对称型双子咪唑表面活性剂的合成及分子动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
综述了双子表面活性剂的特点及国内外相关研究领域的发展现状。以咪唑、不同链长的溴代烷等为主要原料,合成系列以亚甲基链为联接基团,具有对称和不同疏水基团链长及联接基团链长的系列对称型双子咪唑表面活性剂,采用红外、核磁谱图和元素分析的手段表征活性剂分子结构。在分析证实产物为目标结构的基础上,用表/界面张力法、电导率法测定了五种具有对称结构的系列对称型双子咪唑表面活性剂在溶液中的表界面活性、构效关系及胶束化热力学性质,结果显示,活性剂分子表现出良好的表面活性,当活性剂分子联接基团长度一定时,随分子两侧疏水烷基链碳原子数的增加,活性剂分子吸附于气/液界面的趋势逐渐增大,双子咪唑表面活性剂降低表面张力的效率也逐渐升高;当活性剂分子疏水烷基链长度不变时,系列双子咪唑表面活性剂中联接基团长度较短的具有较高的表面活性,更易吸附在气/液界面处。
     对于同一种结构的双子咪唑表面活性剂而言,在室温至45℃阶段,随着温度的升高,其胶束反离子结合度逐渐增大,胶束体尺寸逐渐增加;当温度升至45℃以上时,结合度呈现下降趋势,胶束体尺寸减小;吉布斯自由能变化情况说明,系列对称型双子咪唑表面活性剂在水溶液中胶束化为自发进行过程,其体系为热力学稳定体系;随温度的增加,自由能逐渐降低,胶束体稳定性逐渐提高;温度相同,当活性剂分子疏水基团碳原子数增加时,自由能逐渐降低,胶束稳定性上升;而随着亲水基团长度的增加,自由能逐渐增大,胶束体稳定性逐渐减弱。
     针对实验手段难以在分子层次上解释胶束化机理及构效关系的缺陷,设计了在微观水平上对多种不同结构表面活性剂性质进行研究的分子动力学系统,并通过压力张量、自由能微扰、回旋半径和径向分布函数等方法系统的研究了对称型双子咪唑表面活性剂、季铵盐型两性离子双子表面活性剂以及传统烷基芳基磺酸盐型表面活性剂的表面活性、热力学及动力学性质。分子动力学研究结果表明,压力张量、自由能微扰法等分子动力学手段研究三种不同结构表面活性剂的理论结果与实验值相近,说明所设计的分子动力学系统和模型可以用于预测多种表面活性剂溶液中的表面活性、热力学及动力学性质;对于结构确定的双子咪唑表面活性剂,其表面活性和在水溶液中的胶束化能力与温度、疏水基及联接基团的结构有关,随着温度的升高,分子热运动加剧,胶束化能力降低;联接基团长度不变时,随着疏水烷烃链碳原子数增加,胶束化能力得到提高;联接基团长度不同的离子液体型双子咪唑表面活性剂可能遵循不同的胶束化机理,联接基团长度小于6时,随着联接基团长度增加,分子胶束化能力降低;当联接基团长度大于6时,分子胶束化能力提高。
     在相同条件下,两性离子液体型双子表面活性剂体系胶束化自由能变高于双子咪唑表面活性剂,说明前者水溶液中形成的胶束体与后者相比稳定性较差;而当外界条件相同时,两性离子液体型双子表面活性剂与传统驱油用烷基芳基磺酸盐表面活性剂在溶液中胶束化过程的热力学性质相近。
     采用量子化学拓扑理论和多种动力学方法研究系列双子咪唑表面活性剂单分子性质、在溶液中的水合作用以及与水分子和其它表面活性剂间的复配效应。结果表明,不同理论计算方法中,量子化学拓扑法计算结果最为精确;表面活性剂分子疏水尾部受极性亲水基团的影响,带有少量弱电荷而略显部分极性;分子极性基团总电荷受到联接基团碳原子数的显著影响,且随原子数的增加而增大;随着亲水基团长度的增加,分子烷基尾链电荷显著增大。
     双子咪唑表面活性剂与水分子间可以通过氢键作用形成具有一定几何形状的团簇体,当水分子数在1~3之间时,活性剂分子极性基团主要与水分子以1:1氢键形成水合团簇体;当水分子数增加至4~5时,活性剂将与水分子分别以1:2和2:2氢键形成环形和笼型水合团簇体;对水合团簇体的结合能及自由能分析表明,理论计算所得到的水合团簇体为热力学稳定体系,且随着水分子数的增加,团簇体稳定性得到提高。
     双子咪唑表面活性剂与传统阴离子表面活性剂复配后的电子密度等高线图分析结果表明,分子烷基链尾部间带有部分电荷,在相互聚集时存在静电排斥力;当活性剂浓度较低时,其分子间静电排斥力较弱可以忽略;随着活性剂分子浓度继续增大,静电斥力影响将逐渐增加,不利于胶束体的形成;由于联接基团长度可以显著影响其疏水基尾链的电荷,因此,可以考虑改变联接基长度来调控或改善离子液体双子咪唑表面活性剂尾链间的静电排斥力,使之更加适应三次采油中不同驱油用表面活性剂间的复配应用。
In this paper, the content, significance and development of synthesis and propertiesof Gemini surfactants in the relevance fields are summarized. A series of Geminiimidazolum surfactants with methylene spacer chains are synthesized by the reaction ofimidazolium, different bromoalkane and so on. The structure of the target product ischaracterized by1HNMR. The results show that all synthetic surfactants are objectiveconfigurations. The surface activities, structure-activity relationship and thermodynamicproperties of micellization of symmetric ionic-liquid Gemini imidazolum surfactants areinvestigated by means of surface tension and conductivity. The results show that theGemini imidazolum surfactant own high surface activities. As the carbon atoms ofhydrophobic group increase, the adsorption at the air-aqueous interface for Geminiimidazolum surfactant with fixed length of hydrophilic group is easier and the effciencyfor reducing the surface tension is increased; For the Gemini imidazolum surfactantwith shorter hydrophilic group, it has the higher surface activities and easier adsorptionat air-aqueous interface with the fixed hydrophobic group.
     At the low temperature, as the temperature increase, the counterion of micellizationincrease while the counterion decrease at higher temperature (45℃); The change ofGibbs free energy show that the micellization in aqueous solutions is a spontaneous andstable process; As the temperature increase, the free ernergy decrease but the stableproperties of micellization increase; At the same temperature, the free energy decreasewith increasing the length of hydrophobic group but increase with increasing the lengthof hydrophobic group.
