苏云金杆菌Cry毒素对褐飞虱无毒原因分析及对褐飞虱有效新型Bt Cry毒素的改造
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏云金杆菌(Bacillus thuringiensis, Bt),是目前应用最为广泛的微生物杀虫剂,在Bt所产生的多种杀虫毒素中,Cry毒素是当前研究最为深入且应用最为广泛的一种,cry基因也已经被广泛应用与转基因作物中,成为农业生产中防治鳞翅目、鞘翅目、双翅目、线虫等Bt Cry毒素靶标昆虫的一种有效的途径,从而减少了对环境有负作用的化学农药的使用。
     然而,Cry毒素蛋白的杀虫谱仅局限于鳞翅目、鞘翅目、双翅目等特定靶标昆虫,对于半翅目刺吸式口器的蚜虫、飞虱、叶蝉等昆虫暂时还没有有效Cry毒素的报道。随着能够表达Cry毒素的转基因作物的大量种植及Bt制剂在农田中的广泛使用,鳞翅目、鞘翅目、双翅目等Cry靶标昆虫能够得到有效控制,而飞虱、叶蝉、蚜虫等半翅目非Bt靶标昆虫则依旧需要使用化学农药进行防治,甚至有大爆发的可能。因此,急需寻找或开发一种能够对此类半翅目害虫具有毒性作用的新型Cry毒素。
     本研究首先克隆、表达并制备了可溶的Cry1Ab毒素蛋白,利用获得的Cry1Ab蛋白,制备了高效价的兔抗Cry1Ab的多克隆抗血清。而后,利用膜饲喂法测定了Cry1Ab蛋白对重要水稻害虫褐飞虱(Nilaparvata lugens)的毒性作用。并结合体外水解与Pull-down技术,利用免疫印迹法分析了Cry1Ab毒素对褐飞虱只有低毒作用的原因进行了分析,发现Cry1Ab毒素能够在褐飞虱中肠内被水解且能够与褐飞虱中肠刷状缘膜囊泡(brash border membrane vesicle, BBMV)结合。因此,推断Cry1Ab毒素对褐飞虱鲜有毒性作用的原因是其无法与正确的受体蛋白结合所致。
     另一方面,本研究利用蚜虫中肠内膜结合短肽对Cry1Ab毒素domainⅡ中决定受体识别的3个loop进行逐一替换,并测定了替换loop后的三株Cry蛋白对鳞翅目小菜蛾幼虫的毒性作用。研究发现,在Cry1Ab domainⅡ中决定受体识别的3个loop分别被替换后,Cry1Ab毒素对小菜蛾的毒性作用受到不同程度的影响,其中loop2被替换后,Cry1Ab对小菜蛾的毒性作用下降最为明显,LC50达到32.25μg/mL。由此可以推断,对于Cry1A毒素而言,在受体识别功能作用上domainⅡ中的loop2起到的作用最大。
     为了获得对褐飞虱具有较好毒性作用的新型Cry毒素,本研究利用噬菌体短肽文库展示技术筛选出了能够与水稻褐飞虱中肠内膜结合的短肽P2S。通过将P2S与加强绿色荧光蛋白(enhanced green fluorescent protein, EGFP)基因的融合,制备了P2S-EGFP融合蛋白,利用Pull-down技术及荧光显微镜观察,验证了P2S与褐飞虱中肠内膜及BBMV较强的结合能力。随后,本研究利用分子区域替换技术,使用能够与褐飞虱中肠内膜结合的短肽P2S及本实验室早先筛选出的能够与褐飞虱中肠BBMV结合的短肽P1Z分别对Cry1Ab决定受体识别的3个loop分别进行了替换获得了六株新型的cry基因,并对六株新型Cry蛋白进行了原核表达及纯化。通过体外水解、Pull-down体外结合及膜饲喂法生测,筛选出一株在褐飞虱中肠中最稳定,与褐飞虱中肠BBMV结合能力最强且对褐飞虱毒性作用最好的新型Cry毒素Cry1Ab-2S。该毒素将Cry1Ab对褐飞虱的毒性作用提高了近13倍。而后,本研究还利用透射电镜对取食了Cry1Ab-2S的褐飞虱中肠超微组织进行观察,发现其中肠内膜细胞有明显被消解的现象,证明了Cry1Ab-2S对褐飞虱的良好毒性作用。本研究为利用基因工程定向改造Cry毒素,为发展针对特定害虫作用的Cry毒素研究提供了可行的途径;为Cry毒素及其他昆虫毒素在昆虫体内受体的研究提供了新的思路;为应用分子工程手段发展新型害虫毒素提供理论和应用基础;为Cry和其它昆虫毒素的毒理机制研究提供新的手段。
     本研究的特色与创新点主要包括:
     1.分析了Cry毒素对半翅目褐飞虱等刺吸式口器害虫无法产生良好毒性作用的原因;
     2.证明了domainⅡ三个受体识别loop对Cry1Ab毒性影响的重要性;
     3.将噬菌体短肽文库展示技术与膜饲喂法相结合,成功筛选出能够穿透围食膜与褐飞虱中肠内膜结合的短肽;
     4.通过定向改造、筛选,获得了能够对非Bt靶标的半翅目刺吸式口器害虫褐飞虱产生较好毒性作用的新型Cry毒素。
Cry toxins are the most important toxin extracted from Bacillus thuringiensis (Bt),which have been widely used in the management of lepidopteran, coleopteran,dipteran pests and nematode. Alone with the widely planting of transgenic cropscarrying Bt cry genes, target pest which is susceptive to Cry toxins will be effectivelycontrolled and the use of classical chemical pesticides which may cause risks to theenvironment will be decreased。
     However, insecticidal spectrum of Cry toxins are limited. Only Lepidoptera,Coleoptera, Diptera are susceptible to Cry toxins. Currently, seldom reports concernedto the toxicity from Cry toxins against hemipteran pests such as aphids, planhoppersand leafhoppers. As a result, after the planting of Bt transgenic crops and widely usedof Bt insecticide, lepidopteran, coleopteran, dipteran pests will be efficientlycontrolled, but hemipteran pests with sucking and piercing mouth part like aphids,planthoppers and leafhoppers will only be managed by the use of traditional chemicalpesticides. The deterioration of these Bt nontarget pests will increase and even lead toan explosion. Thus, it is emergency to search or create a novel Cry toxin that showsconsiderable toxicity against these hemipteran pests.
