川西须家河深层裂缝性气藏压裂理论与应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
须家河组气藏是西南油气田分公司“十一五”期间乃至中远期天然气储产量增长的后备基地,是西南油气田分公司二十一世纪能源接替的重要领域。川西须家河组储层孔隙空间以溶蚀孔、裂缝为主,普遍具有低孔、低渗、高含水饱和度、小孔、细喉、高中值压力、不均质性强等特征,属典型的致密/超致密裂缝~孔隙型储层,必须采取有效的增产措施提高低渗区储量动用程度。川西须家河地区存在多种因素致使水力加砂压裂改造的难度很大:储层天然裂缝发育,多裂缝滤失严重;储层岩性细砂岩细粒,硅质胶结较硬,岩石杨氏模量高,地层破裂压力大;储层埋藏深,压裂时管路摩阻大,造成施工压力大等等原因,均可能会受施工压力的限制而无法提高排量导致压裂施工失败。本文针对川西须家河深层致密裂缝性气藏的压裂理论与应用技术研究进行了系统研究,取得了以下主要成果:
     (1)综合运用岩石力学、弹性力学等理论,建立了泥浆造壁伤害后储层裸眼完井和射孔完井的井壁应力场模型,为致密气藏高破裂压力储层破裂压力预测提供了理论计算方法。
     (2)通过对PLB区块单井静态和动态岩石力学参数的测试,结合压裂施工资料,建立了该区块岩石力学动静态相关关系式和分层地应力力学模型,得到了单井纵向应力剖面。
     (3)通过实验对单矿物与常规砂岩酸化酸液体系的反应机理和泥浆浸泡对岩石力学参数的影响研究,运用岩石损伤原理建立了预测酸处理后岩石破裂压力的定量计算模型,能较准确地预测该区块储层的破裂压力(误差<10%)。
     (4)系统阐述了多裂缝的形成机理及多裂缝的消除技术,并结合川西须家河的地质特征和工程实际,研究了须家河气藏多裂缝的形成机理和包括支撑剂段塞、压裂材料选择、施工参数优化在内的多种降滤失与多裂缝防治的压裂工艺技术。
     (5)依据须家河气藏储层物性条件,提出了须家河气藏压裂液体系的性能要求,通过室内实验优选了中高温低摩阻压裂液添加剂,并对优化、调试的压裂液体系进行了综合性能评价;通过实验测试优选了不同类型和不同粒径配比支撑剂,为有效提高川西须家河深层气藏加砂压裂成功率提供了新的思路。
     (6)研究成果应用于川西PLB气藏加砂压裂改造并首次取得了成功。
Xujiahe formation gas reservoir is the candidate base for reserves and outcome growth of Southwest Oil and Gas Field Branch in the period of Eleventh Five-Year Plan and medium-long time; it is also the important energy replacement domain in the 21st century. The majority of pore spaces in western Sichuan Xujiahe formation are emposieu and fracture, it generally has characteristics of low porosity, low permeability, high water saturation, micro pore, mini throat, high median pressure, strong heterogeneity; and it is the typical tight/hyper-tight fractured and pored reservoir, so it needs taking effective stimulation to improve producing reserves of low permeability layer. In western Sichuan Xujiahe area, it has many difficulties in implementing hydraulic sand fracture such as the well-developed natural fracture, the multi-fracture grave filtration; fine sandstone and hard siliceous cement, the high Young's modulus ,high fracture pressure; high treating pressure caused by high burial depth and the great friction of tube in during fracture,et.al. which cause falilure of fracture because it has no method to improve the discharge rate. This paper takes systemically research on fracturing theory and applied technology of deep zone tight-fractured gas reservoir in western Sichuan Xujiahe formation, and has acquired the following results:
     (1)By synthetically using of rock mechanics and elasticity, it forms wellface stress field model of the barefoot completion and the perforated completion after mud damaged formation, which provides theory calculate measure of reservoir fracture pressure predict for the high fracture pressure of tight gas reservoir.
     (2)Based on dynamics and static state rock mechanics testing of PLB block, associated fracturing data, builted up relational expression of the block dynamics and static state rock ,and model of layered earth stress, and acquires vertical layered stress section of the single well.