     A molecular dynamics system suitable for many types of surfactant with differentstructure is constructed in this paper due to the drawback of exprimental investigatingon the micellization mechanism and structure-activity relationship from the molecularlevel. The surface activities, structure-activity relationship, thermodynamic anddynamics properties are investigated by means of pressurer tensor, free energyperturbation, radius of gyration and radial distribution function methods. The moleculardynamics results show that the theoretical value calculated from the moleculardynamics is close to the experimental value, and the system constructed can be used todiscriminate and predict the surface, thermodynamic and dynamics properties ofdifferent surfactants; For the surfactant with fixed structure, the surface activities andfavourability micellization are related to temperature, hydrophobic and hydrophilicgroup; As the temperature rises, the micellization of ionic liquid-type Geminiimidazolium surfactants becomes more difficult with the aggravation of molecularmovement; As the number carbon atom in the alkyl chains is increased, the tendencyand stability of micellization both increase; In addition, we found that ionic liquid-type Gemini imidazolium surfactants with different spacer lengths should follow the variousmechanism of micellization; If the length of spacer is less than6, as the carbon atoms ofspacer group increase, the formation ability of the micelles of surfactant is enhanced;But the formation ability of the micelles of surfactant decrease with the longer spacer(more than6).
     Under the same condition, the free energy of micellization of zwitterion Geminisurfactants are higher than the Gemini imidazolum surfactants, meaning that thestability of former are poor than the latter. Since the thermodynamic properties ofzwitterion Gemini surfactants are close to the traditional anion surfactant, it may showthe better compound properties than the ionic liquid Gemini imidazolum surfactants.
     The quantum chemical topology and molecular dynamics methods are applied tothe single molecular property, hydration in the aqueous solution and compound amongthe different surfactants. The results show that the hydrophobic tails of surfactant own anegative charge due to the influence of hydrophilic group; The total charge of polargroup can be greatly influenced by the numbers of carbon atoms of spacer group; As thelength of spacer group increase, the end part of hydrophobic group increase.
     Ionic liquid Gemini imidazolum surfactant can form the geometry cluster withwater molecules by constructing the hydrogen bonding formation; As the range ofmolecular from1to3, the hydrogen bonding formation between polar group ofsurfactant and water is1:1. As the number of water molecule is increased to4or5, thehydrogen bonding formations are2:1and2:2with the ring and cage hydration cluster;The analysis results for binding and free energy of hydration cluster show that thehydration cluster is a stable thermodynamic system; With the increased numbers ofwater molecular, the stability of cluster increase.
     The contour map with compounding ionic liquid Gemini imidazolum surfactantand traditional anionic surfactant shows that the the electrostatic repulsion force mayexist among the aggregation of hydrophobic groups due to the negative charge in theend of the alkyl chain; As the concentration of surfactant is low, the electrostaticrepulsion force can be ignored in the system; However, the influence of electrostaticrepulsion force should be important with increasing the concentration constantly andmay be unfavourable to form the micellization; Therefore, we can consider to changethe electrostatic repulsion force so that it can be suitable to the application of compoundamong different surfactants in the enhanced oil recovery by improving the length ofspacer group.
引文
[1] Pinazo A. Gemini Cationic Surfactants Derived from Arginine[J]. Langmuir,1999,15:3134-3142.
    [2] Nikas Y.J, Puvvada S, Blankschtein D. Surface tensions of aqueous nonionic surfact-ant mictures[J]. Langmuir,1992,8:2680-2689.
    [3] Mulqueen M, Blankschtein D. Prediction of equilibrium surface tension and surfaceadsorption of aqueous surfactant mictures containing ionic surfactants [J]. Langm-uir,1999,16:8832-8848.
    [4] Mulqueen M, Blankschtein D. Prediction of equilibrium surface tension and surfaceadsorption of aqueous surfactant mictures containing zwitterionic surf actants[J].Langmuir,2000,16:7640-7654.
    [5] Menger F. M, Littau C. A. Gemini surfactants: synthesis and properties[J]. J Am Ch-em Soc,1991,113:1451-1452.
    [6] Menger F. M. Gemini surfactants[J]. Angew Chem Int Ed,2000,39:1906-1920.
    [7] Erhardt R, Boker A, Zettl H. Janus micelles[J]. Macromolecules,2001,34:1069-1075.
    [8] Muzzalupo R, Gente G. Micelles in mixtures of sodium dodecyl sulfate and a bola-form surfactant[J]. Langmuir,2006,22:6001-6009.
    [9] Viscardi G. Synthesis and surfacr and antimicrobial properties of novel catio nicsurfactant[J]. Chem Rev,2005,105:1401-1444.
    [10]Achouri M. E, Infante M. R. Some cationic gemini surfactants and their in hibitiveeffect on iron corrosion in hydrochloric acid[J]. Corrosion science,2001,43:19-35.
    [11]Oda R, Laguerre M. Molecular origanization of Gemini surfactants in cylind ricalMicelles: An infrared dichroism spectroscopy and molecular dynamics study[J]. La-ngmuir,2002,18:9659-9667.
    [12]Dominguez H, Rivera M. Molecular dynamics simulations of monolayers of surfa-ctants mixtures[J]. Langmuir,2005,21:7257-7262.
    [13]Xiao H. Y, Zhen Z. Molecular Dynamics Simulation of Anionic Surfactant at the wa-ter/n-Alkane Interface[J]. Acta Phys Chim Sin,2010,26:422-428.
    [14]Zana R. Dimeric and Oligomeric Surfactants Behavior at interfaces and in a queoussolution:a review[J]. Advances in Colloid and Interface Science,2002,97:205-253.
    [15]Rosen M. J, A New Generation of Surfactant[J]. Chemtech,1993,2:30-33.
    [16]Frederick C. B, Verona N. J. Washing Composition [P]. US:2524218,1950-10-03.
    [17]Bunton C. A, Robinson L, Schack J. Catalysis of nucleophilic substitutions by mice-lles of dicationic detergents[J]. J Org Chem,1971,36:2346-2350.
    [18]Deinega Y, Marochko L. G, Denisenko V. P. A New Cationic surfactants [J]. Kolloi-dn Zh,1974,36:649-653.
    [19]Okahara M, Masuyama A, Sumida Y. J. Jpn. Oil Chem. Soc,1988,37:716-718.
    [20]Zhu Y.P, Masuyama A, Okahara M. Preparation and surface active properties of am-phipathic compounds with two sulfate groups and two lipophilic alkyl chains. J.Am. Oil. Chem. Soc,1990,67:459-463.
    [21]ZhuY.P, Masuyama A, Okahara M. Preparation and surface active properties of newamphipathic compounds with two phosphate groups and two long-chain lipophilicalkyl groups[J]. J Am Oil. Chem. Soc,1991,68:268-271.
