氮素形态对茶树生长及氮素吸收利用的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮素形态影响植物生长生理研究是栽培学的重要基础研究内容。本文研究了不同形态氮素配比施肥对茶树个体生长、有效化学成分、主要矿质元素、氮代谢和光合生理的影响;探讨了茶树喜铵的生理生化基础。主要结论如下:
     1.氮素形态对茶树高生长和持嫩性影响显著,对粗生长影响相对较小。增加铵态氮会提高茶树叶片Pn、Gs、Tr和GS活性,过高则明显降低光合能力和GS活性,对GOGAT影响较小;多数处理的Pn日变化呈双峰型,纯硝和硝铵比7:3呈单峰型;各处理的酶活性年动态相似。
     2.不同处理根系St、Sa、氮素吸收效率以及根系吸收动力学主要参数差异显著,氮素运转效率、比面积和Sa/St差异小;硝铵比5:5的氮素吸收较优。氮素形态对茶树全氮含量影响很大,高铵比例明显较低;对全磷和全钾影响不显著。
     3.铵态氮比例的增加会降低茶多酚含量、增加游离氨基酸和咖啡碱含量,硝铵比7:3和5:5处理时均较高,高铵比例时大幅下降;处理间年动态变化较一致;酚氨比差别小。
     4.氮素形态影响茶树生长生理表现在适中硝铵比施肥会大幅改变茶树根系对无机氮的吸收动力学特性和叶片氮素代谢,改善茶树根系活力,明显改变叶片的全氮含量,提高光合能力,改善个体生长和春稍持嫩性,优化春芽主要成分组成。高铵比例明显不利于生长。
It was a hot focus that the effect of different forms nitrogen application on the growth physiology. The effect of nitrogen form on growth of plant spring shoots, main chemical components, content of mineral elements, nitrogen metabolism and photosynthetic physiology were studied in plot experiment, with four different tea varieties. The physiology and biochemical bases for the reason that tea prefers to using ammonium was discussed. The main results were concluded as follows:
     1. The height growth of tea plant and time of keeping tenderness were greatly affected by nitrogen form, comparing the little effect on girth growth. The photosynthetic capacity, such as Pn, Gs and Tr, and GS activity were enhanced when the proportion of ammonium nitrogen was high. But when the ammonium proportion was higher than 70%, the capacity and GS activity reduced obviously.The diurnal variations of Pn with pure nitrate and NO3--N:NH4+-N7:3 application were one peak type, and others were double peaks. The annual dynamic of GS and GOGAT activity with different treatment were similarly.
     2. The total absorption area (St), active absorption area (Sa), the kinetics of ammonium and nitrate uptake in root and efficiency of nitrogen usage were affected by nitrogen form significantly, comparing the effect on ratio of Sa/St, specific surface area, and nitrogen transportation ratio was small. And the comprensive ability of nitrogen absorbing and utilization was relatively better with NO3--N:NH4+ -N5:5 application. The effect of nitrogen form on total nitrogen (TN) was significant. And the effect on TP and TK was relatively small.
     3. The increment of ammonium nitrogen in plot experiment will lead to the increasing of free amino acids and caffeine content, and the decrement of tea polyphenol content. These contents were high under the NO3--N:NH4+-N7:3 or 5:5 treating. But the contents were low when the proportion of NH4+-N exceeding 70%. The annual dynamic of chemical components was similar among different treatments. And the tea polyphenol/free amino acids had small difference.
     4. The effect of nitrogen form on physiological mechanism of tea grow manifested at the comprehensive influence on tea plant. When the NH4+-N proportion was increasing, the kinetics of ammonium and nitrate uptake was changed greatly. The root activity was promoted. The activity of key enzymes in ammonium assimilation progress in leaves were affected, especially the GS activity was affected larger than GOGAT activity. TN in leaves was also changed greatly with nitrogen form treating. Both the enzymes and the mineral content in leave, with the moderating mixed nitrogen application, were all better than pure nitrogen using. And the photosynthetic capacity was promoted greatly when the ratio of different nitrogen was suitable. Then, the individual and spring shoot growth was improved. But when the proportion of ammonium was too high, the growth and physiology of these plants was not very googd. These effects on tea plant might be related to the NO3- played as a signal role to regulating these physiological mechanisms.