     (3)The reaction mechanism between individual mineral and conventional sandstone acidizing acid by laboratory experimental test,and the influence of mud immerse on rock mechanics. quantitative computing methods of forecasting the fracture pressure after acid pretreatment by using the principle of rock damage mechanics,which can relatively accuracy forecast fracture pressure of the block(inaccuracy less than 10%).
     (4)It systemically describes multi-fracture generating mechanism and eliminating technology, with the consideration of geologic characteristic and engineering practice in Xujiahe area, and do some research on multi-fracture generating mechanism and many technologies of reducing filtration and preventing multi-fracture, which include proppant slug, selection of fracturing materials, optimizing treating parameters etc.
     (5)According to gas reservoir physical properties in Xujiahe formation area, it brings forward performance requirements of fracturing fluid system, optimizes medium-high temperature and low friction fracturing fluid additive through laboratory experiment, and evaluates overall performance of this optimized and debugged fracturing fluid. By Testing proppant conductivity under various forms and grain diameter match, which provides new method for optimizing proppant in Xujiahe deep-seated gas reservoir fracturing.
     (6)research outcome applied to the gravel input fracture reform of western Sichuan PLB formation and acquired the first successful.
引文
[1]Chrisman S A:Offshore Fracture Gradient.JPT,1973,Aug.910-914.
    [2]胡博仲:大庆油田高含水稳产技术[M].石油工业出版社.北京.
    [3]Hubbert M K,Wills D G:Mechanics of Hydraulic Fracturing.Trans,AIME(1957),210,153-160.
    [4]B A Eaton:Fracture Gradient Prediction and Its Application in Oilfield Operation.JPT,Oct.1969,1353-1360.
    [5]B.A.Eaton.Fracture Gradient Prediction Techniques and their Application in Drilling,Stimulation,and Secondary Recovery Operations[C].SPE,2136.
    [6]梁何生等.一种地层破裂压力估算的方法及应用[J].石油钻探技术,1999,No.6.
    [7]Mattews W R,Kelly J:How to Predict Formation Pressure and Fracture Gradient from Electric and Sonic Logs.Oil&Gas Journal,Feb.20,267.
    [8]黄荣樽,一种新的地层破裂压力预测方法[J].石油钻采工艺,1986,8(3).
    [9]王兴文.薄层多层压裂应力剖面与压裂缝形态研究.西南石油大学博士学位论文,2007.
    [10]R.A.Anderson et al.determining Fracture Pressure Gradient from Well Logs,JPT,1973,11(1):1259-1268.
    [11]Holbrook P W:The Use of Petro-phsical Data for Well Planning.Drilling Safety and Effience.Houston,SPWLA,37th Annual Logging Symposium,June 16-19,1996.
    [12]Holbrook P W:Discussion of a New Simple Method to Estimate Fracture Pressure Gradients.SPE Drilling and Completion,Marcg,1997.
    [13]葛洪魁等.修正Holbrook地层破裂压力预测模型[J].石油钻探技术.2001,29(3).
    [14]李传亮,孔详言.油井压裂过程岩石破裂压力计算公式的理论研究[J].石油钻采工艺.2000,22(2).
    [15]Haimson B,Fairhurst C:Initiation and Extension of Hydraulic fractures in Rock.SPEJ,Sept.1967,310-318.
    [16]Lade P V,Boer R De:Concept of Effective Stress for Soil,Concrete and Rock.Gevtechnique.Vol.47,No.1,Mar.1997,61-78.
    [17]耶格JC,库克NGW著:岩石力学基础(中国科学院工程力学所译)[M].北京,科学出版社,1981,7:267-272.
    [18]李传亮,孔详言等.多孔介质的双重有效应力[J].自然杂志,1999,21(5):287-292.
    [19]w k miller et al:in-stiu stress profiling and prediction of hydraulic fracture azimuth for the canyon sands formation,sonora and sawyer field,sutton county,texas,spe 21848
    [20]N R Warpinski,L W Teufel:In-situ stress measurement at Rainier Mesa,Nevada test site-Influene of topography and lithology on stress state in Tuff..Int.J.Rock Mech.,Min,Sci&Geomech.Abstract,V.28.No.213,10
    [21]N R Warpinski,L W Teufel:In-situ stresses in low permeability,Non-marine rocks.SPE 16402
    [22]B M Robinson et al:The Gas Research Institute second staged field experiment:A study of hydraulic fracturing.SPE 21459
    [23]P R Sheorey:A theory for in-situ stress in isotropic and transversely isotropic rock.。Int.J.Rock Mech.,Min,Sci.&Geomech,.Abstract,V.28.No.2/3.
