彭泽鲫雌核发育的细胞遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
彭泽鲫(Carassius auratus var pengze)是由江西省水产研究所和九江市水产研究所选育成功的一种优质养殖鱼类,已推广到全国各地养殖。对于其生殖、遗传方式的研究已有一些报道,但分歧很大,未形成一致的观点和结论。本文主要从细胞遗传学等方面分析彭泽鲫的几个重要生物学特征。包括:
     1.彭泽鲫染色体数目及倍性的细胞遗传学
     采用活体肾细胞直接制片法制备染色体标本。对彭泽鲫肾细胞染色体的数目统计分析表明,彭泽鲫染色体组是由150条基本染色体和若干条小的超数染色体组成。染色体组型按着丝粒位置150条基本染色体可分为四组,每组中同源染色体的组数与已知二倍体鲫鱼的同源染色体组数一致。每个染色体小组均由三条同源染色体组成。在亚端部着丝粒染色体组(st)的第三号染色体组的三条同源染色体的短臂上均有非常明显的随体,可作为彭泽鲫是三倍体的细胞遗传学证据。
     对彭泽鲫肌肉样品与对照组二倍体红鲫肌肉样品进行DNA相对含量的检测,彭泽鲫细胞的DNA相对含量是二倍体红鲫细胞DNA相对含量的1.55倍,与染色体实验结果一致。
     这些研究结果表明,彭泽鲫是一种三倍体鲫鱼,其染色体数目为3n=150+,核型公式为3n=33m+51sm+33st+33t。
     2.彭泽鲫雌核发育的细胞学
     采用组织超薄切片法,对彭泽鲫(♀)×彭泽鲫(♂)的受精细胞学观察,彭泽鲫受精后,具有与两性生殖鱼类相同的精子入卵过程和极体排出,但精子入卵后精核始终不解凝,也不与雌性原核融合,是典型的雌核发育鱼类的受精细胞学特征。采用精巢细胞直接制片法对精母细胞减数分裂中期染色体观察表明彭泽鲫精母细胞在进行减数分裂时未发生同源染色体配对,全部为单价体形式,减
    
    数分裂中期染色体数目统计结果与彭泽卿肾细胞染色体数目统计结
    果相同,其精子形成过程中第一次减数分裂异常;对精子与体细胞
    进行DNA相对含量的检测,精子DNA含量与体细胞DNA含量比为
    2.218:1,精子DNA含量发生了减半。以上实验结果说明彭泽螂为
    雌核发育鱼类,其精卵形成过程减数第一次分裂异常。
    3.彭泽卿与红卿同工酶比较
     采用聚丙烯酞胺梯度凝胶垂直电泳法,对雌核发育三倍体彭泽
    螂和同属的两性生殖二倍体红螂的肝脏、肾脏、肌肉和尾鳍四种组
    织的乳酸脱氢酶、苹果酸脱氢酶及酷酶进行比较研究。结果如下:
     彭泽螂与红螂乳酸脱氢酶同工酶四种组织都共表达17条酶带,
    但在肌肉组织中彭泽螂比红螂多表达4条酶带,即:LDH一、LDH一2、
    LDH一3、LDH一4。
     彭泽螂与红螂苹果酸脱氢酶同工酶在四种组织中除肌肉组织
    外,都只有细胞质型苹果酸脱氢酶同工酶的三条酶带表达,即
    s一MDH一1、s一MDH一2、s一MDH一。肌肉组织中,两种鱼不但有细胞质型
    苹果酸脱氢酶同工酶的表达,还有线粒体型苹果酸脱氢酶同工酶的
    表达,且具有多态性。
     酷酶同工酶在所检测的10尾彭泽螂和4尾红娜的四种组织各有
    7条酶带。EST一8只在红鲡肝脏中表达,EST一只在彭泽螂肝脏中表
    达,但在所检测的10个彭泽螂个体中只有9个个体表达。EST一6在
    彭泽螂尾鳍的表达明显弱于红螂,只有微弱的表达。
     尾鳍EST一6、肝脏EST一2、EST一8及肌肉LDH一1、LDH一2、LDH一3、
    LDH一4酶带的有无或强弱可作为彭泽螂区别于红卿的特征性酶带。
    三种同工酶的表达均有明显的组织特异性。在三种同工酶中未发现
    雌雄差异表达的酶带。未发现与二倍体、三倍体倍性相关的酶带。
As a kind of high quality fish, aquatic science research institute in Jiangxi Province and aquatic science research institute in Jiujiang have bred Carassius auturas var pengze. It has been cultivated in nation-wide. There were some reports about its ways of reproduction and heredity, but these results are no in agreement with each other.