    [22]Zana R. Gemini(dimeric) Surfactant[J].Current Opinion in Colloid and surface Sci-ence,1996,1:566-571.
    [23]Menger F.M, Littalu C.A. Gemini Surfactants: Synthesis and Properties[J]. J Am C-hem Soc,1991,113:1451-1452.
    [24]Menger F.M, LittaluC.A. Gemini surfactant: A New Class of Self-Assembling Mol-ecules[J]. J Am Chem Soc,1993,115:10083-10090.
    [25]Menger F.M, Keiper S.K.Gemini Surfactants[J]. Angew Chem Int Ed,2000,39:1906-1920.
    [26]Milton J. Geminis: A New Generation of surfactants[J]. Chemtech,1993,3:30-33.
    [27]Milton J, Tracy D.J. Gemini surfactants[J]. J Surfact Deterg,1998,1:547-554.
    [28]Milton J. Gemini Surfactants[J]. Cosmeties Toiletrise,1998,113:49-51.
    [29]Milton J.Dynamic surface tension of aqueous surfactant solutions[J].J Colloid Inter-face Soi,1988,124:652-658.
    [30]Marcel D. Gemini surfactants[M],2004, New York, p.185-210.
    [31]曹亚峰.双烷基γ-双季铵盐的合成[J].表面活性剂工业,1993,4:22-23.
    [32]肖进新,罗妙宣,吴树森.孪连表面活性剂[J].自然杂志,1997,19:335-338.
    [33]王江,王万兴. Gemini两性表面活性剂合成及在浓乳剂中的应用[D].大连:大连理工大学硕士学位论文,1997:60-63.
    [34]赵国玺.表面活性剂科学的一些进展[J].物理化学学报,1997,13:760-768.
    [35]赵剑曦.新一代表面活性剂: Geminis[J].化学进展,1999,11:348-357.
    [36]Acharya D, Kunie H. Phase and rheological behavior of novel Gemini-type surfact-ant systems[J]. J Phys Chem B,2004,108,1790-1797.
    [37]Zhu S, Cheng F. Anionic Gemini surfactants: synthesis and aggregation proper tiesin aqueous solution[J]. Colloids Surf A,2006,281:35-39.
    [38]Wang Y. X, Han Y.C. Aggregation behaviors of aseries of anionic sulfonate geminisurfactants and their corresponding monomeric surfactant[J].J Colloid Interface Sci,2008,319:34-41.
    [39]Song B. L, Hu Y. F, Song Y. M. Alkyl chain length-dependent viscoelastic prope-rties in aqueous wormlike micellar solutions of anionic Gemini with a nazobenze-ne spacer[J]. J Colloid Interface Sci,2010,341:94-100.
    [40]Tan H, Xiao H.N. Synthesis and antimicrobial characterization of novel1-lysine Ge-mini surfactants pended with reactive groups[J]. Tetrahedron Lett,2008,49:17-59-1761.
    [41]Abe M, Kazuyuki T, Koike T. Polymerizable cationic Gemini surfactant. Langmuir,2006,22:8293-8297.
    [42]Wu D, Feng Y. J. Dilational rheological properties of gemini surfactant1,2-ethanebis(dimethyl dodecyl ammonium bromide) at air/water interface[J]. C olloids Surfa-ce A,2007,299:117-123.
    [43]Chen Q. B, Liang X. D, Wang S. L. Cationic Gemini surfactant at the air/water int-erface[J]. J Colloid Interface Sci,2007,314:651-658.
    [44]Milton J. Area per surfactant molecule values of gemini surfactants at the liquid–hydrophobic solid interface[J]. J Colloid Interface Sci,2005,289:560-565.
    [45]Zhou T. T, Yang H, Xu X. H. Synthesis, surface and aggregation properties of non-ionic polyethyleneoxide gemini surfactants[J]. Colloids Surf A,2008,317,339-343.
    [46]Fitzgerald P. A, Davey T. W. Micellar structure in Gemini nonionic surfactants fromsmall-angle neutron scattering[J]. Langmuir,2005,21:7121-7128.
    [47]杨青,曹丹红,方波.一种新型双联两性表面活性剂的合成与性能[J].高校化学工程学报.2009,23:110-115.
    [48]吴江,勇于芳,吴巍.氨基磺酸两性Gemini的制备及驱油性能[J].研发前沿.2009,17:25-27.
    [49]Ohno A, Kushiyama A, Kondo Y. Synthesis and properties of gemini-type hydrocar-bon fluorocarbon hybrid surfactants[J]. J Fluorine Chem,2008,129:577-582.
    [50]Fan H. M, Han F, Liu Z. Active control of surface properties and aggregati on beha-vior in amino acid-based Gemini surfactant systems[J]. J Colloid Interface Sci,2008,321:227-234.
    [51]Takamatsu Y, Lwata N, Tsubone K. Synthesis and aqueous solution properties ofnovel anionic heterogemini surfactants containing a phosphate headgro up[J]. J Coll-oid Interface Sci,2009,338:229-235.
    [52]Dong B, Li N, Zheng L. Q, Yu L, Moue T. Surface adsorption and micelle formatio-n of surface active ionic liquids in aqueous solution[J]. Langmuir,2007,23:4118-4128.
    [53]Omar A, Pires R. Synthesi and micellar properties of surface-active ionic liquids:1-Alkyl-3-methylimidazolium chlorides[J]. J Colloid Interface Sci,2007,313:296-304.
    [54]Dong B, Zhao X. Y, Zheng L. Q. Aggregation behavior of long-chain imid azoliumionic liquids in aqueous solution: Micellization and characterization of micelle mic-roenvironment[J].Colloids and Surfaces A,2008,317:666-672.
    [55]Li N, Liu J, Zhao X.Y. Complex formation of ionic liquid surfactant and β-cyclode-xtrin[J]. J Colloids Surfaces A: Physicochem.Eng. Aspects.2007,292:196-201.
    [56]Inoue T, Ebina H, Dong B, Zheng L.Q. Electrical conductivity study on micelleformation of long-chain imidazolium ionic liquids in aqueous solution[J]. J ColloidInterface Sci,2007,314:236-241.
    [57]Van R. Micelle formation of1-alkyl-3-methylimidazolium bromide ionic liquids inaqueous solution[J]. Colloids Surfaces A,2007,299:256-261.
    [58]Jun C, Ranke J. Micelle formation of imidazolium ionicliquids in aqueous solution[J]. Colloids Surface A,2008,316:278-284.
    [59]Qiu Z. M, Texter J. Ionic liquids in microemulsions[J]. Current Opinion in Colloid&Interface Science,2008,13:252-262.