    [24]J.Geertsma:The effect of fluid pressure decline on volumetric changes of porous rocks。RIME.210.1957,P331-340
    [25]L W Teufel,D W Rhett&H E Farell:Effect of Reservoir Depletion and Pore Pressure Drowdown on In-situ Stress and Deformation in the Ekoffisk Field,North Sea,Rock Mechanics as a Multidisplianary Science,Roegiers,Balkerma,Roffordan.
    [26]Lesage Marc et al:Pore-pressure and Fracture-gradient Prediction.SPE 21607.W Thiercelin,1991
    [27]李志明、张金珠:地应力与油气勘探开发,石油工业出版社.北京 1998
    [28]Yale:In-situ Stress Orientation and the Effects of Local Structure-Sott Field,North Sea.SPE 28146,1994
    [29]R.I.Keda:In-situ Stress Heterogeneity and Crack Density Distribution.Int.J.Rock Mech.Min.Sci.&Geomech.Abstract.Vol.30 No.7,1013-1018,1993
    [30]Peska P,Zoback M D:Stress and Failure of Inclined Borehole.Published 1996 by Stanford University Department of Geophysics
    [31]Peska P,Zoback M D:Compressive and Tensile Failure of Inclined Well and Determination of In-situ Stress and Rock Strength.JGR,1995.100:B7,12791-12811
    [32]万仁溥主编:采油技术手册(九),石油工业出版社:北京,1989
    [33]Newberry B.M:Prediction of Vertical Hydraulic Fracture Migration Using Compress ional and Shear Wave Slowness。SPE 13895
    [34]M J Thiercelin&R A Plumb:A core-based prediction of lithologic stress contrasts in Ea Texas Formation SPE 21847.
    [35]M Prats:Effect of burial history on the subsurface horizontal stresses of formation having different material properties.SPEJ'Dec.1981
    [36]孙均等:地下结构有限元法解析.国济大学出版社.上海,1988
    [37]K.J.贝斯:工程分析中的有限元法.机械工业出版社.北京,1991
    [38]郑宏等:关于岩土工程有限元分析中的若干问题.岩土力学,1995.No.3
    [39]张顺,林春明等:松辽盆地头台油田现代地应力场分布特征研究.高校地质学报,2001,No..2
    [40]陶良军,冯兴武等:宝浪油田地应力和裂缝特征研究与应用.钻采工艺,2001,No.2
    [41]王世泽:川西洛带构造蓬莱镇组地层现今地应力场特征.矿物岩石
    [42]黄禹忠.降低压裂井底地层破裂压力的措施.断块油气田,2005,12(1):74-76
    [43]曾庆坤.宝浪油田异常破裂压力预测及降低破裂压力技术研究.西南石油学院博士论文,2004,4
    [44]赵金洲等.降低压裂破裂压力措施分析.2005国际油气藏增产改造学术研讨会,2005:56-61
    [45]Wang JN.The effect of grain size distribution on the rheological behavior of polycrystalline materials.J Struct.Geol 1994:16(7):961-70
    [46]姜晨光,姜祖彬,刘华,等.花岗岩岩石力学参数与岩体赋存深度关系的研究.石材,2004,(7):4-6
    [47]李智武,罗玉宏,刘树根,等.川东北地区地层条件下致密储层力学性质实验分析.矿物岩石,2005,25(4):52-60
    [48]黄思静,单钰铭,刘维国,等.储层砂岩岩石力学性质与地层条件的关系研究.岩石力学与工程学报,1999,18(4):454-459
    [49]Gupta AS,Rao KS.Weathering effects on the strength and deformational behaviour of crystalline rocks under uniaxial compression state.Eng Geol 2000:56:257-74