    Several important biological characteristics such as fertilization cytology and hereditary property of Carassius auturas varpengzehad been analyzed in this paper. The results are summarized as follows:
    1. Cytogenesis of chromosome number and ploidy of carassius auturas var pengze
    Chromosomes preparation of Carassius auratus var pengze was made from kidney cells in vivo. Statistics analysis of chromosome number of carassius auturas var pengze show the metaphases of which chromosome number is over 150 have some small chromosomes.
    Analysis of karyotype shows that the 150 basic chromosomes can be divided into four sections according to the position of centromere. The number of homologous chromosome groups in each section is as much as the number of homologous chromosome pairs in diploid species of the Carassius auratus. Each homologous chromosome group has three homologous chromosomes.
    In subtelocentric chromosome section, all of the three chromosomes of the third homologous chromosome group have satellites at their short arms. Obviously, these three satellite homologous chromosomes can be regarded as
    
    
    cytogenetic characteristic of triploid.
    DNA relative content of muscle cells of Carassius auratus var pengze and Carassius auratus Far red were measured through flow cytometer. DNA relative content of muscle cells of Carassius auratus var pengze revealed that the ratio of DNA relative content of Carassius auratus var pengze and that of diploid Carassius auratus varred is 1. 55 : 1. It is consistent with the analysis result of chromosome. In those metaphases which the chromosome number is over 150, there is unstable number of little chromosomes that can not be classified into the four sections. Therefore, these little chromosomes can be considered supernumerary chromosomes.
    These results suggest that carassius auratus var pengze is a triploid Carassius auratus. Chromosome number is 3n=150+. Statistical analysis of chromosome number of kidney cell shows that chromosome set of Carassius auratus var pengze consists of 150 basic chromosomes and 0 to several little supernumerary chromosomes. Karyo formula is 3n=33m+51sm+33st+33t.
    2. gynogenetic Cytology of carassius auratus var pengze
    With the method of histological section, it was observed that fertilization cytology of Carassius auratus var pengze
    (♀) × Carassius auratus var pengze ( ♂) . After inseminated, it was observed that a sperm entered egg through micropyle and a polarbody was extruded. But after a sperm entered the egg, spermatozoon nucleus beside female pronucleus was condensed and cannot fuse with female pronucleus. The result shows that Carassius auratus var pengze is gynogenetic reproductive modes. There were no pairs of homologous chromosome in meiosis
    I metaphase of spermatocyte of Carassius auratus var pengze. It shows the unusual meiosis I during spermatogenesis. The
    
    
    ratio of DNA relative content of tail fin cell and sperm of Carassius auratus var pengze is 2. 218:1, it reveals that DNA relative content of sperm is half of somatic cell. During spermatogenesis, meiosis I is abnormal, this section preliminarily analyzed the mode of the stability of chromosome ploidy of Carassius auratus var pengze and the different mechanism of ogenesis and spermatogenesis in order to better understand the reproductive modes and formation mechanism of triploid of Carassius auratus var pengze.
    3. Isozyme comparison of carassius auratus var pengze and carassius auturas var red
    With the method of vertical polyacrylamide gradient gel electrophoresis (PAGE), to comparison study the lactate dehydrogenase (LDH), malate dehydrogenase (MDH) and esterase (EST) in muscle, kidney, liver and tail fins of gynogenetic c
引文
[1] Cuellar, O., Parthenogentic lizards. Science,1978, 201 (4360): 1155.