     Our research, firstly, prepared purified and soluble Cry1Ab pro-toxin. ThenCry1Ab antiserum was produced by immuning Cry1Ab pro-toxin to Newzealandwhite rabbit.The reason of low toxicity from Cry1Ab against N. lugens, an importantpest in rice production, was analyzed by the use of membrane feeding, pull-downtechnology and in vitro hydrolysis. Results showed that Cry1Ab pro-toxin can beefficiently activated into~60kDa peptide by proteaeses exist in N. lugens gut andthese activated mature peptide can bind to N. lugens BBMV (brash border membranevesicle). According to the reported mechanism of Cry1Ab toxin, activated protein cannot bind to proper receotros is the most likely reason for the low toxicity of Cry1Abagainst N. lugens.
     On the other hand, three receptor binding loops in domainⅡ of Cry1Ab toxinwas replaced by an aphid gut inner membrane binding peptide GBP3.1respectively.To find out which loop is the most important receptor binding site, LC50of three modified Cry toxin, with each loop be substituded by GBP3.1, against diamond backmoth (Plutella xylostella) was tested. Results showed that toxicity of Cry1Ab toxindroped sharply when loop2was replaced, indicating that loop2is more importantthan loop1and loop3in receptor binding and toxicity excerting.
     To develop a novel Cry toxin which will show toxicity to N. lugens, our researchscreened a peptide which could bind to N. lugens gut inner membrane. After fusingP2S with egfp (enhanced green fluorescent protein) gene, P2S-EGFP fusion proteinwas prepared to confirm the binding acitivy between P2S and N. lugens gut BBMV orgut inner membrane. After that, three receptor binding loops of Cry1Ab domainⅡwas replaced by P2S or P1Z (a peptide screened from N. lugens BBMV bindingphage) respectively to produce six novel Cry proteins. With the use of in vitrohydrolysis, pull-down technology and membrane feeding, one novel Cry toxinCry1Ab-2S with loop2be replaced by P2S was selected. Cry1Ab-2S was the moststable novel toxin after the treatment by N. lugens gut proteases and had the strongestbinding activity to N. lugens BBMV. Bioassay results demonstrated that toxicity ofCry1Ab-2S against N. lugens nymphs were nearly13folds more than Cry1Ab toxin.By observing gut ultrastructure of N. lugens though electron microscope, gutmicrovilli of N. lugens fed by Cry1Ab-2S was obviously hydrolyzed.
     This research provides a new method for molecular modification of Cry toxinstarget on specific pests. Furthermore, result of this research will help theunderstanding of mechanism of Cry toxins in hemipteran insects. In summary, thisresearch work was focused on the following:
     1. Analyzed the probable reseaon of low toxicity of Cry toxin against N. lugens andother hemipteran pest with sucking and piercing mouth part;
     2. Determined the importance of three loops in domainⅡ in excerting toxicity ofCry1Ab toxin;
     3. Screened a peptide which can bind to N. lugens gut inner membrane by phagedisplay library;
     4. Obtained a novel Cry toxin showed high toxicity against N. lugens by directedmodification.
引文
陈峰,傅强,罗举,赖凤香,桂连友.(2009)苗期抗性不同的水稻品种成株期对褐飞虱的抗性.中国水稻科学23:201.
    陈建明,俞晓平,程家安.(2009)不同水稻品种对褐飞虱的耐虫特性研究.作物学报35:795-801.
    程遐年,吴进才,马飞.(2003)褐飞虱研究与防治,中国农业出版社,北京.
    关雄.(2006)苏云金芽孢杆菌研究回顾与展望.中国农业科技导报8:5-11.
    胡娟,花日茂,李世广,林华峰,操海群,胡鹏.(2010)5种生物农药对水稻褐飞虱的防治效果.中国农学通报26:239-241.
    蒋立平.(2009)稻飞虱发生特点、原因及综合防治技术.安徽农学通报(下半月刊)15:163-164.
    李云瑞.(2002)农业昆虫学(南方本),中国农业出版社,北京.
    林宏立.(2011) Cry1Aa21基因原核表达及其对褐飞虱的活性,福建农林大学,福建福州.
    凌炎,范桂霞,周国辉,黄唏,龙丽萍.(2008)广西不同地区褐飞虱种群对3种杀虫剂的抗性监测.中国植保导刊28:40-42+11.
    刘爱红,陈良娣,陈良兴.(2008)褐飞虱大发生特点与综合防治.现代农业科技:107-108.
    刘叙杆,赵兴华,王彦华,韦锦捷,沈晋良,孔健,曹明章,周威君,罗才宏.(2010)褐飞虱对氟虫腈和新烟碱类药剂的抗性动态变化.中国水稻科学24:73-80.
    芮明方,谭宏,沈卫新,马善林.(2011)稻褐飞虱发生规律及防治研究进展.上海农业科技:115-117.