    [50]Hawkins AB,McConnell BJ.Sensitivity of sandstone strength and deformability to changes in moisture content..Quart J eng Geol 1992:25:115-30
    [51]R.Prikryl.Some microstructural aspects of strength variation in rocks.In:International Journal of Rock Mechanics & Mining Sciences.2001:671-682
    [52]朱珍德,徐卫亚,张爱军.脆性岩石损伤断裂机理分析与试验研究.岩石力学与工程学报,2003,22(9):1411-1416
    [53]霍润科,李宁,刘汉东.均质砂岩酸腐蚀的力学性质分析.西北农林科技大学学报(自然科学 版),2005,33(8):149-152
    [54]霍润科,李宁,刘汉东.受酸腐蚀砂岩的统计本构模型.岩石力学与工程学报,2005,24(11):1852-1856
    [55]Newman G U.The continuous damage theory of brittle materials.J.of Applied Mech,1998,48:809-815
    [56]冯夏庭,赖户政宏.化学环境侵蚀下的岩石破裂特性-第一部分:试验研究.岩石力学与工程学报,2000,19(4):403-407
    [57]丁梧秀,冯夏庭.化学腐蚀下灰岩力学效应的试验研究.岩石力学与工程学报,2004,23(21):3571-3576
    [58]陈四利.化学腐蚀下岩石细观损伤破裂机理及其本构模型.沈阳:博士学位论文,东北大学,2003:84-851
    [59]谭卓英,柴红保,刘文静等.岩石在酸化环境下的强度损伤及其静态加速模拟.岩石力学与工程学报,2005,24(14):2439-448
    [60]陈四利,冯夏庭,李邵军.化学腐蚀对黄河小浪底砂岩力学特性的影响[J].岩土力学,2002,23(3):284-287
    [61]吴爱祥,李建锋,江怀春等.堆浸过程中溶浸液对矿岩散体性质损伤的试验研究.矿业快报,2006,1:16-18
    [62]王宝峰,汪绪刚,冯浦勇.砂岩基质酸化前后储层岩心岩石力学参数测定.新疆石油学院学报,1999,11(2):11-14
    [63]唐洪明,孟英峰,吴泽柏等.酸化体系中长石的稳定性研究.天然气工,2004,24(12):116-119
    [64]郭建春,陈朝刚,赵金洲等.砂岩基质酸化模型研究与应用.石油天然气学报,2005,27(4):485-488
    [65]李勇明,郭建春,赵金洲等.裂缝性低渗透油藏酸岩反应理论模型研究及应用.油气地质与采收率,2004,4,11(2):37-41
    [66]谢和平著,岩石混凝土损伤力学,中国矿业大学出版社,1990
    [67]于骁中,谯常忻,周群力编著,岩石和混凝土断裂力学,中南工业大学出版社,1991
    [68]B.W.McDaniel,D.E.McMechan and N.A.Stegent.Proper Use of Proppant Slugs and Viscous Gel Slugs Can Improve Proppant Placement During Hydraulic Fracturing Applications.SPE 71661,2001.
    [69]W.K.overbuy Jr,BDM;A.B.Yost ll;and DA.Wilkins,Grace,Shursen.Inducing Multiple Hydraulic Fractures From Horizontal Wellbore.SPE 18249,1988.
    [70]H.H.Abass,Saeed Hedayati.and D.L.Meadows.Nonplanar Fracture Propagation From a Horizontal Wellbore;Experimentai Study.SPE24823,1996
    [71]J.L.Brumley and H.H.Abass,Halliburton Energy Services.Hydraulic Fracturing of Deviated Wells:Interpretation of Breakdown of Breakdown and Initial Fracture Opening Pressure.SPE 37363,1996.
    [72]K.D.Mahrer and W.W.Aud,and J.T.Hansen.Far-Field Hydraulic Fracture Geometry:A Changging Paradigrn.SPE 36441,1996.
    [73]L.Weijers,C.A.Wright;H.Sugiyama;K.Sato.Simultaneous Propagation of Multiple Hydraulic Fractures-Evidence,IMPact and Modeling Implictions.SPE 64772,2000.
    [74].C.L.Cipolla,SPE,and C.A.Wright.SPE,Pinnacle Technologies Diagnostic Techniques To Understand Hydraulic Fracturing:What?Why?and How? SPE 75359,2002.
