水稻Bphi008a基因介导的水稻抗褐飞虱机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
褐飞虱(Nilaparvata lugens Stal)是水稻的主要害虫之一,它通过口针鞘取食水稻韧皮部,影响水稻的生长和发育。大量褐飞虱取食会引起水稻的叶片干枯,分蘖萎,形成飞虱火烧。但是一直以来,我们对水稻如何通过自身的先天免疫系统(innate immune system)防御褐飞虱取食的分子机理知之甚少。在之前的研究中我们通过抑制差减杂交(Suppression Subtractive Hybridization, SSH)的方法,在感虫品系Minghui 63中得到一个受褐飞虱取食诱导的单拷贝基因Bphi008a,其表达亦可以被机械伤害以及外源乙烯利所诱导,同时对外源的SA、MeJA和ABA的诱导无反应。
     通过构建该基因的超量表达(Overexpression,OE)和抑制(double-stranded RNA interference,RNAi)转基因植株,我们对Bphi008a基因的功能进行了系统的研究。转基因后代的Northern分析显示,OE群体中在未受到褐飞虱取食的情况下该基因表达得到明显的上调;RNAi群体中在褐飞虱取食48h后该基因表达仍然比对照中还要低。Southern分析显示,在OE群体的T1代,我们得到一个Bphi008a基因单拷贝插入的纯合群体OE21-15。借助苗期集团法、蜜露量鉴定以及电子刺吸仪(Electronic Penetration Graphs, EPG)技术等方法的结合,我们发现在褐飞虱取食7天后,OE群体的抗性相比WT群体而言有明显的提高,而RNAi群体相比WT群体而言,其抗性只是得到略微的下调。洋葱表皮定位实验显示Bphi008a蛋白具有细胞膜和细胞核双向定位,并且Bphi008a蛋白N端的20个氨基酸对其细胞膜定位具有非常关键的作用。我们发现该基因在苗期的根部表达量最高,其次在穗期叶片、穗期叶鞘、苗期叶鞘、苗期叶片和苗期根部也有比较高的表达,在穗期的小花中我们基本检测不到该基因的表达。
     通过Real-time PCR方法,我们首先对褐飞虱取食叶鞘(6h、12h,24h、48h、72h和96h)后10对最常用的内参基因进行稳定性的分级,在WI、OE、RNAi和1-MCP处理WT群体中分别确立最稳定的看家基因组合,以保证后续基因表达结果的稳定性和可靠性。乙烯合成酶(OsACS)和乙烯氧化酶(OsACO)基因家族的表达结果显示,褐飞虱的取食是一个迅速开启水稻体内乙烯合成的过程;联合1-MCP(乙烯竞争性抑制剂)处理的结果,我们认为Bphi008a基因是一个乙烯信号途径下游的效应基因。体外磷酸化实验证实Bphi008a蛋白能够被OsMPK5蛋白磷酸化,并且磷酸化位点位于其C末端多脯氨酸区域。酵母双杂交和拟南芥原生质体BiFC实验证实Bphi008a蛋白与OsMPK5蛋白互作,并且这种互作发生在细胞核中。结合体外和体内实验的结果,我们认为翻译后产生的Bphi008a蛋白在细胞核中经历了磷酸化的调控。随后的Real-time PCR结果显示,四个受到外源乙烯利和稻瘟病处理表达上调的水稻MAPK家族成员OsMPK5、OsMPK12、OsMPK13和OsMPK17的表达在转基因群体中呈现不同的差异,这意味着磷酸化后的Bphi008a蛋白介导的抗虫可能与水稻MAPK信号途径介导的先天免疫性相关。后续的实验发现在超量表达群体里面,两个属于AP2/ERF转录因子家族、受到OsMPK5/12直接磷酸化激活的转录因子OsERF1和OsEREBP1的表达水平明显提升;并且同时我们也发现几个特异作用于植食性昆虫肠道、干扰昆虫消化过程的蛋白酶抑制剂基因的表达在转基因和WT植株中呈现不同的表达差异,如Arginase、CysPI以及LEA2等等。最后通过酵母双杂交筛库的结果,我们发现Bphi008a能够和bZIP型转录因子OsbZIP60以及一个RNA聚合酶的多肽SDRP互作。总结以上研究结果,我们认为来源于乙烯信号途径的基因Bphi008a,在植物体内被磷酸化后通过和OsbZIP60以及SDRP互作组成一个转录复合体来调控一系列OsMPKs基因的表达,并最终提高水稻对褐飞虱的抗性。
The brown planthopper (BPH) Nilaparvata lugens Stal is an important pest of rice. The BPH feeds mainly on the rice stems through its piercing mouthparts (stylet), and sucks assimilates from the phloem. BPH feeding affects plant development. Feeding by a large number of BPH may result in drying of the leaves and wilting of the tiller, a condition called'hopperburn'. But till now, little is known how rice defends BPH-feeding through its innate immune system. In the previous study, we obtained a BPH-feeding induced gene Bphi008a in Minghui 63 by method of SSH (Suppression Subtractive Hybridization), which is one copy in rice genome and can also be induced by wounding and ethephon while SA, MeJA and ABA can't.