    盛仙俏,张发成,徐红星,郑许松,陈桂华,吕仲贤.(2010)水稻品种(组合)对褐飞虱抗性的田间表现.中国水稻科学(犆犺犻狀犑犚犻犮犲犛犮犻)24:535-538.
    王彦华,沈晋良,王鸣华.(2005)褐飞虱抗药性机理及其治理研究进展.农药科学与管理26:24-28.
    吴楚,诸慧.(2009)噬菌体展示技术.安徽农业科学37:990-992.
    于恒秀,赵志鹏,王玲,刘巧泉,龚志云,顾铭洪.(2007)导入GNA和Bar基因获得抗褐飞虱和抗除草剂的转基因水稻.植物保护学报34:555-556.
    袁隆平.(2008)超级杂交水稻育种研究的进展.中国稻米:1-3.
    张振华,林升清.(2009)生物中农药污染的危害及其对策.海峡预防医学杂志5:55-56.
    Abdullah M.A.F., Dean D.H.(2004) Enhancement of Cry19Aa mosquitocidal activity against Aedesaegypti by mutations in the putative loop regions of domain II. Applied and EnvironmentalMicrobiology70:3769-3771.
    Abdullah M.A.F., Alzate O., Mohammad M., McNall R.J., Adang M.J., Dean D.H.(2003) Introductionof Culex toxicity into Bacillus thuringiensis Cry4Ba by protein engineering. Applied andEnvironmental Microbiology69:5343-5353.
    Arenas I., Bravo A., Soberón M., Gómez I.(2010) Role of alkaline phosphatase from Manduca sexta inthe mechanism of action of Bacillus thuringiensis Cry1Ab toxin. Journal of BiologicalChemistry285:12497-12503.
    Ashouri A.(2004) Seasonal occurrence and relative abundance of aphids on potato plants with classicaland transgenic characters of resistance to Colorado Potato Beetle Leptinotarsa decemlineata.Communications in Agricultural and Applied Biological Sciences69:273-280.
    Ashouri A., Michaud D., Cloutier C.(2001) Unexpected effects of different potato resistance factors tothe Colorado potato beetle (Coleoptera: Chrysomelidae) on the potato aphid (Homoptera:Aphididae). Environmental Entomology30:524-532.
    Azzazy H.M.E., Highsmith W.E.(2002) Phage display technology: clinical applications and recentinnovations. Clinical Biochemistry35:425-445.
    BAE S.H.E.E., Pathak M.(1969) Life history of Nilaparvata lugens (Homoptera: Delphacidae) andsusceptibility of rice varieties to its attacks. Annals of the Entomological Society of America63:149-155.
    Bandyopadhyay S., Roy A., Das S.(2001) Binding of garlic (Allium sativum) leaf lectin to the gutreceptors of homopteran pests is correlated to its insecticidal activity. Plant Science161:1025-1033.
    Bashir K., Husnain T., Fatima T., Latif Z., Aks Mehdi S., Riazuddin S.(2004) Field evaluation and riskassessment of transgenic indica basmati rice. Molecular Breeding13:301-312.
    Boonserm P., Davis P., Ellar D.J., Li J.(2005) Crystal structure of the mosquito-larvicidal toxin Cry4Baand its biological implications. Journal of Molecular Biology348:363-382.
    Boonserm P., Mo M., Angsuthanasombat C., Lescar J.(2006) Structure of the functional form of themosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a2.8-angstrom resolution.Journal of Bacteriology188:3391-3401.
    Bose L.K.(2005) Broadening gene pool of rice for resistance to biotic stresses through widehybridization. Iranian Journal of Biotechnology (IJB)3.
    Brandt S.L., Coudron T.A., Habibi J., Brown G.R., Ilagan O.M., Wagner R.M., Wright M.K., BackusE.A., Huesing J.E.(2004) Interaction of two Bacillus thuringiensis d-endotoxins with thedigestive system of Lygus hesperus. Current Microbiology48:1-9.
    Bravo A.(1997) Phylogenetic relationships of Bacillus thuringiensis delta-endotoxin family proteinsand their functional domains. Journal of Bacteriology179:2793.
    Bravo A., Gill S., Soberón M.(2005) Bacillus thuringiensis mechanisms and use. ComprehensiveMolecular Insect Science6:175-205.
    Bravo A., Likitvivatanavong S., Gill S.S., Soberón M.(2011) Bacillus thuringiensis: A story of asuccessful bioinsecticide. Insect Biochemistry and Molecular Biology41:423-431.
    Bravo A., Gomez I., Conde J., Munoz-Garay C., Sanchez J., Miranda R., Zhuang M., Gill S., SoberonM.(2004) Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-formingtoxin to aminopeptidase N receptor leading to insertion into membrane microdomains.Biochimica et Biophysica Acta (BBA)-Biomembranes1667:38-46.
    Breitler J.C., Vassal J.M., Del Mar Catala M., Meynard D., Marfà V., Melé E., Royer M., Murillo I.,San Segundo B., Guiderdoni E.(2004) Bt rice harbouring cry genes controlled by aconstitutive or wound-inducible promoter: protection and transgene expression underMediterranean field conditions. Plant Biotechnology Journal2:417-430.
    Brookes G., Barfoot P.(2009) Global impact of biotech crops: Income and production effects1996-2007.
    Burgio G., Lanzoni A., Accinelli G., Dinelli G., Bonetti A., Marotti I., Ramilli F.(2007) Evaluation ofBt-toxin uptake by the non-target herbivore, Myzus persicae (Hemiptera: Aphididae), feedingon transgenic oilseed rape. Bulletin of Entomological Research97:211-215.