    [2] Naeves, W. B. and Gerald, P. S. Lactate dehydrogenase isozymes in parthenogenetic teiid lizards (Cnemidophorus). Science, 1968, 160(3831):1004-1005.
    [3] Lsen, M. W., Nstural parthenogenesis turkey eggs. Science, 1954, 120(3118). 545-546.
    [4] Poole, N. K., The meiotic chromosome of parthenogenetic and normal turkey. J. Exp. Zool., 1959, 160(2): 155-170.
    [5] UzzelL, T.M. Biochemical evidence for the hybrids origin of the parthenogenetic species of the Lacerta saxicoal complex (Sauria: Lacrtidae), with a discussion of some ecological and evolutionary implications. Copeia, 1975, (2): 204-222.
    [6] Miller, R. R. All-female studies of the teleost fishes of the genus Poeciliopsis. Science, 1959, 130(3389): 1656-1657.
    [7] Anthony, A. E. and Mosier, D. T. Menidia clarkhubbsi (Piscesi Antherinidae) an all-female species. Copeia, 1982, (3): 533-540.
    [8] Schultz, R. J. Gynogenesis and triploid in the viviprious fish Poeciliopsis. Science, 1967, 157(3797): 1564-1567.
    [9] Cimino, M. C. Egg production, polyploidzation, and evolution in diploid all-female fish of the genus Poeciliopsis. Evolution, 1972, 26:294-306.
    [10] Scheultz, R. J. Reproductive mechanism of unisexual and bisexual strains of the viviparous fish Poeciliopsis. Evolution, 1961, 15:302-325.
    [11] 葛伟,蒋一硅.鱼类的天然雌核发育.水生生物学报,1989,
    
    13(3):274~286.
    [12] 蒋一硅等.鲫鱼的人工和天然雌核发育.水生生物学集刊,1982,7(4):471-476.
    [13] 陈宏溪.鱼类的雌核生殖.鱼类学论文集,1983:135-146.
    [14] 蒋一硅,粱绍昌,陈本德等.异源精子在银鲫雌核发育子代中的生物学效应.水生生物学集刊,1983,8(1):1—13.
    [15] Macgregor, H. C., AND Uzzell, T. M. Gynoenesis in salamanders related to Ambystoma Jefferson anum. Science, 1964, 143(3610): 1043-1045.
    [16] Hubbs, C. L. and Hubbs, L.C. Apparent parthenogenesis in nature, in form of fish of hybrid origin. Science, 1932, 76(1983); 628-630.
    [17] Hubbs, C. L. and Hubbs, L. C. Breeding experiments with the invariably female, strictly matroclinous fish, Molliemisis Formosa. Science, 1946, 31 (2): 218.
    [18] Lieder, U. Mannchenmanged and naturtiliche Parthenogenese beisilberkarausche carassius auratus gibelio (Bloch) (Verttebrate, Pisces), Naturwissenchaften, 1955, 142(21): 590.
    [19] Cimino, M. C. Karyotype and erythrocyte size of some diploid and triploid fishes of the genus Poeciliopsis. J. Fish. Res. B. Canada, 1973, 30(11): 1736-1737.
    [20] Kobayasi, H., Kawashima, Y. and Takeuchi, N. Comparative chromosomes studies in the genus Carassius, especially with a finding of polyploidy in the ginbuna (Carassius auratus langsdorfii). Jnp. J. Ichthy, 1970, 17(3): 152-160.
    [21] Kobayasi, H., Kazue Nakans and Mosizumi Nakamusa. On the hybrid, 4n ginbuna(C, auratus langsdorfii) Ⅹ kinbuna (C. auratus subsp. ) and their chromosome. Bull. Jnp. Society of Sci. Fish, 1977, 43 (1) :31-37.
    [22] Kobayasi, H. Origin of the polyploid funa(3). Zool.
    
    Mag.,1981,90(4):619.
    [23] 范兆廷,刘青华等.黑龙江水产研究所研究报告.1983.
    [24] 昝瑞光.滇池两种类型鲫鱼的性染色体和C-带核型研究.遗传学报,1982,9:32-59.
