便携式逆变弧焊电源的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着逆变技术和电子控制技术的发展,逆变焊接电源正逐步取代传统焊接电源。逆变焊接电源是一种高效、节能、省材、优质的小型化焊接电源,已被广泛应用于生产制造的各个行业。
     本文首先回顾了焊接电源的发展简史,阐述了逆变焊接电源的必然发展趋势,并预测了逆变焊接电源未来的发展方向,指出了本文所研制的便携式逆变弧焊电源的重要意义。
     本文在详细分析了便携式逆变弧焊电源的主电路和控制电路的设计要求之后,对主电路和控制电路进行了设计,绘制出电路图,并说明其工作原理。其中包括逆变主电路设计(全桥)、元器件的选择(采用MOSFET为功率开关元器件)、PWM脉宽调制电路、各种保护电路等等。
     最后,本文根据以上的设计,自制了一台便携式逆变弧焊电源。由于设计中大量使用成熟的控制模块,大大提高了焊接电源工作的可靠性、效率及焊接质量。依据实验结果,验证了设计的正确性和便携式逆变弧焊电源的优良性能。可见,便携式逆变弧焊电源作为基础性质的开发研究,获得了成功。
The application of the inverter technology in the welding power supply contributes to an obvious improvement of the welding apparatus in the miniaturization and highly effective aspect. At the same time, the good dynamic characteristic of the arc-welding inversion power supply provides an abundant platform for the welding craft controlling. With the improvement of power electronics technology, especially the emergence of the power element MOSFET、IGBT, arc welding inverters are going to be the most prospective welding power supply in the welding field. They have many good qualities, such as small volume, lightness, high efficiency and rapid dynamic response. Inverter welding power is recognized as the most promising of welding power source, and is gradually replacing traditional welding power source is widely used in the manufacture of various fields.
     This paper first reviews the history of the development of welding power source, welding power source from the initial transistor control, and to the inverter control now, the future will continue to develop high-performance advanced features a power inverter welding power source at this stage to the development a wide range of concerns. Along with power electronic devices and the development of technology, the inverter welding power source has broad space for development, its high efficiency and energy saving, the provincial build, lightweight, dynamic characteristics of good regulation and control, and many other advantages by the manufacturers and users of the acclaim. Inverter welding power source is internationally recognized the most advanced welding machine, and most of the development potential of a welder. To sum up, this portable inverter welding power source with the development of a practical significance. Together with the research and use of, the preliminary design of the welding of the main performance parameters identified.
     Secondly, we designed a portable inverter welding power source circuit and the main control circuit. Since the introduction of inverter technology, according to the needs of load designed AC→DC→AC→DC inverter welding inverter system to build the main power supply circuit. Through the different inverter main circuit, the choice was widely used full-bridge inverter main circuit, it raised the utilization of the device, for circuit design and testing to provide more convenient. Inverter power switching device design choice is the focus of inverter main circuit, in accordance with the desired design needs, and compare a variety of switching devices and the use of the performance, chose this design as a MOSFET power switch components, and calculated in the circuit parameters. The MOSFET switching frequency can easily reach 100 kHz and 20 kHz audio is the limit, no more than it can be heard advice, just noise, noise pollution reduction machines will be very useful. Usually that the best frequency inverter circuit is taken into account on the basis of natural frequencies should be used in power switching device can accept the highest frequency, although this could reduce the size of high-frequency transformer, but also high-frequency inverter transformer leakage reactance to deteriorate, radiators and other negative effects of increased volume, comprehensive consideration of the selected 100 kHz frequency inverter. Identify the power switch components and inverter frequency, and high frequency transformer design, analysis of its transient saturation, and other issues. On the basis of the above, the design of portable power inverter welding the main circuit and draw a circuit diagram, and the working principle of circuit was analyzed. As for the selection of MOSFET power switching device, the switching losses small, high switching frequency, using the traditional hard-switching PWM pulse width modulation circuit as the main control circuit, but not now widely recommended by the selection of soft-switch technology. Hard PWM duty cycle switching technology to control the way to achieve power conditioning, circuit structure is simple, convenient control, steady-state load DC gain and nothing to do (discontinuous conduction), and other advantages, a time in the DC-DC, DC-AC converter dominated, development speed very quickly. SG3525 use dedicated chip PWM pulse width modulation circuit design, pulse drive circuit. Control circuit and system design and a variety of anti-jamming circuit protection circuit for welding the stability and reliability of the work laid the foundation. In this paper, the large-scale use of a mature integrated control module and a control circuit and trigger circuit to accurately meet the design requirements.