    [60]Luczak J. Thermodynamics of micellization of imidazolium ionic liquids in aqueou-s solutions[J]. J Colloid Interface Sci,2009,4:1-6.
    [61]郭丽梅,武首香,姚培正.孪连表面活性剂在造纸工业中的应用前景[J].造纸化学品,2006,18:33-36.
    [62]Bunton C.A, Robinson L, Schack J. Catalysis of nucleophilic substitutions by mice-lles of dicationic detergents[J]. J Org Chem,1971,36:2346-2350.
    [63]Menger F.M. Synthesis and surface-active properties of a series of new cationicGemini surfactants[J]. J Physical Chem,1974,78:1387-1389.
    [64]Deinega Y.F. Synthesis surface properties and oil solubilization capacity of cationicGemini surfactants[J]. J Physical Chem,1974,76:649-652.
    [65]Parreira H.C. Surface activity properties at equilibrium of novel Gemini cationicsurfactants[J]. J Am Oil Chem Soc,1979,56:1015-1018.
    [66]Zana R, Talmon Y. Dependence of aggregate morphology on structure of dimericsurfactants[J]. Nature,1993,362:228-230.
    [67]Alami E, Beinert G, Marie P. Alkanediyl-α,ω-bis(dimethylalkylammonium bromide)Surfactants Behavior at the Air-Water Interface[J]. Langmuir,1993,9:1465-1467.
    [68]Frindi M, Michels B, Zana R. Alkanediyl-α,ω-bis(dimethylalkylammonium bromide) Surfactants Ultrasonic Absorption Studies of Amphiphile Exchange betweenMicelles and Bulk Phase in Aqueous Micellar Solutions[J]. Langmuir,1994,10:1140-1145.
    [69]Danino D, Talmon Y, Zana R. Alkanediyl-α,ω-bis(dimethylalkylammonium bromide) Surfactants (Dimeric Surfactants).5.Aggregation and Microstructure in AqueousSolutions[J]. Langmuir,1995,12:1448-1456.
    [70]Zana R, Levy H, Duportail G. Alkanediyl-α,ω-bis(dimethylalkylammonium bromide) Surfactants.7.Fluorescence Probing Studies of Micelle Micropolarity andMicroviscosity[J]. Langmuir,1997,13:5552-5557.
    [71]Menger F.M, Littau C.A. Gemini Surfactants with a Disaccharide Spacer[J]. J AmChem Soc,2001,123:875-885.
    [72]Pinazo A. Thermodynamics study of aqueous micellar solutions of biologicallyactive[J]. J Am Oil Chem Soc.1993,70:37-42.
    [73]曹亚峰.双烷基-双季铵盐的合成[J].表面活性剂工业,1993,4:22-23.
    [74]TaeSeong K, Toshiyuki K, Preparation of Bis-quaternary ammonium salts fromepichlorohydrin[J]. J Am Chem Soc,1996,73:67-71.
    [75]Menger F.M, Migulin V.A. Synthesis and properties of Multiarmed Geminis[J]. JOrg Chem,1999,64:8916-8921.
    [76]Menger F.M, Keiper J.S, Azov V. Gemini Surfactants with Acetylenic Spacers[J].Langmuir,2000,16:2062-2067.
    [77]Oystein R, Anita R, Liv L. Synthesis of Novel Diammonium Gemini surfactants[J].Molecules,2001,6:979-987.
    [78]池田功,崔正刚.新型Gemini阳离子表面活性剂的合成和性能(1)-从长链烷基二甲基胺及其盐酸盐和环氧氯丙烷合成双烷基双季铵盐阳离子[J].日用化学工业,2001,31:27-30.
    [79]池田功,崔正刚.新型Gemini阳离子表面活性剂的合成和性能(2)-从十二胺和环氧氯丙烷合成多烷基多季铵盐阳离子[J].日用化学工业,2001,31:36-38.
    [80]池田功,崔正刚.新型Gemini阳离子表面活性剂的合成和性能(3)-在烷基链中引入易水解基团促进生物降解[J].日用化学工业,2001,31:28-31.
    [81]陈功,黄鹏程.新型双联阳离子活性剂的合成与表征[J].石油化工,2002,31:194-197.
    [82]郭祥峰,陈华群,贾丽华.甘氨酸酯衍生物双子季铵盐表面活性剂[J].应用化学,2002,19:713-714.
    [83]王慧龙,刘靖. HCl介质中双季铵盐对碳钢的缓蚀作用[J].腐蚀科学与防腐技术,2002,2:100-102.
    [84]Massi L, Guittard F, Duccini Y. Antimicrobial properties of highly fluorinatedbis-ammonium salts[J]. International Journal of Antimicrobial Agents,2003,21:20-26.
    [85]Shimiu S, Omar A, Seoud E.Synthesis and Aggregation of Benzyl dimethyl ammonium Chloride Surfactants[J]. Langmuir,2003,19:238-243.
    [86]Quagliotto P, Viscardi G, Barolo C. Gemini pyridinium surfactants: synthesis andconductometric study of a novel class of amphiphiles[J]. J Org Chem,2003,68:7651-7660.
    [87]游毅,赵剑曦,姜蓉.氧乙烯联接链的季铵盐Gemini表面活性剂合成及胶团化特性[J].精细化工,2004,21:571-576.
    [88]Sharma V, Borse M. Synthesis characterization and SANS studies of novel alkaneduyl-α,ω-bis(hydroxyethylmethylhexadecylammoniumbromide)cationic gemini surfactants[J]. Journal of Colloid and Interface Science,2004,277:450-455.
    [89]Laschewshy A, Watterebled L. Synthesis and Properties of Cationic OligomericSurfactants[J]. Langmuir,2005,21:7170-7179.
    [90] Qiu L.G, Xie A.J, Shen Y.H. A novel triazole-based cationic gemini surfactant:synthesis and effect on corrosion inhibition of carbon steel in hydrochloric acid[J].Materials Chemistry and physics,2005,91:269-273.
    [91]郭祥峰,贾丽华.阳离子表面活性剂[M].北京:化学工业出版社,2002:162-165.
    [92] Kim T.S, Tatsumi T. Synthesis surface-active properties of13-bis-2-(acylamino)ethydimethylammonio-2-hydroxypropane dichloride[J]. J Oil Chem,1997,46:7-12.
    [93]胡延峰,郭祥峰,贾丽华.阳离子双子表面活性剂的应用研究进展[J].精细与专用化学品,2006,14:1-4.
    [94]苟小莉,王煊军,刘祥萱.含酰胺基双子表面活性剂的合成与性能[J].日用化学品科学,2007,30:13-19.