    [25] 杨兴棋译(小林弘著).鲫鱼的分类以及银鲫中所见到的雌核发育的细胞学研究.淡水渔业,1981,1:36-40.
    [26] Romasov, D. D. Dokl. Akad. Nauk. Biol. Sic, 1964, 157(1-6): 503-566.
    [27] Kotsuaki Kohima. Gametogensis of the polyploidy ginbuna, (Carassius auratus langsdorfii) . Zool Magazine, 1983, 92 (4): 510.
    [28] Cimino, M. C. Meiosis in triploid all-female of fish (Poeciliopsis, Poeciliidae). Science(Wash.), 1972, 175 (4029): 1484-1486.
    [29] Schultz. R. J. Special adaptive problems associated with unisexual fishes. Am. Zool., 1971, 11(2): 351-360.
    [30] Schultz. R. J. Role of polyploid in evolution of fishes. International Conference on Polyploid Biological Relavence. St Louis, 1979, 313-340.
    [31] Cherfas N.B. Nature triploid in female of the goldfish (Carassius auturas gibelio). Genetica, 1966, 12(5): 16-24.
    [32] 小林弘.分类,雌原发生细胞遗传学的检讨[J],遗传,1978,3(7):28-38.
    [33] 丁军,蒋一硅.雌核发育银鲫和两性融合发育红鲤卵母细胞成熟的细胞学比较研究.水生生物学报,1991,15(2):98-102.
    [34] 周嘉申,沈俊宝,刘明华.黑龙江一种银鲫(方正银鲫)雌核发育的细胞学初步研究.动物学报,1983,29(1):11—16.
    [35] 俞豪祥.银鲫雌核发育的细胞学观察.水生生物学集刊,1982,7(4):481-487.
    [36] 崔悦礼,昝瑞光.滇池高背型鲫鱼雌核发育的研究.云南大学学报(自然科学版:生物专辑),1981,(2):74-79.
    
    
    [37] 葛伟,蒋一硅.雌核发育银鲫卵抑制异源精子原核化的作用模式初探.水生生物学报,1985,9(3):203-208.
    [38] 丁军,单仕新,葛伟等.银鲫抑制异源精子核发育的初级控制作用模式研究[J].中国科学B辑,1991,(11):1160-1165.
    [39] 桂建芳等.静水压休克诱导水晶彩鲫三倍体和四倍体的细胞学机理初探.水生生物学报,1995,22(增刊):16-25.
    [40] 孙景春.我国水生动物雌核发育研究的进展.水产学杂志,2000,13(2):85—92.
    [41] Berrios, M. and Bedford, J. M. Oocyte maturation aberrant postfusion responses of the rabbit primary oocyte to penetrating spermatozo, J. Cell Sci, 1979,39:1-12.
    [42] Balakier, H., Andrzej, K. and Tarkowski. The role of germinal vesiocle karyoplasms in the development of male pronuolceus in the mouse. Exp. Cell Rea ,1980, 128:79-85.
    [43] David, B., Emily, J. Blake and Debrta J. Wolgemuth Chromatin decondensation and DNAsynthesis in human sperm actived in vivo by using Xenopus laevia egg extracts, J. Exp. Zool., 1987,242:215-231.
    [44] Da-yuan, C. and Frank J. LongoSperm nucleus dispersion coordinate with meiotic maturation in fertilized Spisula solidissima eggs. Dev. Biol., 1983, 99:217-224.
    [45] Hirai, S. Cytoplasmic maturity revealed by the structured changes in incorporated spermatozoon during the course of starfish oocyte maturation. Dev. Growth Differ, 1981, 23:465-478.
    [46] Lohka, M. T. and Masui, Y. Formation in vitro sperm pronuolei and mitotic chromosomes induced by amphibian ooplasmic components. Science, 1983,220:719-721.
    [47] Schuetz, A. W. and Frank, J. Longo Hormone-cytoplasmic interaction controlling sperm nuclear decondensation and male pronuclear development in starfish oocytes.
    
    Exp. Zool., 1981,215:107-111.