    Burton S.L., Ellar D.J., Li J., Derbyshire D.J.(1999) N-acetylgalactosamine on the putative insectreceptor aminopeptidase N is recognised by a site on the domain III lectin-like fold of aBacillus thuringiensis insecticidal toxin. Journal of Molecular Biology287:1011-1022.
    Chatterjee P.(1978) Occurrence of brown planthopper on rice in West Bengal, India. Int Rice ResNewsletter3:12.
    Chay C., Gunasinge U., Dinesh-Kumar S., Miller W., GRAY S.M.(1996) Aphid transmission andsystemic plant infection determinants of barley yellow dwarf luteovirus-PAV are contained inthe coat protein readthrough domain and17-kDa protein, respectively. Virology219:57-65.
    Chen H., Zhang G., Zhang Q., Lin Y.(2008) Effect of transgenic Bacillus thuringiensis rice lines onmortality and feeding behavior of rice stem borers (Lepidoptera: Crambidae). Journal ofEconomic Entomology101:182-189.
    Chen M., Zhao J.Z., Ye G.Y.I.N., Fu Q., Shelton A.M.(2006) Impact of insect-resistant transgenic riceon target insect pests and non-target arthropods in China. Insect Science13:409-420.
    Chen M., Liu Z., Ye G., Shen Z., Hu C., Peng Y., Altosaar I., Shelton A.M.(2007) Impacts of transgeniccry1Ab rice on non-target planthoppers and their main predator Cyrtorhinus lividipennis(Hemiptera: Miridae)—A case study of the compatibility of Bt rice with biological control.Biological Control42:242-250.
    Chen Y., Tian J.C., Wang W., Fang Q., Akhtar Z.R., Peng Y.F., Cui H., Guo Y.Y., Song Q.S., Ye G.Y.(2012) Bt rice expressing Cry1Ab does not stimulate an outbreak of its non-target herbivore,Nilaparvata lugens. Transgenic Research21:279-291.
    Cheng X., Sardana R., Kaplan H., Altosaar I.(1998) Agrobacterium-transformed rice plants expressingsynthetic cryIA (b) and cryIA (c) genes are highly toxic to striped stem borer and yellow stemborer. Proceedings of the National Academy of Sciences95:2767-2772.
    Cristofoletti P.T., Mendon a de Sousa F.A., Rahbé Y., Terra W.R.(2006) Characterization of amembrane-bound aminopeptidase purified from Acyrthosiphon pisum midgut cells. FEBSJournal273:5574-5588.
    De Maagd R.A., Weemen-Hendriks M., Stiekema W., Bosch D.(2000) Bacillus thuringiensisDelta-Endotoxin Cry1C Domain III Can Function as a Specificity Determinant for Spodopteraexigua in Different, but Not All, Cry1-Cry1C Hybrids. Applied and EnvironmentalMicrobiology66:1559-1563.
    de Maagd R.A., Bravo A., Berry C., Crickmore N., Schnepf H.E.(2003) Structure, diversity, andevolution of protein toxins from spore-forming entomopathogenic bacteria. Annual Review ofGenetics37:409-433.
    De Maagd R.A., Bakker P.L., Masson L., Adang M.J., Sangadala S., Stiekema W., Bosch D.(2002)Domain III of the Bacillus thuringiensis delta‐endotoxin Cry1Ac is involved in binding toManduca sexta brush border membranes and to its purified aminopeptidase N. MolecularMicrobiology31:463-471.
    Deraison C., Darboux I., Duportets L., Gorojankina T., Rahbé Y., Jouanin L.(2004) Cloning andcharacterization of a gut-specific cathepsin L from the aphid Aphis gossypii. Insect MolecularBiology13:165-177.
    Derbyshire D.J., Ellar D.J., Li J.(2001) Crystallization of the Bacillus thuringiensis toxin Cry1Ac andits complex with the receptor ligand N-acetyl-D-galactosamine. Acta CrystallographicaSection D: Biological Crystallography57:1938-1944.
    Devine G.J., Furlong M.J.(2007) Insecticide use: contexts and ecological consequences. Agricultureand Human Values24:281-306.
    Faria C.A., W ckers F.L., Pritchard J., Barrett D.A., Turlings T.C.J.(2007) High susceptibility of Btmaize to aphids enhances the performance of parasitoids of lepidopteran pests. PLoS One2:e600.
    Fernández L.E., Gómez I., Pacheco S., Arenas I., Gilla S.S., Bravo A., Soberón M.(2008) Employingphage display to study the mode of action of Bacillus thuringiensis Cry toxins. Peptides29:324-329.
    Foissac X., Edwards M., Du J., Gatehouse A., Gatehouse J.(2002) Putative protein digestion in asap-sucking homopteran plant pest (rice brown plant hopper; Nilaparvata lugens:Delphacidae)--identification of trypsin-like and cathepsin B-like proteases. InsectBiochemistry and Molecular Biology32:967-978.
    Fu Q., Zhang Z., Hu C., Lai F., Sun Z.(2001) A chemically defined diet enables continuous rearing ofthe brown planthopper, Nilaparvata lugens (St l)(Homoptera: Delphacidae). AppliedEntomology and Zoology36:111-116.
    Fujimoto H., Itoh K., Yamamoto M., Kyozuka J., Shimamoto K.(1993) Insect resistant rice generatedby introduction of a modified δ-endotoxin gene of Bacillus thuringiensis. NatureBiotechnology11:1151-1155.