     To clarify the role of Bphi008a in BPH stress responses, Bphi008a was overexpressed (OE) or blocked via double-stranded RNA interference (RNAi) in rice (cv. Hejiang 19). Northern blot analysis indicated that the expression of Bphi008a gene was enhanced in OE lines without BPH treatment and the expression of Bphi008a was blocked in RNAi plants treated with BPH for 48h, compared with that in WT plants. In T1 progeny of OE lines, we selected a homozygous transgenic plant OE21-15 and the Southern blotting analysis indicated that all offspring of OE21-15 were single-copy insertion. Three kinds of experiments were carried out to evaluate the resistance of transgenic lines to BPH and we found the resistance to BPH was upgraded in overexpression lines and appreciably downgraded in RNAi lines. By method of particle gun-mediated system, we found Bphi008a protein was localized in plasma membrane and nucleus and its N-terminal twenty amino acids were involved in its localization of membrane. We found Bphi008a expression levels were the highest in root of seedling stage, and then reduced in leaf-blade and leaf-sheath of heading stage, leaf-sheath, leaf-blade and stem of seedling stage in sequence. In flower, we detected the lowest Bphi008a expression level.
     We firstly chose the best stable HK gene(s) for normalization in different BPH-feeding time materials in order to reflect the accurate gene expression changes in WT lines, transgenic lines and 1-MCP treated WT lines by real-time PCR. OsACS and OsACO gene family expression levels suggested that BPH-feeding behavior was a rapid process turning on ethylene biosynthesis. Combination with Bphi008a expression level changes in 1-MCP (an ethylene competitive inhibitor) treated WT plants, we thought Bphi008a should be a downstream gene of ethylene signaling pathway. Combination of bioinformatics and kinase assay in vitro, we found Bphi008a could be phosporlated by osMPK5 and phosphorylation site was localizated in its C-terminal proline-rich region. Yeast two-hybrid proved this direct interaction between osMPK5 and Bphi008a in vivo and BiFC results further confirmed this interaction was taken place in nucleus. Subsequently we found that Bphi008a overexpression and RNAi plants were accompanied with different transcript levels changes of OsMPK5, OsMPK12, OsMPK13 and osMPK17, which were also induced by both ACC (an Ethylene precursor) treatment and pathogen M.grisea infection; and we also found two AP2/ERF transcription factors OsERF1 and OsEREBP1 expression levels were enhanced in overexpression lines, which were directly activated by phosphorylation of osMPK5 and osMPK12 respectively. Several plant enzymes expression levels changed in transgenic plants and WT plants, such as Arginase, CysPI and LEA2 which could degrade essential amino acids in herbivore midgut. Finally, yeast two-hybrid screening showed that Bphi008a could interact with a b-ZIP transcription factor (OsbZIP60) and a RNA polymerase polypeptide (SDRP). Our results indicate that ethylene induces expression of Bphi008a, and the phosphorylated Bphi008a, associating with OsbZIP60 and SDRP to form a transcriptional complex, provides enhanced resistance to the BPH by regulating MAPKs as part of the innate immune system of rice.
引文
1.程遐年,吴进才,马飞.褐飞虱研究与防治.中国农业出版社,北京,2003.
    2.邓望喜,周小尼,李绍勤,仇啸云.(2000).我国褐飞虱不同地理种群的生物学比
    3.较.植物保护学报,27(2):131-135
    4. 国际褐飞虱会议论文集.中国农业科学院科技情报研究所.1980.
    5. 雷宏,徐汝梅.EPG—一种研究植食性刺吸式昆虫刺探行为的有效方法.昆虫知识,1996,33(2):116-119.