    [48] 丁军,蒋一硅.两性发育型鱼类卵母细胞成熟过程中促精核发育现象的研究.水生生物学报,1991,15(4):289-293.
    [49] Yamashita, M. Electron microscopic analysis of the sperm nuclear changes in meiosis inhibited eggs of the Brittle-srar (Amphphoilis kochii).J. Exp. Zool.,1985, 235:105-117.
    [50] Moore, W. S. Ahistocompatibility analysis of inheritance in the unisexual fish Poeciliopsis 2 monacha-lucida. Copeia, 1977,(2): 213-227.
    [51] Vrijenhock, R. C. and Schultz, R. J. Evolution of a triploid unisexual fish (Poeciliopsis, Poeciliidae). Evolution ,1974, 28:306-319.
    [52] 吴清江,叶玉珍,陈荣德.具有天然雌核发育特性的人工复合三倍体鲤鱼.自然科学进展,1997,7(3):340-344.
    [53] Schultz, R. J. Unisexual fish: laboratory synthesis of a "Species". Science, 1973, 179:180-181.
    [54] Galbreath, P. F., Adams, K. J. and Wheelr, PA. et al. Clnal Atlantic salmon Ⅹ broon trout hybrids procluced by gynigenesis J. Fish Biol.,1997, 50:1025-1033.
    [55] Balsano, J. S., Darnell, R. M. and Abramoff, P. Electrophoretic evidence of triploid associated with populations of the gynogenetic teleost Poecilia Formosa. Copeia, 1972, (2): 292-297.
    [56] Menzel, B. W. and Darnell, R. M. Morphology of naturally occurring triploid fish related to Poecilia Formosa. Copeia, 1973, (2): 350-352.
    [57] Rasch, E. M. Use of desribonucleic acid-Feulgen levels as an index of triploid in naturally occurring interspecific hybrid of Poeciliid fishes. J. Histochem.,1968, 16(8): 508-509.
    [58] Scheultz, R. J. and Kallman, K. D. Triploid hybrids
    
    between the all-female teleost Poecilia Formosa and Poecilia sphenops. Nature, 1968, 219 (5151): 280.
    [59] Rasch, E. M., Monaco, P. J. and Balsano, J. S. Identification of a new form of triploid hybrid fish by DNA-Feulgen cytophotometry. J. Histochem., 1978, 26(3): 218.
    [60] Cherfas N. B. Gynogenesis in fishes. In "Genetic Bases of Fish Selection"(V. S. Kirpichnikov, ed. )Springer Velag, Berlin and New York, 1981, 255-273.
    [61] Larhammar, D., C. Risinger Molecular genetic aspects of tetraploidy in the common carp Cyprinus cario. Mol. Phylogenet Evol., 1994, 3 (1): 59-68.
    [62] Crow, J. F. The odds of losing at genetic roulette. Nature, 1999, 397: 293-294.
    [63] Muller, H. J. The relation of recombination to mutational advance. Mutat. Res., 1964, 1:2-9.
    [64] Smith, J. M. Age and the unisexual lineage. Nature, 1992, 356:661-662.
    [65] Quattro, J. M., Avise, J. C. and Vrijenhoek, R. C. An ancient clonal lineage in the fish genus Poeciliopsis. Proc. Natl. Acad. Sic. USA, 1992, 89: 348-352.
    [66] 樊连春,赖宇鹏,朱蓝菲等.雌核发育银鲫两个不同品系线粒体DNA比较研究.海洋与湖沼,1999,30(1):21-26.
    [67] 吴清江,桂建芳.鱼类遗传育种工程.上海科学技术出版社,1999,86-93.
    [68] Vrijenhoek, R. C. The evolution of clonal diversity in Poeciliopsis [A]. In: Turner B J. Evolutionary Genetics of Fishes [M]. New York: Plenum Press, 1984, 399-429.
    [69] Avise, J. C., Trexler J.C., Travis, J. et al. P. mexicana is the recent female parence of the unisexual fish P. Formosa. Evolution, 1991, 45: 1530-1533.