    Gahan L.J., Gould F., Heckel D.G.(2001) Identification of a gene associated with Bt resistance inHeliothis virescens. Science293:857-860.
    Galitsky N., Cody V., Wojtczak A., Ghosh D., Luft J.R., Pangborn W., English L.(2001) Structure ofthe insecticidal bacterial-endotoxin Cry3Bb1of Bacillus thuringiensis. Acta CrystallographicaSection D: Biological Crystallography57:1101-1109.
    Gill M., Ellar D.(2002) Transgenic Drosophila reveals a functional in vivo receptor for the Bacillusthuringiensis toxin Cry1Ac1. Insect Molecular Biology11:619-625.
    Griffitts J.S., Haslam S.M., Yang T., Garczynski S.F., Mulloy B., Morris H., Cremer P.S., Dell A.,Adang M.J., Aroian R.V.(2005) Glycolipids as receptors for Bacillus thuringiensis crystaltoxin. Science307:922-925.
    Grochulski P., Masson L., Borisova S., Pusztai-Carey M., Schwartz J.L., Brousseau R., Cygler M.(1995) Bacillus thuringiensisCrylA (a) Insecticidal Toxin: Crystal Structure and ChannelFormation. Journal of Molecular Biology254:447-464.
    Guan K.L., Dixon J.E.(1991) Eukaryotic proteins expressed in Escherichia coli: an improved thrombincleavage and purification procedure of fusion proteins with glutathione S-transferase.Analytical Biochemistry192:262.
    Han Y., Xu X., Ma W., Yuan B., Wang H., Liu F., Wang M., Wu G., Hua H.(2011) The Influence ofTransgenic cry1Ab/cry1Ac, cry1C and cry2A Rice on Non-Target Planthoppers and TheirMain Predators Under Field Conditions. Agricultural Sciences in China10:1739-1747.
    He W., You M., Vasseur L., Yang G., Xie M., Cui K., Bai J., Liu C., Li X., Xu X., Huang S.(2012)Developmental and insecticide-resistant insights from the de novo assembled transcriptome ofthe diamondback moth, Plutella xylostella. Genomics99:169-77.
    Howlader M.T.H., Kagawa Y., Miyakawa A., Yamamoto A., Taniguchi T., Hayakawa T., Sakai H.(2010) Alanine Scanning Analyses of the Three Major Loops in Domain II of Bacillusthuringiensis Mosquitocidal Toxin Cry4Aa. Applied and Environmental Microbiology76:860-865.
    Huang J., Hu R., Van Meijl H., Van Tongeren F.(2004) Biotechnology boosts to crop productivity inChina: trade and welfare implications. Journal of Development Economics75:27-54.
    Huang J., Hu R., Pray C., Qiao F., Rozelle S.(2005) Biotechnology as an alternative to chemicalpesticides: a case study of Bt cotton in China. Agricultural Economics29:55-67.
    Ichimatsu T., Mizuki E., Nishimura K., Akao T., Saitoh H., Higuchi K., Ohba M.(2000) Occurrence ofBacillus thuringiensis in fresh waters of Japan. Current microbiology40:217-220.
    Ikagawa S., Matsushita S., Chen Y.Z., Ishikawa T., Nishimura Y.(1996) Single amino acid substitutionson a Japanese cedar pollen allergen (Cry j1)-derived peptide induced alterations in human Tcell responses and T cell receptor antagonism. J Allergy Clin Immunol97:53-64.
    James C.(2007) Global status of commercialized biotech/GM crops,2007, International Service for theAcquisition of Agri-Biotech Applications (ISAAA).
    Jinhua D.(1981) A review of studies on classification and species of the Genus nilaparvata distant(Homoptera: Delphacidae). Journal of Nanjing Agricultural University1:006.
    Jurat-Fuentes J.L., Adang M.J.(2006) Cry toxin mode of action in susceptible and resistant Heliothisvirescens larvae. Journal of Invertebrate Pathology92:166-171.
    Jurat‐Fuentes J.L., Adang M.J.(2004) Characterization of a Cry1Ac-receptor alkaline phosphatase insusceptible and resistant Heliothis virescens larvae. European Journal of Biochemistry271:3127-3135.
    Kanaoka A., Yamaguchi R., Konno T.(1996) Effect of buprofezin on oviposition of brown planthopper,Nilaparvata lugens, at sub-lethal dose. Journal of Pesticide Science-pesticide Science Societyof Japan-japanese Edition21:153-158.
    Klimowicz A.K., Benson T.A., Handelsman J.(2010) A quadruple-enterotoxin-deficient mutant ofBacillus thuringiensis remains insecticidal. Microbiology156:3575-3583.
    Knight P.J.K., Crickmore N., Ellar D.J.(1994) The receptor for Bacillus thuringiensis CrylA (c)delta‐endotoxin in the brush border membrane of the lepidopteranManduca sexta isaminopeptidase N. Molecular Microbiology11:429-436.
    Knowles B.H., Dow J.A.T.(2005) The crystal δ-endotoxins of Bacillus thuringiensis: Models for theirmechanism of action on the insect gut. BioEssays15:469-476.
    Laemmli U.K.(1970) Cleavage of structural proteins during the assembly of the head of bacteriophageT4. nature227:680-685.
    Lawo N.C., W ckers F.L., Romeis J.(2009) Indian Bt cotton varieties do not affect the performance ofcotton aphids. PLoS One4:e4804.
    Lee M.K., Curtiss A., Alcantara E., Dean D.(1996) Synergistic effect of the Bacillus thuringiensistoxins CryIAa and CryIAc on the gypsy moth, Lymantria dispar. Applied and EnvironmentalMicrobiology62:583-586.