    6.刘光杰,寒川一成,沈丽丽.褐飞虱成虫翅型分化研究.昆虫知识,2000,37(3): 186-190.
    7. 汤金仪.我国水稻迁飞性害虫猖獗成因及其治理对策建议.生态学报,1996,16
    8. (2):167-173.
    9.王荣桂,赖凤香,傅强,张志涛,郭兰芳.稻飞虱致害性变异的研究.中国水稻
    10.科学,1999,13(4):229-232.
    11.王群,杜建光,程遐年.褐飞虱翅型分化遗传规律的研究.昆虫学报,1997,40
    12.(4):343-347.
    13.俞晓平.褐飞虱的翅型分化和迁入研究.中国科协首届青年学术年会会议论文
    14.集.北京:中国科学技术出版社,1992,265-267.
    15. Achard P, Baghour M, Chapple A, Hedden P, Van Der Straeten D, Genschik P, Moritz T, Harberd NP. (2007). The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. PNAS,104:6484-6489.
    16. Achard P, Liao L, Jiang C, Desnos T, Bartlett J, Fu X, Harberd NP. (2007). DELLAs Contribute to Plant Photomorphogenesis. Plant Physiology, 143:1163-1172.
    17. Achard P, Renou JP, Berthome R, Harberd NP, Genschik P. (2008). Plant DELLAs Restrain Growth and Promote Survival of Adversity by Reducing the Levels of Reactive Oxygen Species.Current Biology,18:656-660.
    18. Alborn HT, Hansen TV, Jones TH, Bennett DC, Tumlinson JH et al. (2007). Novel disulfoxy fatty acids from the American bird grasshopper Shistocerca americana, elicitors of plant volatiles. Proc Natl Acad Sci,104:12976-81.
    19. Alder MN, Rogozin IB, Iyer LM, Glazko GV, Cooper MD, Pancer Z. (2005). Diversity and Function of Adaptive Immune Receptors in a Jawless Vertebrate. Science,310:1970-1973.
    20. Andersen, C.L., Jensen, J.L.,Orntoft, T.F. (2004). Normalization of Real-Time Quantitative Reverse Transcription-PCR Data:A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets. Cancer Reaearch.64:5245-5250.
    21. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature.415:977-983.
    22. Ausubel FM. (2005). Are innate immune signaling pathways in plants and animals conserved? Nature immunology.6:973-979.
    23. Baldwin IT, Kessler A, Halitschke R. (2002). Volatile signaling in plant-plant-herbivore interactions:What is real? Curr Opin Plant Biol.5: 351-354.
    24. Bar-Sagi D, Rotin D, Batzer A, Mandiyan V, Schlessinger J. (1993). SH3 domains direct cellular localization of signaling molecules. Cell.74:83-91.
    25. Bergmann DC, Lukowitz W, Somerville CR. (2004). Stomatal development and pattern controlled by a MAPKK kinase. Science,304:1494-1497.
    26. Bork P and Sudol M. (1994). The WW domain:a signalling site in dystrophin? Trends Biochem Sci.19:531-533.
    27. Bostock RM. (2005). Signal crosstalk and induced resistance:straddling the line between cost and benefit. Annu Rev Phytopathol.43:545-580.
    28. Brooks DM, Bender CL, Kunkel BN. (2005). The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana. Molecular Plant Pathology,6: 629-639.
    29. Brown JK, Czosnek H. (2002). Whitefly transmission of plant viruses. In Advances in Botanical Research.36:65-100.
    30. Chaiwongsar S, Otegui MS, Jester PJ, Monson SS, Krysan PJ. (2006). The protein kinase genes MAP3K epsilon 1 and MAP3K epsilon 2 are required for pollen viability in Arabidopsis thaliana. Plant J,48:193-205.
    31. Chen H, Wilkerson CG, Kuchar JA, Phinney BS, Howe GA. (2005). Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. ProcNatl Acad Sci.102:19237-19242.
    32. Cheong YH, Moon BC, Kim JK, Kim CY, Kim MC, Kim IH, Park CY, Kim JC, Park BO, Koo SC. (2003). BWMK1, a Rice Mitogen-Activated Protein Kinase, Locates in the Nucleus and Mediates Pathogenesis-Related Gene Expression by Activation of a Transcription Factor. Plant Physiology.132:1961-1972.
    33. Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G. (2006). The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell,18:465-476.
