137Cs in the Northern Hemisphere by Weibull probability distribution model.
    The temporal pattern of the 137Cs deposition flux must be considered when developing calibration relationship between the loss or gain of and the rate of erosion or deposition. After studied the temporal pattern of the 137Cs deposition flux, it is fist to discover that the temporal distribution of the 137Cs fallout is very similar to Weibull probability distribution.
    
    
    
    The 137Cs fallout can be simulated by Weibull probability distribution, which can be employed to estimate the rate of soil erosion.
    4. The spatial distribution of the rainfall soil erosion rates has been investigated on the cultivated slope land.
    The results indicate that the spatial pattern of soil erosion is related to the slope land shape. It has clear vertical and horizontal distribution features. The soil erosion has become more and more intensive horizontally from the ridge to the center of the shallow gully. The soil erosion intensifies, and then weakens vertically from the divide to the edge of the gully. On the other hand, the contributions of interrill and rill erosion to the total erosion are 35% and 65% respectively, and their spatial distribution characters are different form each other.
    5. The spatial distribution of the medium-term soil erosion rates has been investigated on the cultivated slope land.
    The results show that the annual mean erosion rate (ca. 45 years) is 15850 t/km2-yr and its spatial distribution has clear difference. The soil erosion intensifies, and then weakens vertically from the divide to the edge of the gully, apart from the central section of the land because there is a ridge.
    6. The correlativity between short -term erosion and medium-term erosion has been discussed on cultivated slope land.
    The key advantage of the 137Cs and 7Be approaches is the provision of spatially distributed information on short-and medium-term rates of both erosion and
引文
[1]刘秉正,吴发启编.土壤侵蚀[M].陕西人民出版社,1997.
    [2]郑粉莉,高学田著.黄土坡面土壤侵蚀过程与模拟[M].陕西人民出版社,2000.
    [3]田均良,周佩华,刘普灵等.土壤侵蚀REE示踪法研究初报[J].水土保持学报,1992,6(4):23-27.
    [4]刘普灵,武春龙,琚彤军,杨名义.稀土元素示宗法在坡面土壤侵蚀垂直分布研究中的应用[J].水科学进展,2001,12(3):331-335
    [5]张信宝,李少龙,王成华,等.黄土高原小流域泥沙来源的Cs-137法研究[J].科学通报,1989,3:210-213.
    [6]张信宝,李少龙,王成华等.~(137)Cs法测算梁峁坡农耕地土壤侵蚀量的初探[J].水土保持通报,1988,8(5):18-22.
    [7]杨明义,田均良,刘普灵等.~(137)Cs示踪研究小流域土壤侵蚀与沉积空间分布特征[J].自然科学进展,2001,11(1):71-75
    [8]杨明义,田均良,刘普灵.用~(137)Cs法研究农耕地坡面土壤侵蚀空间分布特征初报[J].水土保持研究,1997,4(2):96-99.
    [9]杨明义,田均良,刘普灵.应用~(137)Cs研究小流域泥沙来源[J].土壤侵蚀与水土保持学报,1999,5(3):49-53.
    [10]吴永红,李倬,张信宝.黄土高原沟壑区谷坡农地侵蚀及产沙的~(137)Cs法研究[J].水土保持通报,1994,14(2):22-25.
    [11]唐翔宇,杨浩,赵其国,等.~(137)Cs示踪技术在土壤侵蚀估算中的应用研究进展[J].地球科学进展,2000,15(5):576-582.
    [12]张信宝,Higgitt D L,Walling D E.~(137)Cs法测算黄土高原土壤侵蚀速率的初步研究[J].地球化学,1991,3:212-218.
    [13]周维芝.~(137)Cs法研究不同地貌类型土壤侵蚀强度分异(硕士论文D).中科院水利部水土保持研究所,陕西杨陵,1996.
    [14]杨浩,杜明远,赵其国,等.基于~(137)Cs地表富集作用的土壤侵蚀速率的定量模型[J].土壤侵蚀与水土保持学报,1999,5(3):42-48.
    [15]杨浩,杜明远,赵其国等.利用~(137)Cs示踪农业耕作土壤侵蚀速率的定量模型[J].土壤学报,2000,37(3):296-305.