    Lee M.K., You T.H., Gould F.L., Dean D.H.(1999) Identification of Residues in Domain III ofBacillusthuringiensis Cry1Ac Toxin That Affect Binding and Toxicity. Applied and EnvironmentalMicrobiology65:4513-4520.
    Li H., Chougule N.P., Bonning B.C.(2011) Interaction of the Bacillus thuringiensis delta endotoxinsCry1Ac and Cry3Aa with the gut of the pea aphid, Acyrthosiphon pisum (Harris). Journal ofInvertebrate Pathology107:69-78.
    Li J., Carroll J., Ellar D.J.(1991) Crystal structure of insecticidal δ-endotoxin from Bacillusthuringiensis at2.5resolution. Natural353:815-821.
    Li J., Derbyshire D., Promdonkoy B., Ellar D.(2001) Structural implications for the transformation ofthe Bacillus thuringiensis-endotoxins from water-soluble to membrane-inserted forms.Biochem. Soc. Trans29:571-577.
    Liu S., Chougule N.P., Vijayendran D., Bonning B.C.(2012) Deep Sequencing of the Transcriptomesof Soybean Aphid and Associated Endosymbionts. PLoS One7:e45161.
    Liu S., Sivakumar S., Sparks W.O., Miller W.A., Bonning B.C.(2010) A peptide that binds the peaaphid gut impedes entry of Pea enation mosaic virus into the aphid hemocoel. Virology401:107-116.
    Lu B.R., Snow A.A.(2005) Gene flow from genetically modified rice and its environmentalconsequences. BioScience55:669-678.
    Mandal C.C., Gayen S., Basu A., Ghosh K.S., Dasgupta S., Maiti M.K., Sen S.K.(2007)Prediction-based protein engineering of domain I of Cry2A entomocidal toxin of Bacillusthuringiensis for the enhancement of toxicity against lepidopteran insects. Protein Eng Des Sel20:599-606.
    Masson L., Lu Y., Mazza A., Brousseau R., Adang M.J.(1995) The CryIA (c) receptor purified fromManduca sexta displays multiple specificities. Journal of Biological Chemistry270:20309-20315.
    Masson L., Tabashnik B.E., Liu Y.B., Brousseau R., Schwartz J.L.(1999) Helix4of the Bacillusthuringiensis Cry1Aa toxin lines the lumen of the ion channel. Journal of BiologicalChemistry274:31996-32000.
    Masson L., Tabashnik B.E., Mazza A., Préfontaine G., Potvin L., Brousseau R., Schwartz J.L.(2002)Mutagenic analysis of a conserved region of domain III in the Cry1Ac toxin of Bacillusthuringiensis. Applied and Environmental Microbiology68:194-200.
    Mayee C.(2009) Bt cotton in India: current status and impact on textile industry. Proceedings of theNational Academy of Sciences India. Section B, Biological Sciences79:195-211.
    Mellet M., Schoeman A.(2007) Effect of Bt-cotton on chrysopids, ladybird beetles and their prey:Aphids and whiteflies. Indian Journal of Experimental Biology45:554.
    Morin S., Biggs R.W., Sisterson M.S., Shriver L., Ellers-Kirk C., Higginson D., Holley D., Gahan L.J.,Heckel D.G., Carrière Y.(2003) Three cadherin alleles associated with resistance to Bacillusthuringiensis in pink bollworm. Proceedings of the National Academy of Sciences100:5004-5009.
    Morse R., Yamamoto T., Stroud R.(2001) Structure of Cry2Aa suggests an unexpected receptorbinding epitope. Structure9:409-417.
    Mullen L.M., Nair S.P., Ward J.M., Rycroft A.N., Henderson B.(2006) Phage display in the study ofinfectious diseases. Trends in Microbiology14:141-147.
    Novillo C., Casta era P., Ortego F.(1998) Characterization and distribution of chymotrypsin-like andother digestive proteases in Colorado potato beetle larvae. Archives of Insect Biochemistryand Physiology36:181-201.
    Ohba M., Lee D.H.(2003) Bacillus thuringiensis associated with faeces of the Kerama-jika, Cervusnippon keramae, a wild deer indigenous to the Ryukyus, Japan. Journal of Basic Microbiology43:158-162.
    Pérez C., Fernandez L.E., Sun J., Folch J.L., Gill S.S., Soberón M., Bravo A.(2005) Bacillusthuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as amembrane-bound receptor. Proceedings of the National Academy of Sciences of the UnitedStates of America102:18303.
    Pardo-López L., Gómez I., Mu oz-Garay C., Jiménez-Juarez N., Soberón M., Bravo A.(2006)Structural and functional analysis of the pre-pore and membrane-inserted pore of Cry1Abtoxin. Journal of Invertebrate Pathology92:172-177.
    Pardo-Lopez L., Munoz-Garay C., Porta H., Rodríguez-Almazán C., Soberón M., Bravo A.(2009)Strategies to improve the insecticidal activity of Cry toxins from Bacillus thuringiensis.Peptides30:589-595.
    Peterson A., Fernando G., Wells M.(1995) Purification, characterization and cDNA sequence of analkaline chymotrypsin from the midgut of Manduca sexta. Insect Biochemistry and MolecularBiology25:765-774.
    Pigott C.R., Ellar D.J.(2007) Role of receptors in Bacillus thuringiensis crystal toxin activity.Microbiology and Molecular Biology Reviews71:255-281.
    Pigott C.R., King M.S., Ellar D.J.(2008) Investigating the properties of Bacillus thuringiensis Cryproteins with novel loop replacements created using combinatorial molecular biology. Appliedand environmental microbiology74:3497-3511.