    [75].R.D.Barree Barree and Associates,M.K.Fisher.R.A.Woodroof.A Practical Guide to Hydraulic Fracture Diagnostic Technologies,SPE 77442,2002.
    [76]P.T.Branagan,R.E.Peterson,and T.B.Wright,Characterization of a Remotely Intersected Set of Hydraulic Fractures:Results of Intersection Well No 1-B,GRI/DOE Multi-Site Project.SPE 36452,1996.
    [77]Lyle.V.Lehman,SPE,and John L.Brumley,Halliburton Energy Services.Etiology of Multiple Fractures.SPE 37406,1997.
    [78]N.Arihara,M.Abbaszadeh,C.A.Wright.Integration of Fracturing Dynamics and Pressure Transient Analysis for Hydraulic Fracture Evaluation.SPE 36551,1996
    [79]S.D.Hallam and N.C.Last,BP Research.Geometry of Hydraulic Fractures From Modestly Deviated Wellbores.SPE 20656,1990.
    [80]W.El Rabaa,Halliburton Services,SPE Member.ExperimentalStudy of Hydraulic Fracture Geometry Initiated From Horizontal Wells.SPE 19720.
    [81]Hazim H.Abass,David L.Brumley,Saeed Hedayati,and James J.Venditto Halliburton Energy Services SPE Members.Oriented Perforation-A Rock Mechanics View.SPE 28555,1994.
    [82]王鸿勋.水力压裂原理[M].北京,石油工业出版社,1987.
    [83]Klaas A.W.van Gijtenbeek,SPE,and Reinhard Pongratz,SPE,Halliburton.Perforating and Hydraulic Proppant Fracturing in Western Siberia,Russia.SPE 90238.2004.
    [84]L.Weijers,L.G.Griffin,H.Sugiyama,and S.Takada;K.K.Chong,J.M.Terracina,and C.A.Wright.The First Successful Fracture Treatment CaMPaign Conducted in Japan:Stimulation Challenges in a Deep,Naturally Fractured Volcanic Rock.SPE 77678,2002.
    [85]J.F.Manrique and A.Venkitaraman.Oriented Fracturing-A Practical Technique for Production Optimization.SPE 71652,2001.
    [86]Hazim H.Aba,PeterHagist,JamesHarry,L.Hunt,MarkShumway,NazGazi Pennzoil.,Ltd.A Case History of Completing and Fracture Stimulating a Horizontal Well.SPE 29443,1995.
    [87]L.A.Behrmann,K.G.Nolte.Perforating Requirements for Fracture Stimulations.SPE 59480,1999.
    [88]L.A.Behrmann,J.L.Elbel.Effect of Perforating on Fracture Stimulations.JPT.May,1999.
    [89]M.P.Cleary,D.E.Johnson,H-H.Kogsboll and K.A.Owens,K.F.Perry,C.J.de Pater.Field Implementation of Proppant Slugs To Avoid Premature Screen-Out of Hydraulic Fractures With Adequate Proppant Concentration.SPE 25892,1993.
    [90]M.A.Emanuele,W,A.Minner and L.Weijers,D.M.Blevens.A Case History:Completion and Stimulation of Horizontal Wells with Multiple Transverse Hydraulic Fractures in the Lost Hills Diatomite.SPE 46193,1998.
    [91]W.W.Aud,T.B.Wright,C.L.Cipolla,J.D.Harkrider,J.T.Hansen.The Effect of Viscosity on Near-Wellbore Tortuosity and Premature Screenouts.SPE 28492.
    [92]J.B.Surjaatmadja,H.H.Abass,.&dJ.L.Brvmley.Elimination of Near-Wellbore Tortuosities by Means of Hydrojetting.SPE,28761,1994.
    [93]Jerome m.Stadulis.Development of a Completion Design To Control Screenouts Caused by Multiple Near-Wellbore Fractures,SPE 29549,1995.
    [94]Zhongming Chen,,and M.J.Economides.U.Effect of Near-WEllbore Fracture Geometry on Fracture Execution and Post-Treatment Well Production of Deviated and Horizontal Wells.SPE 57388,1999
    [95]罗天雨.水力压裂多裂缝基础理论研究.西南石油大学博士论文,2006,5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700