    [95] Misiak P, Mozrzymas A, Fisicaro E. Effect of a carboxylic group on the conformational properties of some Gemini surfactants[J]. J Solution Chem,2007,36:845-859.
    [96] Baltazar Q, Janaki C. Interfacial and micellar properties of imidazolium-basedmonocationic and dicationic ionic liquids. Colloids Surfaces A,2007,302:150-156.
    [97] Ding Y. S, Zhang J. Synthesis, characterization and properties of geminal imida-zolium ionic liquids. Colloids Surfaces A,2007,298:201-205.
    [98] Ao Q.M, Xu G.Y, Zhu Y. Y. Synthesis and properties of ionic liquid-type Geminiimidazolium surfactants[J]. J Colloid Interface Sci,2008,326:490-495.
    [99] Ao Q.M, Xu G.Y, Pang J.Y, Zhao T.T. Comparison of aggregation behaviorsbetween ionic liquid-type imidazolium Gemini surfactant [C12-4-C12im] Br2and its monomer [C12mim] Br on silicon wafer[J]. Langmuir,2009,25:9721-9727.
    [100] Andrew T, Gattmann A.T. Sulfoalkylated Imidazolines[P].美国专利: US3244724,1996-4-5.
    [101]马奉奇.温和表面活性剂-磺基琥珀酸酯[J].辽宁化工,1991,28:15-19.
    [102] Renouf P, Mioskowsi C, Lebeau L. Dimeric surfactants: first synthesis of anasymetrucal Gemini compound[J]. Tetrahedron Letters,1998,39:1357-1360.
    [103] Peresypkin V, Fredric M, Menger M. Zwitterionic Geminis: Coacervate Formationfrom a Single Organic Compound[J]. Organic Letters,1999,1,1347-1350.
    [104] Santanu B, Soma D. Comtrol over vesicular thermotropic and ion-transport properties as a function of intra-amphiphilic headgroup separation[J]. Langmuir,1999,15:3400-3410.
    [105] Hattorin N. Small-angle neutron scattering study and micellar modeol of theGemini (phenylene-dimethylene) bis(n-octylammonium) dibromide surfactant micelles in water[J]. Colloid Polym Sci,1999,277:361-371.
    [106] Peresypkin A.V, Menger F.M. Zwitterionic Geminis Coacervate Formation from aSingle Organi Compound[J]. Organic Letters,1999,1:1347-1350.
    [107] Menger F.M, Peresypkin A.V. A combinatorially-derived structural phase diagramfor42zwitterionic Geminis[J]. J Am Chem Soc,2001,123:5614-5615.
    [108] Menger F.M, Seredyuk V.A, Apkarian R.P. Colloidal Assemblies of BranchedGeminis Studies by Cryo-etch-HRSEM[J]. J Am Chem. Soc,2002,124:12408-12409.
    [109] Seredyuk V, Alami E, Nyden M. Micellization and adsorption properties of novelzwitterionic surfactants[J]. Langmuir,2001,17:5160-5165.
    [110] Alami E, Holmberg K. Heterogemini surfactants based on fatty acid synthesis andinterfacial properties[J]. Colloid and Interface Science,2001,239:230-240.
    [111] Alami E, Holmberg K, Eastoe J. Adsorption properties of novel gemini surfactantswith nonidentical head groups[J]. J Colloid Interface Sci,2002,247:447-456.
    [112] Kumar A, Alamie E, Holmberg K.V. Branched zwitterionic gemini surfactantsmicellization and interaction with ionic surfactants[J]. Colloid and surfaces A:Physicochem Eng Aspects,2003,228:197-207.
    [113]郑延成,韩冬,王红庄.两性孪联表面活性剂的合成及溶液性质[J].化学通报,2004,7:309-312.
    [114] Yoshimura T,Nyuta K,Esumi K. Zwitterionic Gemini Surfactants adsorption andMicellization[J]. Langmuir,2005,21:2682-2688.
    [115]于君明.新型两性Gemini磷酸盐表面活性剂的合成与性能[D].南京:南京工业大学,2005:16-21.
    [116] Yoshimura T, Ichinokawa T, Kaji M. Synthesis and surface-active properties ofsulfobetaine-type zwitterionic gemini surfactants[J]. Colloid Surf. A,2006,273:208-212.
    [117]郑延成.两性孪联表面活性剂的合成及其协同效应[J].石油化工高等学校学报,2006,19:11-18.
    [118]喻国敏,宋伟明,邓启刚等.磷酸酯两性表面活性剂的合成及性能[J].齐齐哈尔大学学报,2007,23:7-9.
    [119]蒋惠亮,单翠翠,方银军.新型Gemini两性表面活性剂的合成研究[J].化学试剂,2008,30:839-841.
    [120]王孝科,田软.新型两性双子表面活性剂的合成与表面活性研究[J].精细石油化工,2008,25:17-20.
    [121]岳泉,唐善法,朱洲等.油气开采用新型硫酸盐型Gemini表面活性剂[J].断块油气田,2008,15:52-53.
    [122] Alami E, Beinert G.Alkanediyl-αω-bis (Dimethyl Alkyl ammoniumbromide) Surfactants: Behavior at the Air/Water Interaface[J]. Langmuir,1993,9:1465-1467.
    [123] Danino D, Zana R. Alkanediyl-α,ω-bis(Dimethyl Alkyl ammoniumbromide) Surfactants (Dimeric Surfactants): Aggregation and Microstruture in Aqueous Solutions[J]. Langmuir,1995,11:1448-1456.
    [124] Camesano T.A, Nagarajan R. Micelle Fomration and CMC of Gemini Surfactants:A Thermodynamic Model[J]. Colloids and Surfaces A:Physicochem and Engineering Aspects,2000,167:165-177.
    [125] Chorro C, Chorro M, Dolladille S. Adsoprtion of dimeric Surfactants at the Aqueous Solution/Silica Interface[J]. J Colloid lnterface Sci,1998,199:169-176.
    [126] Soma D,Aswal V.K, Goyal P. Characterization of new Gemini surfactant micelleswith phosphate headgroups by SANS and fluorescence spectroscopy[J]. ChemicalPhysics Letters,1999,303:295-303.
    [127] Aswal V.K. Small-angle neutron scattering study of micellar structure of dimericsurfactants[J]. Physical Review E,1998,57:776-782.
    [128] Zana R, Frindi M. Alkanediyl-α,ω-bis (dimethyl alkyl ammoniumbromide) surfactants.4. Ultrasonic absorption studies of amphiphile exchange between micellesand bulk phase in aqueous micellar solution[J]. Langmuir,1994,10:1140-1145.