    Porcar M., Grenier A.M., Federici B., Rahbé Y.(2009) Effects of Bacillus thuringiensis δ-Endotoxinson the Pea Aphid (Acyrthosiphon pisum). Applied and Environmental Microbiology75:4897-4900.
    Powell K.(2001) Antimetabolic effects of plant lectins towards nymphal stages of the planthoppersTarophagous proserpina and Nilaparvata lugens. Entomologia Experimentalis et Applicata99:71-78.
    Pray C.E., Huang J., Hu R., Rozelle S.(2002) Five years of Bt cotton in China–the benefits continue.The Plant Journal31:423-430.
    Rajamohan F., Lee M.K., Dean D.H.(1998) Bacillus thuringiensis Insecticidal Proteins: MolecularMode of Action. Progress in Nucleic Acid Research and Molecular Biology60:1-27.
    Rajamohan F., Alzate O., Cotrill J.A., Curtiss A., Dean D.H.(1996) Protein engineering of Bacillusthuringiensis δ-endotoxin: mutations at domain II of CryIAb enhance receptor affinity andtoxicity toward gypsy moth larvae. Proceedings of the National Academy of Sciences93:14338-14343.
    Raps A., Kehr J., Gugerli P., Moar W., Bigler F., Hilbeck A.(2001) Immunological analysis of phloemsap of Bacillus thuringiensis corn and of the nontarget herbivore Rhopalosiphum padi(Homoptera: Aphididae) for the presence of Cry1Ab. Molecular Ecology10:525-533.
    Rausell C., Pardo-López L., Sánchez J., Mu oz-Garay C., Morera C., Soberón M., Bravo A.(2004)Unfolding events in the water-soluble monomeric Cry1Ab toxin during transition tooligomeric pre-pore and membrane-inserted pore channel. Journal of Biological Chemistry279:55168-55175.
    Raymond B., Johnston P.R., Nielsen-LeRoux C., Lereclus D., Crickmore N.(2010) Bacillusthuringiensis: an impotent pathogen Trends in Microbiology18:189-194.
    Riaz N., Husnain T., Fatima T., Makhdoom R., Bashir K., Masson L., Altosaar I., Riazuddin S.(2006)Development of Indica Basmati rice harboring two insecticidal genes for sustainableresistance against lepidopteran insects. South African Journal of Botany72:217-223.
    Sakai H., Howlader M.T.H., Ishida Y., Nakaguchi A., Oka K., Ohbayashi K., Yamagiwa M., HayakawaT.(2007) Flexibility and strictness in functional replacement of domain III of cry insecticidalproteins from Bacillus thuringiensis. J Biosci Bioeng103:381-383.
    Sambrook J., Russell D.W.(2001) Molecular Cloning: A Laboratory Manual, Cold Spring HarborLaboratory Press.
    Saxena R.C., Khan Z.R.(1989) Factors affecting resistance of rice varieties to planthopper andleafhopper pests. Agricultural Zoology reviews.3:97-132.
    Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D., Dean D.(1998)Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular BiologyReviews62:775-806.
    Scott J.K., Smith G.P.(1990) Searching for peptide ligands with an epitope library. Science249:386-390.
    Sharma H.C., Sharma K.K., Seetharama N., Ortiz R.(2000) Prospects for using transgenic resistance toinsects in crop improvement. Electronic Journal of Biotechnology3:21-22.
    Shelton A.M., Zhao J.Z., Roush R.T.(2002) Economic, ecological, food safety, and socialconsequences of the deployment of Bt transgenic plants. Annual Review of Entomology47:845-881.
    Shu Q., Ye G., Cui H., Cheng X., Xiang Y., Wu D., Gao M., Xia Y., Hu C., Sardana R.(2000)Transgenic rice plants with a synthetic cry1Ab gene from Bacillus thuringiensis were highlyresistant to eight lepidopteran rice pest species. Molecular Breeding6:433-439.
    Smith G.P.(1985) Filamentous fusion phage: novel expression vectors that display cloned antigens onthe virion surface. Science (New York, NY)228:1315.
    Soberón M., Fernández L.E., Pérez C., Gill S.S., Bravo A.(2007a) Mode of action of mosquitocidalBacillus thuringiensis toxins. Toxicon49:597-600.
    Soberón M., Pardo-López L., López I., Gómez I., Tabashnik B.E., Bravo A.(2007b) Engineeringmodified Bt toxins to counter insect resistance. Science Signalling318:1640.
    Sogawa K.(1982) The rice brown planthopper: feeding physiology and host plant interactions. AnnualReview of Entomology27:49-73.
    Swiecicka I., Fiedoruk K., Bednarz G.(2002) The occurrence and properties of Bacillus thuringiensisisolated from free-living animals. Letters in Applied Microbiology34:194-198.
    Tabashnik B.E., Cushing N.L., Finson N., Johnson M.W.(1990) Field development of resistance toBacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). Journal of EconomicEntomology83:1671-1676.
    Tang W., Chen H., Xu C., Li X., Lin Y., Zhang Q.(2006) Development of insect-resistant transgenicindica rice with a synthetic cry1C*gene. Molecular Breeding18:1-10.
    Tu J., Zhang G., Datta K., Xu C., He Y., Zhang Q., Khush G.S., Datta S.K.(2000) Field performance oftransgenic elite commercial hybrid rice expressing Bacillus thuringiensis δ-endotoxin. NatureBiotechnology18:1101-1104.