    [70] Kraus, F. and Miyamoto, M. M. Mitochondrial genotype of
    
    a unisexual salamander of hybrid origin is unrelated to either of its nuclear haplotypes. Proc. Natl. Acad Sic. USA, 1990, 87:2235-2238.
    [71] Quattro, J. M., Avise, J. C. and Vrijenhoek, R. C. Molecular evidence for multiple origins of hybridogenetic fish clones (Poeciliidae:Poeciliopsis). Genetics., 1991,127:391-398.
    [72] Spolsky, C. M., Philips, C. A. and Uzzell, T. Antiquity of clonal salamander lineages revealed by mitochondrial DNA. Nature, 1992,356:706-708.
    [73] Hedges, S. B., Bogard, J. P. and Maxson, L. R. Ancestry of unisexual salamanders. Nature, 1992,356:708-710.
    [74] Turner, B. J., Elder, Jr. J. F., Laughlin, T. F., et al. Genetic variation in clonal vertebrate detected by simple sequence DNA fingerprinting. Proc. Natl. Acad Sic. USA, 1990, 87:5653-5657.
    [75] Schartl, M., Schlupp, I., Schartl, A., et al. On the stability of dispensable constituents of the eukaryotic genmon: stability of coding sequences versus truly hypervariable sequences in a clonal vertebrate, the Amazon molly, Poecilia Formosa. Proc. Natl. Acad Sic. USA, 1991,.88:8759-8763.
    [76] Schartl, M., Nanda, I., Schlupp, I., et al. Incorporation of subgenomic amounts of host species DNA in the gynogenetic Amazon molly. Nature, 1995,373:68-71.
    [77] 李璞.长期饥饿状态对鲤鱼性比的影响.动物学报,1959,11:42-48.
    [78] 李璞,鲤鱼性比的变异和选择性死亡.动物学报,1959,11:149-156.
    [79] 许昌光,荣顺秀,赵永明.异精激发银鲫雌核发育所获后代的比较研究.齐鲁渔业,1985,(4):26-32.
    [80] 丁军,谢岳峰,蒋一硅.异育银鲫及其人工杂合种外源遗传物
    
    质的检测分析.水生生物学报,1993,17(1):22-26.
    [81] 陈洪,杨靖,薛国雄等.RAPD技术在异精激发方正银鲫比较研究中的应用.科学通报,1994,39(7):661-663.
    [82] 刘筠.中国养殖鱼类繁殖生理学.农业出版社,1993,135-142.
    [83] Levan, A., Fredga, K. and Sandberg, A. A. Nomenclature for centromeric position on chromosome. Hereditas. ,1964, 52(2):201~220.
    [84] 陈敏容,杨兴棋,俞小牧,陈宏溪.两性型天然雌核发育彭泽鲫染色体组型的研究.水生生物学报,1996,20(1):25~31.
    [85] 杨兴棋,陈敏容,俞小牧,陈宏溪.江西彭泽鲫生殖方式的初步研究.水生生物学报,1992,16(3):277~280.
    [86] 赵振山,高贵琴,黄峰,孙小强.彭泽鲫的受精细胞学.上海水产大学学报,1999,8(1):25~30.
    [87] 沈俊宝,范兆廷,王国瑞.黑龙江一种银鲫(方正银鲫)群体三倍体雄鱼的核型研究,遗传学报,1983,10(2):133~136.
    [88] 楼允东,张英培,翁忠惠,赵玲.淇河鲫鱼细胞遗传学和同工酶的初步研究.水产学报,1989,13(3):254~256.
    [89] Kobayashi, H., Y. Kawashima and N. Takeuchi Comparative chromosome studies on the genus Carassius, especially with a finding of polyploidy in the ginbuna (Carassius auratus langsdorfii). Japan J. Ichthyology, 1970,17(4): 153~160.
    [90] 俞豪祥,徐皓,关宏伟.天然雌核发育贵州普安鲫(A型)染色体组型的初步研究.水生生物学报,1992,16,(1):87~89.
    [91] Artoni, R. F., Bertollo, L. A. Nature and distribution of constitutive heterochromation in fishes, genus Hypostous(Loricariidae). Genetica, 1999,106(3):20~14.