引文
1.蔡昆争,骆世明,段舜山,等.水稻根系在根袋处理条件下对氮养分的反应[J].生态学报,2003,23(6):1 109~1 116.
    2.曹翠玲,李生秀.氮素形态对小麦中后期生长阶段生理效应及产量的影响[J].作物学报,2003,29 (2):258~262.
    3.曹翠玲,李生秀.氮素形态对作物生理特性及生长的影响[J].华中农业大学学报,2004, 23(5):581~586.
    4.曹翠玲,李生秀.氮素形态对拔节中后期的生理效应及产量影响[J].作物学报,2002,2:234~238.
    5.常会庆,李娜,徐晓峰.三种水生植物对不同形态氮素吸收动力学研究[J].生态环境, 2008,17(2):511~514.
    6.陈春宏,张耀东,高祖民.不同氮素形态对叶菜氮素营养的影响[J].上海农业学报,1993, 1:44~48.
    7.陈瑛.茶氨酸在茶树体内的分布规律和年变化的研究[J].绍兴文理学院学报,1999,19(5):72~73.
    8.陈永亮,刘明河,李修岭.不同形态氮素配比对红松幼苗光合特性的影响[J].南京林业大学学报(自然科学版),2005,29(3):77~80.
    9.程建峰,戴廷波,荆奇,等.不同水稻基因型的根系形态生理特性与高效氮素吸收[J].土壤学报,2007,44(2):266~270.
    10.戴廷波,曹卫星,荆奇.氮形态对不同小麦基因型氮素吸收和光合作用的影响[J].应用生态学报,2001,12 (6):849~852.
    11.董桂春,王余龙,王坚刚,等.不同类型水稻品种间根系性状的差异[J].作物学报,2002,28(6):749~755.
    12.董桂春,王余龙,吴华,等.水稻主要根系性状对施氮时期反应的品种间差异[J].作物学报,2003,29(6):871~877.
    13.董园园,董彩霞,卢颖林,等.NH4+-N部分代替NO3--N对番茄生育中后期氮代谢相关酶活性的影响[J].土壤学报,2006,43(2):261~266.
    14.杜金哲.春小麦子粒蛋白质积累和产量形成规律及施氮的调节作用[D].沈阳:东北农业大学,1999.
    15.杜旭华,马健,彭方仁.温室内不同茶树品种净光合速率及其生理生态因子日变化[J].浙江林业科技,2007a,27(3):28~33.
    16.杜旭华,周贤军,彭方仁.茶树不同器官氨同化关键酶活性测定及比较[J].经济林研究,2008,26(2):23~28.
    17.杜旭华,周贤军,彭方仁.不同茶树品种净光合与蒸腾速率比较[J].林业科技开发,2007b,21(4):21~24.
    18.段英华,张亚丽,沈其荣.增硝营养对不同基因型水稻苗期吸铵和生长的影响[J].土壤学报,2005,42(2):260~265.
    19.段英华,张亚丽,沈其荣,等.增硝营养对不同基因型水稻苗期氮素吸收同化的影响[J].植物营养与肥料学报,2005,11(2): 160~165.
    20.段英华,张亚丽,王松伟,等.铵硝比(NH4+ /NO3- )对不同氮素利用效率水稻的生理效应[J].南京农业大学学报,2007a,30 (3):73~77.
    21.段英华,张亚丽,王松伟,等.不同氮效率水稻全生育期内对增硝营养的响应及其生理机制[J].生态学报,2007b,27(3):1 086~1 092.
    22.段英华,范晓荣,李奕林,等.水稻增硝营养的生理与分子生物学机制[J].中国农业科学,2008,41(6):1 708~1 716.
    23.段远霖,李合生,伍素辉,等.蓝光和Ca对小麦幼苗谷氨酸合成酶及钙调系统酶活性的影响[J].福建农林大学学报,2003,32(2):209~212.