    [129] Duivenvoorde F.L, Feiters M.C, Gaast S.J. Synthesis and Properties of Di-n-dodecyl-α, ω-Alkyl Bisphosphate Surfactants[J]. Langmuir,1997,13:3737-3743.
    [130] Dam T, Engberts J.B, Karthauser J. Synthesis surface properties and oil solubilisation capacity of cationic Gemini surfactants[J]. Colloids and surfaces A,1996,118:41-49.
    [131]杜恣毅,游毅,姜蓉等.含对苯氧基联接链的羧酸盐Gemini表面活性剂合成及胶团化特性[J].高等学校化学学报,2003,24:2056-2059.
    [132] Zana R. Micellization of amphiphiles: selected aspects[J]. Colloid and Surfaces A,1997,123:27-35.
    [133] Alami E, Beinert G, Marie P. Alkanediyl-α,ω-bis (dimethyl alkyl ammonium bromide) Surfactants.3.Behavior at the Air-Water Interface[J]. Langmuir,1993,9:1465-1467.
    [134] Zhu Y.P, Masuyama A, Okahara M. Preparation and surface active properties ofnew amphipathic compounds with two phosphate groups and long-chain alkyl groups[J]. JAOCS,1991,68:268-271.
    [135] Zhu Y.P, Masuyama A, Kirito Y.I. Preparation and ptoperties of double-or triple-chain surfactants with two sulfontes groups[J]. JAOCS,1991,68:539-543.
    [136] Liu L, Rosen M. J. The interaction of some novel diquaternary gemini surfactantswith anionic surfactants[J]. J Colloid Interface Sci,1996,179:454-459.
    [137]谢红璐,聂丽,张强.阴离子双生表面活性剂的表面活性.四川大学学报(自然科学版),2003,40:749-752.
    [138] Karaborni S, Esselink K, Hilbers P.A.J. Simulating the self-assembly of gemini(dimeric) surfactants[J]. Science,1994,266:245-258.
    [139]李振泉,郭新利,王红艳.阴离子表面活性剂在油水界面聚集的分子动力学模拟[J].物理化学学报,2009,1:6-12.
    [140]陈聪,李维仲.甘油水溶液氢键特性的分子动力学模拟[J],物理化学学报,2009,25:507-512.
    [141]孙婷婷,蔡文生.环糊精二聚体的分子动力学模拟与自由能计算[J].中国科学B辑:化学,2008,4:301-307.
    [142]丁伟,刘国宇,于涛,曲广淼,程杰成,吴军政.烷基芳基磺酸盐的分子动力学模拟与自由能微扰计算[J].物理化学学报,2010,26:727-734.
    [143]刘国宇,顾大明,刘海燕,丁伟,李钟,程杰成.自由能微扰法研究系列烷基芳基磺酸盐的焓熵补偿现象[J].物理化学学报,2011,27:001-009.
    [144]于涛,李钟,丁伟.系列烷基芳基磺酸盐在水溶液中的焓熵补偿现象[J].物理化学学报,2010,26:638-642.
    [145]于涛,李钟,丁伟.十四烷基芳基磺酸盐形成的分子有序组合体[J].物理化学学报,2010,26:317-323.
    [146] Hanke C. G, Price S. L. Intermolecular potentials for simulations of liquid imidazolium salts[J]. Mol Phys,2001,99:801-809.
    [147] Margulis C. J. Computational study of imidazolium-based ionic solvents with alkyl substituents of different lengths[J]. Mol phys,2004,102:829-838.
    [148] Lopes J. N.C. Nonpolar, polar and associating solutes in ionic liquids[J]. J PhysChem B,2006,110:16816-16818.
    [149] Bini R, Chiappe C, Duce C. Ionic liquids: prediction of their melting points by arecursive neural network model[J]. Green Chem,2008,10:314-317.
    [150] Jayaraman S, Maginn E. J. Computing the melting point and thermodynamicstability of the orthorhombic and monoclinic crystalline polymorphs of the ionicliquid1-n-butyl-3-methylimidazolium chloride[J]. J Chem Phys,2007,127:214504-214517.
    [151] Bai H.P, Lu X.X. Hydrogen peroxide biosensor based on electro deposition ofzinc oxide nanoflowers onto carbon nanotubes film electrode[J]. Chin Chem lett,2008,19:314-318.
    [152]冯海军,周健,钱宇.离子液体[emim]Br熔点的分子动力学模拟[J].高等学校化学学报,2010,3:542-547.
    [153] Yoshimura T, Ichinokawa T, Kaji M. Synthesis and surface-active properties ofsulfobetaine-type zwitterionic gemini surfactants. Colloids and Surfaces A: Phy-sicochem Eng Aspects.2006,273:208-212.
    [154] Debye P, Anacker E.W. Micelle shape from dissymmetry measurements[J]. J.Chem. Phys.1951,55:644-655.
    [155] Bruce C.D,Berkowitz M.L, Petera L. Molecular dynamics simulation of sodiumdodecyl sulfate micelle in water: Micellar structural characteristics and counteriondistribution[J]. J. Chem. Phys. B,2002,106:3788-3793.
    [156] Smit B. Effects of chain length of surfactants on the interfacial tension: moleculardynamics simulations and experiments[J]. J. Phys. Chem.1990,94:6933-6935.
    [157] Badden M, Burgard M. TBP at the water-oil interface: the effect of TBP concentration and water acidity investigated by molecular dynamics simulations[J]. J.Phys. Chem. B.2001,105:11131-11141.
    [158] Urbina G, Reif I. Simple theoretical framework for a systematic molecular dynamics study of the interfacial properties of oil/water systems in the presenceofsurfactant molecules[J]. Colloids. Surf. A.1996,106:175-190.
    [159] Kyoko W, Ferrario M. Molecular Dynamics Study of a Sodium Octanoate Micellein Aqueous Solution[J]. J. Chem. Phys.,1988,92:819-821.
    [160] Maiti P.K, Kremer K. Cross-linked of micelles by Gemini surfactants[J]. Langmu-ir,2000,16:3784-3790.
    [161] Menger F.M, Eliseev A.V. Cross-linked micelles[J]. Langmuir,1995,11:1855-1857.
    [162]刘梅塘,浦敏锋,马鸿文.阴离子Gemini表面活性剂在油/水界面行为的分子动力学模拟[J].高等学校化学学报.2012,6:1319-1325.
    [163] Xu Y, Feng J, Shang Y.Z, Liu H.L. Molecular Dynamics Simulation for the Effectof Chain Length of Spacer and Tail of Cationic Gemini Surfactant on the Complexwith Anionic Polyelectrolyte[J]. Chin. J.Chem. Eng.2007,15:560-565.