    34. Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nurnberger T, Jones JDG, Felix G, Boller T. (2007). A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature,448:497-500.
    35. Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR et al. (2007). The JAZ family of repressors is the missing link in jasmonate signaling. Nature 448:666-671.
    36. Chisholm ST, Coaker G, Day B, Staskawicz BJ. (2006). Host-Microbe Interactions:Shaping the Evolution of the Plant Immune Response. Cell.124: 803-814.
    37. Chow B and McCourt P. (2006). Plant hormone receptors:perception is everything.GENES & DEVELOPMENT,20:1998-2008.
    38. Chung HS and Howe GA. (2009). A Critical Role for the TIFY Motif in Repression of Jasmonate Signaling by a Stabilized Splice Variant of the JASMONATE ZIM-Domain Protein JAZ10 in Arabidopsis. The Plant Cell,21: 131-145.
    39. Colcombet J, Hirt H. (2008). Arabidopsis MAPKs:a complex signalling network involved in multiple biological processes. Biochem J,413:217-226.
    40. Citovsky V, Kapelnikov A, Oliel S, Zakai N, Rojas MR, Gilbertson RL, Tzfira T, Loyter A. (2004). Protein interactions involved in nuclear import of the Agrobacterium VirE2 protein in vivo and in vitro. J Biol Chem, 279:29528-29533.
    41. De Vos M, Van Oosten VR, Van Poecke RMP, Van Pelt JA, Pozo MJ et al. (2005). Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant-Microbe Interact.18:923-37.
    42. Devoto A, Nieto-Rostro M, Xie D, Ellis C, Harmston R, Patrick E, Davis J, Sherratt L, Coleman M, Turner JG. (2002). COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. The Plant Journal,32: 457-466.
    43. Djamei A, Pitzschke A, Nakagami H, Rajh I, Hirt H. (2007). Trojan horse strategy in Agrobacterium transformation:abusing MAPK defense signaling. Science,318: 453-456.
    44. Dogimont C, Bendahmane A, Pitrat M, Burget-Bigeard E, Hagen L et al. (2007). U.S.Patent No.20,070,016,977.
    45. Dong X. (2004). NPR1, all things considered. Curr Opin Plant Biol 7:547-552.
    46. Du B, Zhang W, Liu B, Hu J, Wei Z, Shi Z, He R, Zhu L, Chen R, Han B, He G. (2009). Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proc Natl Acad Sci.106:22163-22168.
    47. Espinosa A, Guo M, Tam VC, Fu ZQ, Alfano JR. (2003). The Pseudomonas syringae type Ⅲ-secreted protein HopPtoD2 possesses protein tyrosine phosphatase activity and suppresses programmed cell death in plants. Mol Microbiol,49:377-387.
    48. Farmer EE, Alme'ras E, Krishnamurthy V. (2003). Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol. 6:372-378.
    49. Flor HH. (1971). Current status of the gene-for-gene concept. Annu Rev Phytopathol.9:275-296.
    50. Freund C, Dotsch V, Nishizawa K, Reinherz EL, Wagner G. (1999). The GYF domain is a novel structural fold that is involved in lymphoid signaling through proline-rich sequences. Nat Struct Biol.6:656-660.
    51. Giri AP, Wunsche H, Mitra S, Zavala JA, Muck A, et al. (2006). Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. VII. Changes in the plant's proteome. Plant Physiol.142:1621-41.
    52. Glare EM, Divjak M, Bailey MJ, Walters EH. (2002). Beta-actin and GAPDH housekeeping gene expression in asthmatic airways is variable and not suitable for normalising mRNA levels. Thorax.57:765-770.
    53. Glazebrook J. (2005). Contrasting Mechanisms of Defense against Biotrophic and Necrotrophic Patheogens. Annu Rev Phytopathol.43:205-227.
    54. Gohre V, Spallek T, Haweker H, Mersmann S, Mentzel T, Boller T, de Torres M, Mansfield JW, Robatzek S. (2008). Plant patternrecognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB. Curr Biol,18: 1824-1832.
    55. Gomez-Gomez L, Felix G, Boller T. (1999). A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J,18:277-284.
    56. Grant M and Lamb C. (2006). Systemic immunity. Current opinion in plant biology,9:414-420.
    57. Grant MR and Jones JDG. (2009). Hormone (Dis)harmony Moulds Plant Health and Disease. Science,324:750-753.
    58. Guo H and Ecker JR. (2004). The ethylene signaling pathway:new insights. Current Opinion in Plant Biology.7:40-49.
    59. Gutterson N and Reuber TL. (2004). Regulation of disease resistance pathways by AP2/ERF transcription factors. Current Opinion in Plant Biology.7:465-471.