     Finally, this paper the basis of the above design, a self-made portable inverter welding power source. After the design and debugging, portable inverter welding power supply reliability, efficiency and welding quality have greatly increased, and its size and weight have been noticeably reduced to the original design requirements. Based on experimental results verify the correctness of the design of portable inverter welding power source and the fine performance. Clearly, the portable inverter welding power source as the basis of the nature of Research and Development, have been successful.
引文
[1]. 周孟龙. 国内外焊接设备的发展及其展望[J]. 焊接技术,2005.12:1~8.
    [2]. 魏伦. 我国电焊机行业生产现状及逆变焊接电源的发展前景[J]. 机械工人(热加工),2006.5:25~27.
    [3]. TMITA. Problems of arc welding technologies[J]. Welding International,2001.15(3):173~179.
    [4]. 陈延明. 软开关逆变及其特性研究[D]. 广州:华南理工大学,1998.
    [5]. 区智明. 逆变弧焊机的现状和发展[J]. 电焊机,2000(7),Vol.30:9~13.
    [6]. 殷树言,陈树君,黄鹏飞,刘嘉. 弧焊逆变电源的现状和发展趋势[J]. 焊接技术,1999.12 增刊:4~9.
    [7]. 黄石生、陆沛涛等. 逆变焊机的应用与发展现状、趋向、问题及对策[J]. 电焊机,2000(8),Vol.30:11~28.
    [8]. 赵家瑞. 逆变焊接与切割电源[M]. 北京:机械工业出版社,1996:200~231.
    [9]. 刘成龙. 逆变式焊机的应用与发展[J]. 科技信息,2007,Vol.30:43.
    [10]. B.K.Base. Recent Advances in Power Electronics. IEEE Trans. on Power Electronics,vol.7,no.1,Jan.1992:123~126.
    [11]. 易志华. 国外电焊机发展概况(上)[J]. 电焊机,1996(5):1~5.
    [12]. 易志华. 国外电焊机发展概况(下)[J]. 电焊机,1996(6):8~11.
    [13]. 尹显华. 从德国埃森展看电焊机行业的现状及发展趋势[J]. 机械工人(热加工),2006.2:12~17.
    [14]. 李建国. 发展我国逆变焊机的探讨[C]. 北京:第八次全国焊接学会论文集(1),1997:75~79.
    [15]. 黄石生、张红兵. 逆变式焊机技术发展与科学问题[J]. 电焊机,2004 增刊:32~36.
    [16]. 吴宪平. 逆变式弧焊机的研究现状与发展[J]. 长沙大学学报,2003,Vol.17:30~32.
    [17]. 殷树言、陈树君. 新型逆变式焊接电源的设计思想[J]. 电焊机,2000(7),Vol.30:3~8.
    [18]. 王振民、黄石生. 弧焊逆变技术的研究现状与发展[J]. 电焊机,2000(8),Vol.31:3~6.
    [19]. 赵家瑞. 弧焊逆变电源主电路拓扑的发展现状[J]. 电焊机,2000(8),Vol.31:13~16.
    [20]. 殷树言,陈树君,刘嘉,黄鹏飞. 逆变焊接技术的现状与发展[J]. 现代制造,2003.12:40~44.
    [21]. 于庆胜. 国家“十五”规划对电焊机行业的要求及今后工作的重点[J]. 机械工人(热加工),2002.5:5~6.
    [22]. 李建国. 我国电焊机市场浅析[J]. 电焊机,1999(10):24~27.
    [23]. 黄石生. 逆变理论与弧焊逆变器[M]. 北京:机械工业出版社,1995:1~169.
    [24]. Inverter Give Welders More Options. Welding Journal,1990.12:59.
    [25]. Li Jian Guo. The Development Of Arc Welder In China. Advanced Techniques And Low Cost Automation. Beijing,1994.9:24~27.
    [26]. Terry Byrd. Inverter Power Source:An Inverter Controlled Gas Shielded Arc Welding Power Source And Their Application In Japan. IIW-1148-1989.
    [27]. 陈长江. IGBT逆变式手弧焊电源控制电路研究[J]. 武汉船舶职业技术学院学报,2003(2):10~13.
    [28]. 刘嘉,殷树言,丁京柱. 数字化焊机及其特点[J]. 电焊机,2001(6),Vol.31:8~16.