    [16]白占国,万国江,P.H.Santschi,M.Baskaran.宇宙线散落核素~7Be在山区表土层中的分布特征及侵蚀示踪原理[J].土壤学报,1998,35(2):266-275.
    [17]白占国,万果江,王长生等.黔中岩溶山区表土层中~7Be的分布特征及其侵蚀示踪研究[J].自然科学进展,1997,7(1):66-74.
    [18]杨明义.多核素复合示踪定量研究坡面土壤侵蚀过程(博士论文D).中科院水利部水土保持研究所,陕西杨陵,2001.
    
    
    [19]田均良.侵蚀泥沙坡面沉积研究初报[J].水土保持研究,1997,4(2):57-63
    [20]周佩华,田均良,刘普灵等.黄土高原土壤侵蚀与稀土元素示踪研究[J].水土保持研究,1997,4(2):2-9
    [21]刘普灵,田均良,周佩华.土壤侵蚀稀土元素示宗法操作技术研究[J].水土保持研究,1977,4(2):10-16
    [22]吴普特,刘普灵,武春龙.坡面侵蚀垂直分布特征动态变化过程初步研究[J].水土保持研究,1977,4(2):42-46
    [23]吴普特,周佩华,武春龙.坡面细沟侵蚀垂直分布特征研究[J].水土保持研究,1997,4(2):47-56
    [24]石辉,田均良,刘普灵,周佩华.小流域泥沙来源的REE示踪研究[J].中国科学(E),1997,40(1):12-20
    [25]石辉,田均良,刘普灵.小流域侵蚀产沙空间分布的模拟实验研究[J].水土保持研究,1997,4(2):77-84
    [26]杨武德,王兆骞,眭国平等 红壤坡地土壤侵蚀定位土芯EU示踪法研究 土壤侵蚀与水土保持学报 1998,1(4):61—65.
    [27]眭国平,徐锴,罗文泓等.中子活化分析技术在野外红壤侵蚀研究中的应用[J].核技术,2000,23(4):285-288.
    [28]朱显谟.黄土区土壤侵蚀的分类[J].土壤学报,1956,4(2):99-115.
    [29]罗来兴.划分晋西、陕北、陇东黄土区域沟间地与沟谷的地貌类型[J].地理学报,1956,22(3):201-222.
    [30]承继成,赵诚信,陈永宗.陕北黄土区坡地分带性及泥沙来源分区,1963.
    [31]景可,卢金发,梁季阳,张信宝等,黄河中游侵蚀环境特征和变化趋势(M).黄河水利出版社,1997.
    [32]江忠善,刘志.地形因素与坡地水土流失关系的研究[J].西北水保所集刊,1990,12:1-8.
    [33]李勇,张建辉.耕作侵蚀及其农业环境意义[J].山地学报,2000,18(6):514-519
    [34]唐克丽,郑世清,席道勤等.杏子河流域坡耕地的水土流失及其防治[J].水土保持通报,1983,20(5):43-48.
    [35]唐克丽,席道勒,孙清芳等.杏子河流域的土壤侵蚀方式及其分布规律[J].水土保持通报,1984,21(5):10-19
    [36]刘元保.黄土高原集流槽的发育与控制[J].中科院水利部西北水土保持研究所集刊,1990,12:34-39
    [37]唐克丽,张科利,雷阿林.黄土丘陵区退耕上限坡度的研究论证[J].科学通报,1998,43(2):200-203.
    [38]张科利,唐克丽,王斌科.黄土高原坡面浅沟侵蚀特征值的研究[J].水土保持学报,1991,5(2):8-13
    [39]张科利,唐克丽.浅沟发育与陡坡开垦历史的研究[J].水土保持学报,1992,6(2):59-62
    [40]张科利,唐克丽.人类耕垦对现代侵蚀加速作用的评价[J].水土保持通报,1990,10(5):1-4
    [41]陈永宗,景可,蔡强国.黄土高原现代侵蚀与治理(M).北京:科学出版社,1988,170-181.
    [42]周佩华,王占礼.黄土高原土壤侵蚀暴雨的研究[J].水土保持学报,1992,6(3):1-5.