    60. Halitschke R, Gase K, Hui D, Schmidt DD, Baldwin IT. (2003). Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. VI. Microarray analysis reveals that most herbivore-specific transcriptional changes are mediated by fatty acid-amino acid conjugates. Plant Physiol.131:1894-902.
    61. Hamel LP, Nicole MC, Sritubtim S, Morency MJ, Ellis M, Ehlting J. (2006). Ancient signals:Comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci.11:192-198.
    62. Hao P, Liu C, Wang Y, Chen R, Tang M, Du B, Zhu L, He G. (2008). Herbivore-Induced Callose Deposition on the Sieve Plates of Rice:An Important Mechanism for Host Resistance. Plant Physiology.146:1810-1820.
    63. Hayashi H, Chino M. (1990). Chemical composition of phloem sap from the upper-most internode of the rice plant. Plant Cell Physiol,31:247-251.
    64. He P, Shan L, Lin NC, Martin GB, Kemmerling B, Nurnberger T, Sheen J. (2006). Specific Bacterial Suppressors of MAMP Signaling Upstream of MAPKKK in Arabidopsis Innate Immunity. Cell.125:563-575.
    65. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. (2007). qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biology.8:19.1-19.14.
    66. Hiei Y, Ohta S, Komari T, Kumashiro T. (1994). Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J.6:271-282.
    67. Hilker M, Meiners T. (2006). Early herbivore alert:Insect eggs induce plant defense.J. Chem. Ecol.32:1379-97.
    68.
    69. Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant
    70. Biol 59:41-66.
    71. Huang Z, He G, Shu L, Li X, Zhang Q. (2001). Identification and mapping of two brown planthopper resistance genes in rice. Theor Appl Genet.102:929-934.
    72. Ichimura K, Casais C, Peck SC, Shinozaki K, Shirasu K. (2006). MEKK1 is required for MPK4 activation and regulates tissue-specific and temperature-dependent cell death in Arabidopsis. J Biol Chem,281: 36969-36976.
    73. Iwai T, Miyasaka A, Seo S, Ohashi Y. (2006). Contribution of Ethylene Biosynthesis for Resistance to Blast Fungus Infection in Young Rice Plants. Plant Physiology.142:1202-1215.
    74. Iwata Y, Koizumi N. (2005). An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants. Proc Natl Acad Sci USA 102:5280-5285.
    75. Iwata Y, Fedoroff NV, Koizumi N. (2008). Arabidopsis bZIP60 is a proteolysis-activated transcription factor involved in the endoplasmic reticulum stress response. Plant Cell 20:3107-3121.
    76. Iwata Y, Yoneda M, Yanagawa Y, Koizumi N. (2009). Characteristics of the nuclear form of the Arabidopsis transcription factor AtbZIP60 during the endoplasmic reticulum stress response. Biosci Biotechnol Biochem 73:865-869
    77. Jonak C, Okresz L, Bogre L, Hirt H. (2002). Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol.5:415-424.
    78. Jones JDG, Dangl JL. (2006). The plant immune system. Nature,444:323-329.
    79. Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N. (2006). Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci,103: 11086-11091.
    80. Kaloshian I, Walling LL. (2005). Hemipterans as plant pathogens. Annu Rev Phytopathol.43:491-521.
    81. Kandoth PK, Ranf S, Pancholi SS, Jayanty S, Walla MD, Miller W, Howe GA, Lincoln DE, Stratmann JW. (2007). Tomato MAPKs LeMPKl, LeMPK2, and LeMPK3 function in the systemin-mediated defense response against herbivorous insects. Pro Nat Aca Sci USA 104:12205-12210.
    82. Kant MR, Ament K, Sabelis MW, Haring MA, Schuurink RC. (2004). Differential Timing of Spider Mite-Induced Direct and Indirect Defenses in Tomato Plants. Plant Physiology.135:483-495.
    83. Karban R, Agrawal AA, Mangel M. (1997). The benefits of induced defenses against herbivores. Ecology 78:1351-55.
    84. Kay BK, Williamson MP, Sudol M. (2000). The importance of being proline:the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB.14:231-241.