    [29]. 刘嘉,卢振洋,殷树言,丁京柱. 电焊机的数字化[J]. 焊接学报,2002,23(1):88~92.
    [30]. 黄石生,薛家祥,余文松,陈延明. 新型弧焊电源及其智能控制[J]. 中国工程科学,2000,2(4):70~74.
    [31]. 黄石生. 新型弧焊电源机器智能控制[M]. 北京,机械工业出版社,2000:35~36.
    [32]. 张秀兰,马红艳,徐绪炯. 数字化焊接电源的发展[J]. 电焊机,2003(2),Vol.33:9~10.
    [33]. 张立,赵永健. 现代电力电子技术——器件、电路及应用[M]. 北京:科学出版社,1992:1~44.
    [34]. 黄健敏. 逆变电源应用中的几个关键因素[J]. 广东有色金属学报,2005.3,Vol.15:58~60.
    [35]. 史平君. 电源元器件分册[M]. 沈阳:辽宁科学技术出版社,1999:24~104.
    [36]. 盛祖全,张立.IGBT 模块驱动及保护技术[J]. 电焊机,2000(11):6~13.
    [37]. 黄石生,薛家祥. 弧焊逆变电源的发展趋势分析[J]. 电焊机,1994(2):31~34.
    [38]. 侯海燕. 场效应管逆变焊接电源[J]. 湖南电力,1997(2):51~53.
    [39]. 王兆安,黄俊. 电力电子技术[M]. 北京:机械工业出版社,2001:8~42.
    [40]. 祁和义. 场效应管逆变式弧焊电源的研究[J]. 开封大学学报,1995(4):50~53.
    [41]. 王允中. 电力半导体器件的发展趋势[J]. 电力电子技术,1992.1:65~69.
    [42]. F.Bauer et al. Design Aspects of MOS-controlled Thristor Elements:Technology Simulation and Experimental Results. IEEE Transaction on Electron Devices,1991,38(7):1605~1611.
    [43]. 王宏. 半导体电力电子器件发展概况及国内发展展望[J]. 微处理机,2002(5),Vol.2:4~13.
    [44]. 殷树言,陈树君. 软开关变换技术在弧焊逆变电源中的应用[J]. 电力电子技术,1999.1:18~21.
    [45]. Mammano B. Phase-shifted PWM Control:A New Integrated Controller Eases the Design of Efficient High-frequency Bridge Power Switching. APEC,1991:775~881.
    [46]. Hua G Ch,Lee F. An Improved Full-Bridge-Voltage Switched PWM Converter Using a Saturable Inductor. IEEE Transaction on Power Electronics,1992,8(4):530~533.
    [47]. 冯荣琼. 高功率脉冲变压器铁芯的研究[J]. 电工电能新技术,1992.3:51~56.
    [48]. 王军波,孙振国等. 半桥式 IGBT 逆变焊接电源输出容量计算及变压器参数设计[J]. 电焊机,2002(12),Vol.30:16~19.
    [49]. 魏继昆,谭蓉. 先进焊接设备与维修[M]. 北京:机械工业出版社,2007:1~101.
    [50]. 赖忠民,方臣富等. WSM-125 逆变式多功能焊机的研制[J]. 华东船舶工业学院学报(自然科学版),2003.02,Vol.17:62~67.
    [51]. 刘星平. 采用脉宽调制器 SG3525 控制的新型单相交流调压电路[J]. 半导体技术,2003.1:56~62.
    [52]. 张占松,蔡宣三. 开关电源的原理与设计[M]. 北京:电子工业出版社,2001:116~123.
    [53]. 刘仁普. MOTOROLA 线性与接口电路手册[M]. 北京:机械工业出版社,2002:458~463.
    [54]. 梅开乡. SG3525 芯片在开关(逆变)电源中的应用[J]. 电子工程师,2006.6,Vol.32:28~30.
    [55]. 张培建,陈炜,吴建国. 具有 PFC 功能的逆变式直流弧焊电源[J]. 江南学院学报,1999.9:40~43.
    [56]. 李来运,田永亮. 对负反馈电路判断的探讨[J]. 洛阳师范学院学报,2006(2):48~50.
    [57]. 黄石生. 电子控制的弧焊电源[M]. 北京:机械工业出版社,1991:140~226.
    [58]. 叶斌. 电力电子应用技术[M]. 北京:清华大学出版社,2006:300~377.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700