    
    
    [43]郑粉莉,唐克丽,周佩华.坡耕地细沟侵蚀影响因素的研究[J].土壤学报,1989,26(2):109-116.
    [44]江忠善,王志强,刘志.黄土丘陵区小流域土壤侵蚀空间变化定量研究[J].土壤侵蚀与水土保持学报,1996,2(1):1-9
    [45]王万忠.黄土地区降雨特性与土壤流失关系的研究[J].水土保持通报,1983(4):7-13
    [46]唐克丽,蒋定生,史德明.土壤侵蚀的研究及其展望[J].水土保持通报,1984,5:1-5.
    [47]张信宝,李少龙,T.A.Quine等.犁耕作用对~(137)Cs法测算农耕地土壤侵蚀量的影响.科学通报,1993,38(22):2072-2076.
    [48]文安邦,张信宝,等.黄土丘陵区小流域泥沙来源及其动态变化的~(137)Cs法研究[J].地理学报(增刊),1998,124-133.
    [49]杨明义,田均良,刘普灵.核分析技术在土壤侵蚀研究中的应用[J].水土保持研究,1997,4(2):100-112.
    [50]汪阳春,张信宝,李少龙。黄土峁坡侵蚀的~(137)Cs法研究[J].水土保持通报,1991,11(3):34-37.
    [51]贾志伟,江忠善.降雨特征与水土流失关系的研究[J].中科院水利部西北水土保持研究所集刊,1990,12:9-15
    [52]陈永宗.黄土高原土壤侵蚀规律研究工作回顾[J].地理研究,1987,6(1):76-85
    [53]王玉宽.暴雨细沟侵蚀的调查研究[J].中科院水利部西北水土保持研究所集刊,1990,12:34-39
    [54]孙清芳,王文龙,张平仓.杏子河流域的陡坡开垦与土壤侵蚀[J].水土保持通报,1984,21(5):120-23
    [55]石辉,段宏斌,刘普灵.坡面土壤侵蚀分布规律的初步分析[J].水土保持研究,1997,4(2):64-68
    [56]Bai Zhanguo, Wan Guojiang, Wang Changsheng, Wan Xi and Huang Ronggui. Geochemical speciation of soil ~7Be, ~(137)Cs, ~(226)Ra and ~(228)Ra as tracers to particle transport, Pedosphere, 1997,7(3):263~268
    [57]Bai Zhanguo, Wan Guojiang, Wang Changsheng, Wan Xi, Huang Rornggui, P.H.Santschi and M.Baskaran. ~7Be: A Geochemical tracer for seasonal erosion of surface soil in watershed of Lake Hongfeng, Guizhou, China. Pedosphere, 1996,6(1):23~28
    [58]Brown R.B., N. H.Cutshall and G. F.Kling. Agricultural erosion indicated by ~(137)Cs redistribution: Ⅰ. Levels and Distribution of ~(137)Cs activity in soil. SSSAJ, 1981b,45:1184-1190
    [59]Brown, R B, G F, Kling and N H, Cutshall. Agricultural erosion indicated by caesium-137 redistribution: Ⅱ. Estimating rates of erosion rates [J]. Soil Science of American Society, 1981, 45(6): 1191-1197.
    [60]Burch G. J., R.D. Barling and C.J. Branes et al. Detection and prediction of sediment sources in catchments:use of Be-7 and Cs-137. Hydrology and Water Resources Symposium 1988,146-150
    [61]De.Jong E., Begg C.M., Kachanoski R.G. Estimates of soil erosion and deposition from
    
    Saskatchewan soils. Can. J.Soil Science, 1983, 63:607-617
    [62] De.Jong E., H.Villar and J.R.Bettany. Preliminary investigations on the use of 137Cs to estimate erosion in Saskatchewan, Can.J.Soil Science,1982,62:673-683
    [63] De.Jong E., C.Wang and H.W.Rees. Soil redistribution on three cultivated New Brunswick hillslopes calculated from 137Cs measurements, solum data and the USLE, Can.J.Soil.Sci. 1986,66:721-730
    [64] Kachanoski, R G. Estimating soil loss from changes in soil cesium-137 [J]. Canada Journal of Soil Science, 1993, 73(4) : 629-632.