    [92] Brinkman, J. N., Sessions, S. K., Houben A. and D. M. Green. Structure and evolution of supernumerary chromosomes in the Pacific giant salamander, Dicamptodon tenebrosus. Chromosome Res, 2000, 8(6): 477~85.
    
    
    [93] N. Pandey and W. S. Lakra. Evidence of female heterogamaty, B-chromosome and natural tetraploidy in the Asian catfish, Clarias batrachus, used in aquaculture. Aquaculture, 1997, 149(1-2):31~37.
    [94] Nakai, Y., Kubota, S., Goto, Y., Ishibashi, T., Davison, W., and Kohno, S. Chromosome elimition in three Baltic south Pacific and north-east Pacific hagfish species. Chromosome Res., 1995,3(5):321~30.
    [95] Souza, M. J., Moura, R. C. Karyotypic characterization and constitutive heterochromation in the grasshopper Stiphrarobusta (Orthoptera proscopiidae). CTtobios, 2000, 101(398): 137~44.
    [96] 昝瑞光,宋峥,刘万国.七种鳃亚科鱼类的染色体研究兼论鱼类多倍体的判定问题,动物学研究,1984,5(1):82~89.
    [97] Murakami, M.; Matsuba, C. and Fujitani, H. The maternal origins of the triploid ginbuna (Carassius auratus lanfsdorfi): phylogenetic relationships within the C. auratus taxa by partial mitochondrial D-loop sequenceing. Genes Genet. Syst., 2001,76: 25~32.
    [98] 周暾.鱼类染色体研究.动物学研究,1984,5(1):38~51.
    [99] Dawly, R.M. An introduction to unisexual vertebrates. In: R. M. Dawly, and J. P. Bobart ed. Evolution and ecology of unisexual vertebrates. New York :New York State Museum, 1989,1~18.
    [100] Vrijenhoek, R.C. Unisexual fish: model system for studying ecology and evolution. Annu. Rev.Ecol. Syst., 1994,25:71~96.
    [101] Lamatsch, D. K., C. Steinlein, M. Schmid and M. Scharl Noninvasive deteration of genome size and ploid level in fishes by flow cytometry: detection of triploid Poecilia Formosa. Cytometry, 2000,39:91~95.
    [102] Zhou, L., Y. Wang and J. F. Gui Analysis of genetic
    
    heterogeneity among five gynogenetic clones of silver crucian carp, Carassius auturas gibelio Bloch, based on detection of RAPD molecular markers. Cytogenet Cell Genet, 2000,88:133~139.
    [103] Zhou, L., Y. Wang and J. F. Gui Morcular analysis of silver crucian carp (Carassius auturas gibelio Bloch) clone by SCAR markers. Aquaculture, 2001,201:219~228.
    [104] Fan, Z. T. and J. B. Shen Studies on the evolution of bisexual reproduction in crucian carp (Carassius auratus gilelio bloch). Aquaculture, 1990,84:235~244.
    [105] 丁军,蒋一硅.两种发育类型卵母细胞成熟过程中促精核发育现象的研究.水生生物学报,1991,15(4):289—293,
    [106] 杨睿姣,李冰霞,冯浩等.彭泽鲫染色体数目及倍性的细胞遗传学分析.动物学报,2003,49(1):104-109.
    [107] 傅永进.彭泽鲫的养殖特点及养殖方法.江西水产科技,1995,(2/3):55—56.
    [108] 傅永进.彭泽鲫的生物学性状及养殖技术.淡水渔业,1996,26(2):25-26.
    [109] 葛伟,单仕新,蒋一硅.雌核发育银鲫的受精生物学研究—天然雌核发育银鲫繁殖方式的讨论.水生生物学报,1992,16(2):97—100.
    [110] 岳振宇,蒋一硅,单仕新.雌核发育和两性融合发育鱼卵调控精核受精发育的生化特征研究.水生生物学报,1996,20(2):164-172.
    [111] M. Yamashita, H. Onozato, T. Nakanish et al. Breakdown of the sperm nuclear envelope is a prerequisite for male pronucleas formation: Direct Evidence from the gynogenetic Crucian Carp Carassius auratus langsdofii. Development biology, 1990, 137:155-160.