    [164] Hammett P. The effect of structure upon the reactions of organic compound-benzene derivatives[J]. J.Am.Chem.Soc,1937,59:96-103.
    [165] Taft W. Polar and steric substituent constants for aliphatic and benzoate groupsfrom rates of esterification and hydrolysis of esters[J]. J.Am.Chem.Soc.1952,74:3120-3128.
    [166] Jiang X.K. Establishment and successful application of the σjj scale of spindelocalization substituent constants[J]. Acc. Chem. Res.1997,30:283-287.
    [167] Schonherr H, Rozkiewica D.L, Vancso G. J. Atomic Force Microscopy AssistedImmobilization of Lipid Vesicles[J]. Langmuir,2004,20:7308-7312.
    [168] Kepczynski M, Lewandowska J, Romek M, Zapotoczny S, Ganachaud F, Nowakowska M. Silicone nanocapsules templated inside the membranes of catanionicvesicles[J]. Langmuir,2007,23:7314-7320.
    [169] Morigaki K, Schonherr H, Frank C.W, Knoll W. Photolithographic Polymerizationof Diacetylene-Containing Phospholipid Bilayers Studied by Multimode AtomicForce Microscopy[J]. Langmuir,2003,19:6994-7002.
    [170] Chowdhary J, Ladanyi B.M. Molecular Dynamics Simulation of Aerosol-OT Reverse Micelles[J]. J.Phys.Chem.B,2009,113:15029-15039.
    [171] Jorge M. Molecular Dynamics Simulation of Self-assembly of n-Decyltrimethy-lammonium Bromide Micelles[J]. Langmuir,2008,24:5714-5725.
    [172] Miller C.A, Abbott N.L. Surface activity of amphiphilic helical beta-peptides frommolecular dynamics simulation[J]. Langmuir,2009,25:2811-2823.
    [173]宋其圣,郭新立,苑世领,刘成卜.十二烷基苯磺酸钠在SiO2表面聚集的分子动力学模拟[J].物理化学学报,2009,25:1503-1058.
    [174] Gadre S. R, Pingale S. S. An electrostatic investigation: how polar are ionic surfactant hydrocarbon tails[J], Chem. Commun.1996,10:595-596.
    [175] Yan P. Polymer–surfactant interaction: differences between alkyl sulfate and alkylsulfonate[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects.2004,244:39-44.
    [176] Fang X.Y, Yang X, et al. Theoretical studies on sodium dodecyl sulfonate ofsolvent effect[J]. Computers and applied chemistry,2010,27:374-378.
    [177] Yan X.C. Study on characters of electronic structures for anionic surfactants withdifferent hydrophobic bases in gas and solvent using onsager model and ab initiomethod[J]. Acta. Chim. Sinica.2004,62:1948-1950.
    [178] Wang Z.W. Investigation of adsorption of surfactant at the air-water interface withquantum chemistry method[J]. Chinese Science Bulletin.2007,52:1451-1455.
    [179] Dharaiya N, Patriati A, Kuperkar K. Spectral and scattering microstructuralinvestigation in cationic gemini surfactants (12-s-12) induced by p-toluidine[J].Colloids and surfaces A: Physicochemical and Engineering Aspect.2012,396:1-7.
    [180] Button C. A, Robinson L, Schaak J, et al. Catalysis of nucleophilic substitution bymicelles of dicationic detegrents[J]. J Org Chem,1971,36:2346-2350.
    [181] Menger F.M, Littau C. A. Gemini surfactants: synthesis and properties[J]. J AmChem Soc,1991,113:1451-1452.
    [182] Zana R, Benrraou M, Bueff R. Alkanediyl-α, ω-bis(dimethylalkyl ammoniumbromide) surfactants.1. Effect of the spacer chain length on the critical micelleconcentration and micelle ionization degree[J]. Langmuir,1991,7:1072-1075.
    [183]郭睿,张春生,包亮.新型咪唑啉缓蚀剂的合成与应用[J].应用化学,25:494-498.
    [184]石顺存,等.咪唑啉磷酰胺盐抗高温酸化缓蚀剂的制备与性能评价[J].钻采工艺,2007,30:141-145.
    [185]徐群,等.非对称双子季铵盐阳离子表面活性剂的合成及性能研究[J].日用化学工业,2004,34:280-282.
    [186]张莎莎,等.季铵盐双子表面活性剂合成及性能研究[J].绿色科技,2011,1:176-179.
    [187] Djukic B, Lemaire M.T. Hybird spin-crossover conductor exhibiting unusual variable temperature electrical conductivity[J]. Inorg. Chem.2009,48:10489-10491.
    [188] Zana R. Dimeric (Gemini) Surfactants: Effect of the spacer group on the association behavior in aqueous solution[J]. Colloid Interface Sci.2002,2:203-220.
    [189] Akbar J, Tavakoli N. Mixed aggregate formation in Gemini surfactant/1,2-dialkyl-sn-glycero-3-phosphoethanolamine systems[J]. J. Colloid Interface Science,2012,377:237-243.
    [190] Singh T.B. Micellization behavior of the14-2-14gemini surfactant with someconventional surfactants at different temperatures[J]. Journal of surfactants anddetergents.2011,14:235-244.
    [191] Kumar R. Analysis of interfacial and micellar behavior of sodium dioctyl sulphosuccinate salt (AOT) with zwitterionic surfactants in aqueous media[J]. J.Colloid and Interface Science.2011,363:275-283.
    [192] Bhattacharya S, Haldar J. Thermodynamics of micellization of multiheadedsingle-chain cationic surfactants[J]. Langmuir,2004,20:7940-7947.
    [193] Zana R. Critical Micellization Concentration of Surfactants in Aqueous Solutionand Free Energy of Micellization[J]. Langmuir.1996,12:1208-1211.
    [194] Schuettelkopf A.W. PRODRG: a tool for high-throughput crystallography ofprotein-ligandcomplexes[J]. Acta Cryst.2004,60:1355-1363.
    [195] Berk H. Free energy calculations.2th ed. Espoo: Gromacs Workshop,2007:27-48.
    [196] Hoover W. G. Canonical dynamics: equilibrium phase-space distributions[J]. Phys.Rev. A,1985,31:1695-1697.
    [197] Essman U, Perera L, Berkowitz M.L. A Smooth Particle Mesh Ewald Method[J]. J.Chem. Phys.1995,103:8577-8593.
    [198] Lopes J.N.C, Deschamps J. Modeling Ionic Liquids Using a Systematic All-AtomForce Field[J]. J Phys Chem. B.2004,108:2038-2047.
    [199]吕勇军,魏炳波.过冷态水表面性质的分子动力学研究[J].中国科学G辑,2006,36:606-615.