    85. Kazan K, Manners JM. (2008). Jasmonate signaling:toward an integrated view. Plant physiology,146:1459-1468.
    86. Kempema LA, Cui X, Holzer FM, Walling LL. (2007). Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs, similarities and distinctions in responses to aphids. Plant Physiology.143:849-865.
    87. Kendrick MD, Chang C. (2008). Ethylene signaling:new levels of complexity and regulation. Current Opinion in Plant Biology.11:1-7.
    88. Kessler A, Baldwin IT. (2001). Defensive Function of Herbivore-Induced Plant Volatile Emissions in Nature. Science.291:2141-2144.
    89. Khush GS, Brar DS. (1991). Genetics of resistance to insects in crop plants. Adv
    90. Agron,45:223-274.
    91. Kizis D, Lumbreras V, Pages M. (2001). Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS letters.498:187-189.
    92. Kofler MM, Freund C. (2006). The GYF domain. FEBS Journal.273:245-256.
    93. Krysan PJ, Jester PJ, Gottwald JR, Sussman MR. (2002). An Arabidopsis mitogen-activated protein kinase kinase kinase gene family encodes essential positive regulators of cytokinesis. Plant Cell,14:1109-1120.
    94. Li H, Xu H, Zhou Y, Zhang J, Long C, Li S, Chen S, Zhou JM, Shao F. (2007). The phosphothreonine lyase activity of a bacterial type Ⅲ effector family. Science,315:1000-1003.
    95. Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R. (2003). ETHYLENE RESPONSE FACTOR1 Integrates Signals from Ethylene and Jasmonate Pathways in Plant Defense. The Plant Cell.15:165-178.
    96. Lukowitz W, Roeder A, Parmenter D, Somerville C. (2004). A MAPKK kinase gene regulates extra-embryonic cell fate in Arabidopsis. Cell,116:109-119.
    97. Maffei ME, Mithofer A, Boland W (2007) Before gene expression:early events in plant insect interaction. Trends Plant Sci 12:310-316.
    98. MAPK G, Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, Kreis M, Zhang S, Hirt H et al. (2002). Mitogen-activated protein kinase cascades in plants:a new nomenclature. Trends Plant Sci,7:301-308.
    99. Mazurkiewicz P, Thomas J, Thompson JA, Liu M, Arbibe L, Sansonetti P, Holden DW. (2008). SpvC is a Salmonella effector with phosphothreonine lyase activity on host mitogen-activated protein kinases. Mol Microbiol,67:1371-1383.
    100.Mclean DL, Kingey MG. (1964). A technique for electronically recording of aphids feeding and salivation. Nature,202:1358-1359.
    101.Miles PW. (1999). Aphid saliva. Biol. Rev.74:41-85.
    102.Mithofer A, Wanner G, Boland W. (2005). Effects of feeding Spodoptera littoralis on lima bean leaves. Ⅱ. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol. 137:1160-68.
    103.Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-shinozaki K, Matsumoto K, Shiozaki K. (1996). A gene encoding a mitogenactivated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and S6 ribosomal protein kinase by touch, cold and water stress in Arabidopsis thaliana. Proc Natl Acad Sci.93:765-769.
    104.Musser RO, Farmer E, Peiffer M, Williams SA, Felton GW. (2006). Ablation of caterpillar labial salivary glands:technique for determining the role of saliva in insect-plant interactions. J. Chem. Ecol.32:981-92.
    105.Musser RO, Hum-Musser SM, Eichenseer H, Peiffer M, Ervin G. (2002). Herbivory:Caterpillar saliva beats plant defences-a new weapon emerges in the evolutionary arms race between plants and herbivores. Nature.416:599-600.
    106.Nakagami H, Soukupova H, Schikora A, Zarsky V, Hirt H. (2006). A mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in arabidopsis. J Biol Chem,281:38697-38704.
    107.Nakashima N and Noda H. (1995). Nonpathogenic Nilaparvata lugens reovirus is
    108.transmitted to the brown planthopper through rice plant. Virology,207:303-307 Nombela G, Williamson VM, Muniz M. (2003). The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol Plant-Microbe Interact.16:645-49.
    109.Obenauer JC, Cantley LC, Yaffe MB. (2003). Scansite 2.0:proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res.31:3635-3641.
    110.Ohme-Takagi M, Shinshi H. (1995). Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell.7:173-182.
    111.Pare PW, Alborn HT, Tumlinson JH. (1998). Concerted biosynthesis of an insect elicitor of plant volatiles. Proc. Natl. Acad. Sci. USA 95:13971-75.