    Vachon V., Préfontaine G., Coux F., Rang C., Marceau L., Masson L., Brousseau R., Frutos R.,Schwartz J.L., Laprade R.(2002) Role of helix3in pore formation by the Bacillusthuringiensis insecticidal toxin Cry1Aa. Biochemistry41:6178-6184.
    Vachon V., Préfontaine G., Rang C., Coux F., Juteau M., Schwartz J.L., Brousseau R., Frutos R.,Laprade R., Masson L.(2004) Helix4mutants of the Bacillus thuringiensis insecticidal toxinCry1Aa display altered pore-forming abilities. Applied and Environmental Microbiology70:6123-6130.
    Vadlamudi R.K., Weber E., Ji I., Ji T.H., Bulla Jr L.A.(1995a) Cloning and expression of a receptor foran insecticidal toxin of Bacillus thuringiensis. Journal of Biological Chemistry270:5490-5494.
    Vadlamudi R.K., Weber E., Ji I., Ji T.H., Bulla L.A.(1995b) Cloning and expression of a receptor foran insecticidal toxin of Bacillus thuringiensis. Journal of Biological Chemistry270:5490-5494.
    Van Rie J.(2000) Bacillus thuringiensis and its use in transgenic insect control technologies.International Journal of Medical Microbiology290:463-469.
    Walters F., Kulesza C., Phillips A., English L.(1994) A stable oligomer of Bacillus thuringiensisdelta-endotoxin, CryIIIA. Insect Biochemistry and Molecular Biology24:963-968.
    Walters F.S., English L.H.(1995) Toxicity of Bacillus thuringiensisδ-endotoxins toward the potatoaphid in an artificial diet bioassay. Entomologia Experimentalis et Applicata77:211-216.
    Wang L.P., Shen J., Ge L.Q., Wu J.C., Yang G.Q., Jahn G.C.(2010a) Insecticide-induced increase in theprotein content of male accessory glands and its effect on the fecundity of females in thebrown planthopper Nilaparvata lugens St l (Hemiptera: Delphacidae). Crop Protection29:1280-1285.
    Wang Y., Zhang G., Du J., Liu B., Wang M.(2010b) Influence of transgenic hybrid rice expressing afused gene derived from cry1Ab and cry1Ac on primary insect pests and rice yield. CropProtection29:128-133.
    Wang Y., Zhang G., Du J., Liu B., Wang M.(2010c) Influence of transgenic hybrid rice expressing afused gene derived from cry1Ab and cry1Ac on primary insect pests and rice yield. CropProtection29:128-133.
    Wolfersberger M., Luethy P., Maurer A., Parenti P., Sacchi F., Giordana B., Hanozet G.(1987)Preparation and partial characterization of amino acid transporting brush border membranevesicles from the larval midgut of the cabbage butterfly (Pieris brassicae). ComparativeBiochemistry and Physiology Part A: Physiology86:301-308.
    Wu D., Aronson A.(1992) Localized mutagenesis defines regions of the Bacillus thuringiensisdelta-endotoxin involved in toxicity and specificity. Journal of Biological Chemistry267:2311-2317.
    Wu J., Xu J., Yuan S., Liu J., Jiang Y.(2003) Pesticide-induced susceptibility of rice to brownplanthopper Nilaparvata lugens. Entomologia Experimentalis et Applicata100:119-126.
    Wu K.M., Lu Y.H., Feng H.Q., Jiang Y.Y., Zhao J.Z.(2008) Suppression of cotton bollworm inmultiple crops in China in areas with Bt toxin–containing cotton. Science321:1676-1678.
    Xu X., Yu L., Wu Y.(2005) Disruption of a cadherin gene associated with resistance to Cry1Acδ-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Applied and EnvironmentalMicrobiology71:948-954.
    Ye G.Y., Shu Q.Y., Yao H.W., Cui H.R., Cheng X.Y., Hu C., Xia Y.W., Gao M.W., Altosaar I.(2001)Field evaluation of resistance of transgenic rice containing a synthetic cry1Ab gene fromBacillus thuringiensis Berliner to two stem borers. Journal of economic entomology94:271-276.
    Ye R., Huang H., Yang Z., Chen T., Liu L., Li X., Chen H., Lin Y.(2009) Development ofinsect-resistant transgenic rice with Cry1C*‐free endosperm. PestManagement Science65:1015-1020.
    Zaidi M.A., Ye G., Yao H., You T.H., Loit E., Dean D.H., Riazuddin S., Altosaar I.(2009) Transgenicrice plants expressing a modified cry1Ca1gene are resistant to Spodoptera litura and Chilosuppressalis. Molecular biotechnology43:232-242.
    Zavala L.E., Pardo-López L., Cantón P.E., Gómez I., Soberón M., Bravo A.(2011) Domains II and IIIof Bacillus thuringiensis Cry1Ab toxin remain exposed to the solvent after insertion of part ofdomain I into the membrane. Journal of Biological Chemistry286(21):19109-19117.
    Zhang X., Candas M., Griko N., Rose-Young L., Bulla L.(2005) Cytotoxicity of Bacillus thuringiensisCry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R1expressed in insect cells. Cell Death&Differentiation12:1407-1416.
    Zhang X., Candas M., Griko N.B., Taussig R., Bulla Jr L.A.(2006) A mechanism of cell deathinvolving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin ofBacillus thuringiensis. Science's STKE103:9897.
    Zhuang M., Oltean D.I., Gómez I., Pullikuth A.K., Soberón M., Bravo A., Gill S.S.(2002) Heliothisvirescens and Manduca sexta lipid rafts are involved in Cry1A toxin binding to the midgutepithelium and subsequent pore formation. Journal of Biological Chemistry277:13863-13872.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700