    [65] Kachanoski, De Jong. Predicting the temporal relationship between soil caesium-137 and erosion rate [J]. The Journal of Environmental quality , 1984, 13:301-304.
    [66] Kachanoski R.G. Comparison of measured soil 137-cesium losses and erosion rates, Can. J.Soil Sci., 1987,67: 199-203
    [67] Knaus R.M. Accretion and canal impacts in a rapidly subsiding wetland: II. A new soil horizon maker method for measuring recent accretion, Estuaries, 1989, 12(4) :269-283
    [68] Lobb. D.A., R.GKachanoski and M.H.Miller. Tillage translocation and tillage erosion on shoulder slope landscape positions measured using 137Cs as a tracer. Canadian Journal of Soil Science,1995,75:211-218
    [69] Lowrance Richard, Sherwood M and Clarence Lance. Erosion and deposition in a field/forest system estimated using cesium-137 activity. Journal of Soil and Water Conservaton. 1988,2:195-199
    [70] Martz L.W. and E.deJong, Saskatoon. Using cesium-137 to assess the variability of net soil erosion and its association with topography in a Canadian prairie landscape. Catenae 1987, 14:439-451
    [71] Menzel R G. Transport of Sr in runoff [J]. Science, 1960, 131: 499-500.
    [72] Murray A.S., L.J.Olive, J.M.Olley et al.. Tracing the source of suspended sediment in the Murrumbidgee river, Australia. Tracers in Hydrology, Proceedings of Yakohama Symposium, 1993a,Iahs Publ.no.215,: 293-302
    [73] Murray A.S., Marten.R., Johnson A. and Martin.P.. Analysis for naturally occuring radionuclides at environmental concentrations by gamma spectrometry. J. Radioanalytical and Nucl.Chem. Articles., 1987,115:263-288
    [74] Murray. A.S., A. Johnston, P. Martin et al. Transport of naturally occuring radionuclides by a seasonal tropical river, northern Australia. Journal of Hydrology. 1993b,150: 19-39
    [75] Murray. A.S., R. Stanton, J.M.Olley et al. Determining the origins and history of sedimentation in an underground river system using natural and fallout radionuclides. Journal of Hydrology. 1993c,146: 341-359
    
    
    [76] Olsen C R, Larse I L, lowry P D, et al. Atomospheric fluxes and marsh-soil inventories of 7Be and 210Pb [J]. J Geophys Res, 1985, 90: 10487-10495.
    [77] Olley J.M. A.S.Murray and P.J.Wallbrink. Identifying sediment sources in a partially logged catchment using natural and anthropogenic radioactivity. Z.Geomorph.N.F. 1996a, 111-127. Suppl.Bd.105
    [78] Olley J.M. A.S.Murray and R. G. Roberts. The effects of disequilibria in the uranium and thorium decay chain on burial dose rates in fluvial sediments. Quaternary Geochronology. 1996b,15: 751-760
    [79] Olley J.M. A.S.Murray D.H.Mackenzie and K.Edwards. Identifying sediment sources in a gullied catchment using natural and anthropogenic radioactivity. Water Resour .Res. 1993,29(4) 1037-1043
    [80] Owens P.N., Walling D.E.. The use of a numerical mass-balance mode) to estimate rates of soil redistrubution on uncultivated land from 137Cs measurement. J. Environ Radioact., 1998,40(2) : 185-203
    [81] Owens P N, Walling D E, He Q. The behaviour of bomb-derived caesium-137 fallout in catchment soils [J]. Environ. Radioact., 32: 169-19.