    [112] 范兆廷,宋苏祥.鱼类的雌核发育、雄核发育和杂种发育.水产学报,1993,17(2):179-187.
    
    
    [113] Kobayasi, H. A cytological study on the maturation division in the ocgenic process of the triploid ginbuna (Carassius auratus langsdorfii). Jpn. J. Ichthy, 1976, 22: 234-240.
    [114] 崔悦礼.雌核发育高背鲫成熟分裂前期的细胞学观察.云南大学学报,1998,20(3):182-184.
    [115] 桂建芳,梁绍昌,蒋一硅等.卵巢发育阻滞的人工三倍体鱼减数分裂染色体配对的光镜观察.水生生物学报,1995,19(3):223—226.
    [116] 沈俊宝,范兆廷,李素文等.方正银鲫与扎龙湖鲫体细胞、精子的DNA含量及倍性的比较研究.动物学报,1984,30(1):7—13.
    [117] Kotsuaki kojima, Takac kajishima, Kiyotaka Matsumurg et al. Gamatogenecics of the polyploid ginbuna Carassius auratus longsdorfii. ,Zool. Magazine, 1983, 92(4):510.
    [118] Zhou L, Wang Y, Gui J F. Genetic evidence for gonochoristic reproduction in gynogenetic silver crucian carp (Carassius auratus gibelio) as revealed by RAPD assaya, J. Mol-Evol, 200Ob, 51:498-506.
    [119] 朱蓝菲.鱼类同工酶和蛋白质的聚丙烯酰胺梯度凝胶电泳法.水生生物学报,1992,16(2):183—185.
    [120] 吴力钊,王祖熊.草鱼同工酶发育遗传学研究.遗传学报,1987,14(5):387-394.
    [121] 张庆朝.同工酶的种类与生理功能.生命的化学,1993,13(6):18—20.
    [122] 杨书婷,桂建芳.两个雌核发育白鲢群体同工酶分析及遗传标记的确定.水生生物学报,1999,23(3):264-267,
    [123] 胡能书,万贤国.同工酶技术及其应用,湖南科学技术出版社.1985,21—66.
    [124] 吴力钊,王祖熊.长江中游草鱼天然种群的生化遗传结构及变异.遗传学报,1992,19(3):221—227.
    
    
    [125] 姜建国,熊全沫,姚汝华.草鱼不同组织中同工酶的表达模式.遗传学报,1997,21(4):353-358.
    [126] Verspoor, E., Jordan, W. C. Detection of an NAD~+-dependent malic enzyme locus in the Atlantic Salmon Salmo Salar and other Salmonid fish. Biochemical Genetics 1994, 32(3/4): 105-117.
    [127] 吴力钊,王祖熊.草鱼同工酶发育遗传学研究Ⅰ:不同组织器官的同工酶分析.遗产学报,1987,14(4):278-286.
    [128] 吴力钊,王祖熊.鳙鱼同工酶发育遗传学研究.水生生物学,1992,16(1):8-17.
    [129] 黄生民,秦长庚,潘淑英等.滇池高背鲫和方正银鲫酯酶、乳酸脱氢酶同工酶的比较研究.动物学研究,1988,9(1):69-73.
    [130] 熊全沫,夏盛林.中国胭脂鱼同工酶的研究.动物学报,1985,31(1):20-27.
    [131] 朱蓝菲,蒋一硅.银鲫种内遗传标记及其在选种中的应用.水生生物学报,1987,12(2):105—111.
    [132] 朱蓝菲,桂建芳.四种不同倍性鲫鱼在胚胎发育期间同工酶基因表达的比较分析.实验生物学报,1998,31(4):369—376.
    [133] Castrillo, Loelu A. and Wayne, M. Brooks. Defferentiation of Beawveria Bassiana Isolates from the Darkling Beetle Alphitobius Diaperinus, Using Isozyme and RAPD Analysis. Journal of Invertebrate Pathology, 1998,72(3): 191-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700