    112.Pieterse CMJ, Dicke M. (2007). Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends Plant Sci,12:564-569.
    113.Pitzschke A, Schikora A, Hirt H. (2009). MAPK cascade signalling networks in plant defence. Current Opinion in Plant Biology.12:1-6.
    114.Puntervoll P, Linding R, Gemund C, Chabanis-Davidson S, Mattingsdal M, Cameron S, Martin D, Ausiello G, Brannetti B, Costantini A. (2003). ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res.31:3625-3630.
    115.Qutob D, Kemmerling B, Brunner F, Kufner Ⅰ, Engelhardt S, Gust AA, Luberacki B, Seitz HU, Stahl D, Rauhut T. (2006). Phytotoxicity and innate immune responses induced by Nepl-like proteins. Plant Cell.18:3721-3744.
    116.
    117.Ren D, Liu Y, Yang KY, Han L, Mao G, Glazebrook J, Zhang S. (2008). A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc Natl Acad Sci.105:145638-145643.
    118.Reyna NS, Yang Y. (2006). Molecular Analysis of the Rice MAP Kinase Gene Family in Relation to Magnaporthe grisea Infection. MPMI.19:530-540.
    119.Ron D, Walter P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nature Reviews Molecular Cell Biology 8:519-529.
    120.Ross AF. (1961). Systemic acquired resistance induced by localized virus infections in plants. Virology,14:340-358.
    121.Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM. (1998). The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci.95:9750-9754.
    122.Ruan W, Lai M. (2007). Actin, a reliable marker of internal control? Clinica Chimica Acta.385:1-5.
    123.Rubia EG, Heong KL. (1989). Vertical distribution of two hopper species on rice
    124.plants. Int Rice Res Newletter,14:30-31
    125.Schaller F, Schaller A, Stintzi A. (2005). Biosynthesis and metabolism of jasmonates. J. Plant Growth Regul.23:179-99.
    126.Scheideler M, Schlaich NL, Fellenberg K, Beissbarth T, Hauser NC, Vingron M, Slusarenko AJ, Hoheisel JD. (2002). Monitoring the switch from housekeeping to pathogen defense metabolism in Arabidopsis thaliana using cDNA array. J Biol Chem.277:10555-10561.
    127.Schmelz EA, Carroll MJ, LeClere S, Phipps SM, Meredith J et al. (2006). Fragments of ATP synthase mediate plant perception of insect attack. Proc. Natl. Acad. Sci. USA 103:8894-99.
    128.Schmittgen TD, Livak KJ. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols.3:1101-1108.
    129.Schmittgen TD, Zakrajsek BA. (2000). Effect of experimental treatment on housekeeping gene expression:validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods.46:69-81.
    130.Schwachtje J, Minchin PE, Jahnke S, van Dongen JT, Schittko U, Baldwin IT. (2006).
    131.SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots. Proc. Natl. Acad. Sci. USA 103:12935-40.
    132.Schwessinger B, Zipfel C. (2008). News from the frontline:recent insights into PAMP-triggered immunity in plants. Current Opinion in Plant Biology,11: 389-395.
    133.Shan L, He P, Li J, Heese A, Peck SC, Nurnberger T, Martin GB, Sheen J. (2008). Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe,4:17-27.
    134.Sogawa K, Cheng CH. (1979). Ecomomic thresholds, nature of damage, and losses caused by the brown planthopper, In:brown planthopper:Threat to Rice Production in Asia IRRI, Los Banos, Philippines,125-142.
    135.Solano R, Stepanova A, Chao QM, Ecker JR. (1998). Nuclear events in ethylene signaling:A transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev.12:3703-3714.
    136.Spiteller D, Pohnert G, Boland G. (2001). Absolute configuration of volicitin, an elicitor of plant volatile biosynthesis from lepidopteran larvae. Tetrahedron Lett. 42:1483-85.
    137.Spoel SH, Mou Z, Tada Y, Spivey NW, Genschik P, Dong X. (2009). Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity, cell,5:860-872.
    138.Srivastava LM. (2002). Plant growth and development:hormones and environment. Amsterdam:Academic Press. Page 140.
    139.Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Dolezal K, Schlereth A, Jurgens G, Alonso JM. (2008). TAA1-Mediated Auxin Biosynthesis Is Essential for Hormone Crosstalk and Plant Development. Cell,133:177-191.