    [82] Papastefanou C., M.Manolopoulou, S.Stoulos et al..Soil-to-plant transfer of 137Cs, 40K and 7Be, Journal of Environmental Radioactivity, 1999,45:59-65
    [83] Quine H.and D.E. Walling. The distribution of fallout 137Cs and 210Pb in undisturbed and cultivated soils. Appl Radiat. Isot. 1997,48(5) :677-690
    [84] Quine H.and D.E.Walling. Use of fallout Pb-210 measurements to investigate longer-term rates and patterns of overbank sediment deposition on the floodplains of lowland rivers. Earth Surface Processes and Landforms. 1996,21: 141-154
    [85] Quine T.A., D.E.Walling, Q.K.Chakela et al..Rates and patterns of tillage and water erosion in terraces and contour strips: evidence from caesium-137 measurements. Catena. 1999,36: 115-142
    [86] Ritchie J.C. and J.Roger McHenry. Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: A Review. J.Environ. Qual. 1990,19:215-233
    [87] Ritchie Jerry C., J.Roger McHenry and Angela C.Gill. Fallout 137Cs in the soils and sediments of three small watersheds, Ecology, 1974a,55:887-890
    [88] Ritchie Jerry C., James A.Spraberry and J.Roger McHenry. Estimating soil erosion from the redistribution of fallout 137Cs. SSSAPROC., 1974b,38:137-139
    [89] Ritchie Jerry C.and J.Roger McHenry. Fallout l37Cs in cultivated and noncultivated North Central United States watensheds. J,Environ.Qual. 1978,7(1) :40-44
    [90] Ritchie Jerry C.and J.Roger.McHenry. Fallout 137Cs: A tool in conservation research, Journal of Soil and Water Conservation, 1975,6:283-285
    
    
    [91] Ritchie J.C., McHenry.J.R. and GilI,A.c. Fallout 137Cs in the soils and sediments of three small watersheds. Ecology. 1974a,55:887-890
    [92] Ritchie,J.C., Spraberry, J.A. and McHenry,J.R. Estimating soil erosion from the redistribution of fallout137 Soil Sci.Sco.Am.Proc.1914b,38:137-139
    [93] Tang Keli, Zhang Keli and Lei Aling. Critical slope gradient for compulsory abandoment of farmland on the hilly Loess Plateau. Chinese Science Bulletin.1998,43(5) :409-412
    [94] Wallbrink, P. J., Murray, A. S. Distribution and variability of 7Be in soils under different surface cover condition and its potential for describing soil redistribution [J]. Water Resources Research, 1996, 32(2) : 467-476
    [95] Wallbrink P.J. and A.S.Murray. Use of fallout radionuclides as indicators of erosion processes. Hydrological Processes, 1993,7:297-304
    [96] Wallbrink, P.J. Fallout of cosmogentic radionuclide 7Be and its subsequent distribution in the soil profile. Honours Thesis, ANU. Forestry Ded. 1989,30-89
    [97] Walling D E, He Q P, Blake W. Use of 7Be and 137Cs measurements to document short-and medium-term rates of water-induced soil erosion on agricultural land [J]. Water Resource Res, 1999, 35(2) : 3865-3874
    [98] Walling D E, Quine T A. Calibration of caesium-137 measurements to provide quantitative erosion data [J]. Land Degradation and Rehabilitation, 1990, 2: 161-175.
    [99] Walling D.E.and Quine.T.A. The use of 137Cs measurements to investigate soil erosion on arable fields in the U.K.: potential application and limitations. J. Soil Sci. 1991,42:147-165
    [100] Walling D.E.and Q.He. Improved models for estimating soil erosion rates from cesium-137 measurements. Journal of Environmental Quality. 1999,28(2) :611-621
    [101] Yang Hao, Du Mingyuan, Zhao Qiguo, et al. A quantitative model for estimating mean annual soil loss in cultivated land using 137Cs measurements [J]. Soil Science and Plant Nutrition, 2000, 46(1) : 69-79.
    [102] Yang Hao, Qing Chang, Mingyuan Du, Katsuyuki Minami and Tamao Hatta. Quantitative model of soil erosion rates using 137Cs for uncultivated soil. Soil Science,1998b,163(3) :248-257
    [103] Yang H, Du M, Chang Q, et al. Quantitative model for estimating soil erosion rates by using 137Cs[J]. Pedospheere, 1998, 8: 211-220.
    [104] Zhang X B, Walling D E, He Q. Simplified mass balance models for assessing soil erosion rates on cultivated land using caesium-137 measurements [J]. Hydrological Science, 1999, 44(1) : 33-45.
    [105] Zhang X., Higgitt D.L., Walling D.E.. A preliminary assessment of the potiential for using cesium-137 to estimate rate of soil erosion in the Loess Plateau of China. Hydro. Sci. J. 1990,35:267-276

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700