    [200] Xiao H.Y, Zhen Z, Sun H.Q. Molecular dynamics simulation of anionic surfactantat the water/n-alkane interface[J]. Acta Phys-Chim Sin,2010,26:422-428
    [201] Shelley J.C. Computer simulation of surfactant solutions[J]. Curr. Opin. Colloidinterface Sci.2000,5:101-110.
    [202] Kollman K. Free energy calculations: Applications to chemical and biochemicalphenomena[J]. Chem Rev,1993,93:2395-2417.
    [203]丁厚强,蔡文生,邵学广. α-环糊精对氨基酸的手性识别[J].计算机与应用化学,2006,7:584~585.
    [204] Badea I, Wetting S, Verrall R, Foldvari M. Topical non-invasive gene delivery using gemini nanoparticles in interferon-gamma-deficient mice[J]. J. Pharmacol. Bio-pharmacol.2007,65:414-422.
    [205] Han S.H, Hou W.G, Xu J, Huang X.R. Study of the Pm3n spacer group of cubicmesoporous silica[J]. Chem. Phys. Chem.2006,7:394-399.
    [206] Paul B.K, Motra R. Water solubilization capacity of mixed reverse micelles:effect of surfactant component, the nature of oil, and electrolyte concentrattion[J].J. Colloid Interface Sci.2005,288:261-279.
    [207] Ao M.Q, Xu G.Y, Zhu Y.Y, Bai Y. Synthesis and properties of ionic liquid-typeGemini imidazolium surfactants[J]. J. Colloid Interface Sci.2008,326:490-495.
    [208]赵剑曦,游毅,朱永平,杨齐愉. C12-s-C12·2Br与低碳醇混合水溶液胶团化行为的温度效应和焓/熵补偿.高等学校化学学报,2003,5:845-849.
    [209] Khurana E, Steven O, Michael L. Gemini surfactants at the air/water interface: afully atomistic molecular dynamics study[J]. J. Phys. Chem. B.2006,110:22136-22142.
    [210] Zaera F. Probing liquid/solid interfaces at the molecular level[J]. Chem. Rev.2012,112:2920-2986.
    [211] Bera A, Ojha K. Water solubilization capacity, interfacial compositions and therm-odynamic parameters of anionic and cationic microemulsions[J].2012,404:70-77.
    [212]赖国华,周仁贤,韩晓祥.焓熵补偿的热力学解释[J].化学通报,2005,12:928-934.
    [213] Ranatunga R, Vitha M.F, Carr P.W. Mechanistic implications of the equality ofcompensation temperatures in chromatography[J]. J. Chromatog.A.2002,946:47-49.
    [214] Sikiric M, Primozic I, Talmon Y, Filipovic N. Effect of the spacer length on theassociation and adsorption behavior of dissymmetric gemini surfactants[J]. J.Colloid Interface Sci.2005,281:473-481.
    [215] Khurana E, Nielsen S.O, Klein M.L. Gemini surfactants at the air/water interface:a fully atomistic molecular dynamics study[J]. J. Phys. Chem. B.2006,110:22136-22142.
    [216] Kumar B, Tikariha D. Effect of short chain length alcohols on micellization beha-veor of cationic gemini and monomeric surfactants[J]. J. Molecular Liquids,2012,172:81-87.
    [217] Graziano G. The hydrophobic effect and its role in cold denaturation[J]. Cryo-biology.2010,60:354-355.
    [218] Carmela B, Antonio C. Molecular recongnition of organic anions by awater-soluble calix[4]arene: Evidence for enthalpy-entropy compensation[J]. Thermochimica Acta.2012,530:107-115.
    [219] Xue C.L, Zhu H.L. Synthesis and properties of novel alkylbetaine zwitterionicgemini surfactants derived from cyanuric chloride[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2011,375:141-146
    [220] Singh T.B. Micellization behavior of the14-2-14gemini surfactant with someconventional surfactants at different temperatures[J]. Journal of surfactants anddetergents.2011,14:235-244.
    [221] Yoshimura T. Synthesis and surface-active properties of sulfobetaine-typezwitterionic Gemini surfactants[J]. Colloids Surf. A: Physicochem. Eng. Aspects.2006,273:208-212.
    [222] Kumar R. Analysis of interfacial and micellar behavior of sodium dioctyl sulpho-succinate salt (AOT) with zwitterionic surfactants in aqueous media[J]. J. Colloidand Interface Science.2011,363:275-283.
    [223] Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initioparametrization of density functional dispersion correction (DFT-D) for the94elements H-Pu[J]. J. Chem. Phys.2010,132:154104-154122.
    [224] Frisch M.J, Schlegel H.B.et al. Gaussian03; Gaussian, inc:Wallingford, CT,2004.
    [225] Popelier P.L.A, Kosov D.S. MORPHY01, a program written by Popelier P.L.A.UMIST, Manchester,2000:1-8.
    [226] Clough S.A, Beers Y. Dipole Moment of Water from Stark Measurements of H2O,HDO, and D2O[J]. J. Chem. Phys.1973,59:2254-2259.
    [227] Verhoeven J, Dymanus A. Magnetic Properties and Molecular Quadrupole Tensorof the Water Molecule by Beam[J]. J. Chem. Phys.1970,52:3222-3234.
    [228] Pingale S.S. An electronic investigation: how polar are the surfactant hydrocarbontails[J]. Chem.Commun.1996,5:595-596.
    [229] Hinnosuke O, Taguma T, Kuroki S. A study of hydrogen-bonding of amino acids,peptides and polypeptides in the solid state as a function of temperature by static1H-NMR method[J]. Journal of Molecular Structure,2002,602:49-58.
    [230] Li X, Yan X.C, Liu Y, et al. Studies on thermolytic mechanism of serine. ChineseJournal of chemical physics[J].2003,16:232-236.
    [231] Tang M.S, Li X.F. Quantum chemical study on hydrogen bonds of crude aminoacids[J]. Journal of Zhengzhou University.2004,36:59-63.
    [232] Stone A.J, Dullweber A. et al. ORIENT version4.6. University of Cambridge,2011.
    [233] Qian P. Ab initio investigation of water clusters (H2O)n(n=2-34)[J]. Internationaljournal of quantum chemistry.2010,110:1923-1937.
    [234] Rafat M, Popelier P.L.A. Atom-atom partitioning of total (super) molecular energy:the hidden terms of classical force fields[J]. J.Comp.Chem.2007,28:292-301.
    [235] Akbar J, Tavakoli N. Mixed aggregate formation in Gemini surfactant/1,2-dialkyl-sn-glycero-3-phosphoethanolamine systems[J]. J. Colloid Interface Science,2012,377:237-243.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700