    140.Stone SL, Callis J. (2007). Ubiquitin ligases mediate growth and development by promoting protein death. Curr Opin Plant Biol 10:624-632.
    141.Suarez-Rodriguez MC, Adams-Phillips L, Liu Y, Wang H, Su SH, Jester PJ, Zhang S, Bent AF, Krysan PJ. (2007). MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants. Plant Physiol,143:661-669.
    142.Suenaga H. (1959). Damage caused by the plant and leafhopper and its assessment. Abstract of the 3rd Symposium on the Assessment of Insects Damages. Jpn. Soc. Appl. Entomol. Zool. Tokyo. Japan.
    143.Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K. (2007). The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell.19: 805-818.
    144.Truitt CL, Wei HX, Pare PW. (2004). A plasma membrane protein from Zea mays binds with the herbivore elicitor volicitin. Plant Cell 16:523-32.
    145.Tzfira T, Vaidya M, Citovsky V. (2004). Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature,431:87-92.
    146.Ussuf KK, Laxmi NH, Mitra R. (2001). Proteinase inhibitors:plant-derived genes of insecticidal protein for developing insect-resistant transgenic plants. Curr Sci. 80:847-853.
    147.Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology.3: 0034.1-0034.12.
    148.Van Loon LC, Rep M, Pieterse CMJ. (2006). Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135-162.
    149.Verca AS and Feuer R. (1976). The brown planthopper and its biotypes in the Philippines. Plant Prot New,5:38-41.
    150.Voelckel C, Baldwin IT. (2004). Herbivore-induced plant vaccination. Part II. Array-studies reveal the transience of herbivore-specific transcriptional imprints and a distinct imprint from stress combinations. Plant J.38:650-663.
    151.Voelckel C, Weisser WW, Baldwin IT. (2004). An analysis of plant-aphid interactions by different microarray hybridization strategies. Mol. Ecol. 13:3187-95.
    152.Walling LL. (2000). The myriad plant responses to herbivores. J Plant Growth Regul.19:195-216.
    153.Walter M, Chaban C, Schutze K, Batistic O, Weckermann K, Nake C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J. (2004). Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J.40:428-438.
    154.Wang HC, Ngwenyama N, Liu YD, Walker JC, Zhang SQ. (2007). Stomatal Development and Patterning Are Regulated by Environmentally Responsive Mitogen-Activated Protein Kinases in Arabidopsis. The Plant Cell,19:63-73.
    155.Wasternack C. (2007). Jasmonates:an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot (Lond) 100: 681-697.
    156.Watanabe T, Kitagawa H. (2000). Photosynthesis and translocation of assimilates in rice plants following phloem feeding by the plant hopper, Nilaparvata lugens (Homoptera:Delphacidae). J Econ Entomol,93:1192-1198.
    157.Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581-590.
    158.Wu J, Hettenhausen C, Meldau S, Baldwin IT. (2007). Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell 19:1096-1122.
    159.Xiong L, Yang Y. (2003). Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell.15:745-759.
    160.Yang SF, Hoffman NE. (1984). Ethylene Biosynthesis and its Regulation in Higher Plants. Annual Review of Plant Physiology.35:155-189.
    161.Yoo SD, Cho YH, Sheen J. (2007). Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis. Nature Protocols.2: 1565-1572.
    162.Yoo SD, Cho YH, Tena G, Xiong Y, Sheen J. (2008). Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature.451:789-796.
    163.Yuan H, Chen X, Zhu L, He G. (2004). Isolation and characterization of a novel rice gene encoding a putative insect-inducible protein homologous to wheat Wirl. Journal of Plant Physiol.161:79-85.
    164.Zarate SI, Kempema LA, Walling LL. (2007). Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiology.143:866-875.
    165.Zhang J, Shao F, Li Y, Cui H, Chen L, Li H, Zou Y, Long C, Lan L, Chai J et al. (2007). A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host Microbe,1:175-185.
    166.Zhu-Salzman K, Salzman RA, Ahn JE, Koiwa H. (2004). Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol.134:420-431.
    167.Zhu Y, Li H, Long C, Hu L, Xu H, Liu L, Chen S, Wang DC, Shao F. (2007). Structural insights into the enzymatic mechanism of the pathogenic MAPK phosphothreonine lyase. Mol Cell,28:899-913.
    168.Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G. (2006). Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell,125:749-760.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700