    24.樊剑波,张亚丽,王东升,等.水稻氮素高效吸收利用机理研究进展[J].南京农业大学学报,2008,31(2):129~134.
    25.樊剑波,张亚丽,万小羽,等.水稻根系与氮素吸收利用之研究进展[J].中国农学通报,2007,23(2):236~240.
    26.樊卫国,刘进平,向灵,等.不同形态氮素对刺梨生长发育的影响[J].园艺学报,1998,25(1):27~32.
    27.樊小林,史正军,吴平.水肥(氮)对水稻根构型参数的影响及其基因型差异[J].西北农林科技大学学报(自然科学版),2002,30(2):1~5.
    28.封克,汪晓丽,陈平,等.不同苗期水稻NO3-吸收特点及其受NH4+的影响[J].中国农业科学,2003,36(3):307~312.
    29.高建社,符军,刘永红,陈竹君.氮磷肥配施效应对杜仲光合与蒸腾特性的影响[J].浙江林学院学报,2004,21(3):254~257.
    30.管闪青,张屹东,杨冬冬,等.甜瓜谷氨酰胺合成酶基因在不同氮素条件下的表达分析[J].上海交通大学学报(农业科学版),2007,25(1):24~28.
    31.郭桂义,胡强,刘黎.信阳毛尖茶春季不同时期的主要化学成分[J].信阳农业高等专科学校学报,2007,17(4):119~121.
    32.郭红祥,刘卫群,岳俊勤.氮素形态及饼肥浸提液对烤烟功能叶片光合特性的影响[J].华北农学报,2005,20(4):62~65.
    33.郭培国,陈建军,郑燕玲.氮素形态对烤烟光合特性影响的研究[J].植物学通报,1999, 16(3):262~267.
    34.郭升平.高效液相色谱法测定茶叶中茶氨酸的研究[J].色谱,1996,14(6):464~466.
    35.韩燕来,徐芳森,段海燕,等.拟南芥养分离子转运蛋白研究进展[J].植物学通报,2003 (1):23~30.
    36.何文寿,李生秀,李辉桃.六种作物不同生育期吸收铵、硝态氮的特性[J].作物学报,1999,25(2):221~226.
    37.黄秋转.良种茶树芽叶中氨基酸研究[J].氨基酸和生物资源,1996,18(1):13~15.
    38.黄意欢.茶树营养生理与土壤管理[M].长沙:湖南科学技术出版社,1992: 32~38.
    39.金洁,骆耀平,任明兴,等.嫁接茶树光合特性研究[J].茶叶,2003,29(2):86~88.
    40.金松南,艾呈祥,姚峰君.氮素形态对新高梨生长和果实品质的影响[J].落叶果树,2007,4:1~2.
    41.柯世省,金则新,李钧敏.浙江天台山茶树光合日变化及光响应[J].应用与环境生报,2002,8(2):159~164.
    42.赖明志.适制乌龙茶品种茶树田间光合特性[J].茶叶科学,1997,17(2):189~192.
    43.李翎,曹翠玲,赵贝.氮素形态对小麦幼苗叶绿体色素蛋白复合体含量及希尔反应活性的影响[J].干旱地区农业研究,2007,25(4):163~167.
    44.李勇,周毅,郭世伟,等.铵态氮和硝态氮营养对水、旱稻根系形态及水分吸收的影响[J].中国水稻科学,2007,21 (3):294~298.
    45.李宝珍,王松伟,冯慧敏,等.氮素供应形态对水稻根系形态和磷吸收的影响[J].中国水稻科学,2008,22(5):665~668.
    46.李彩凤,马凤鸣,赵越等.氮素形态对甜菜氮糖代谢关键酶活性及相关产物的影响[J].作物学报,2003,29(1):128~132.
    47.李彩凤.增铵营养对玉米品质影响初探[J].玉米科学,2003,11(3):82~84.
    48.李常健,林清华,张楚富.高等植物谷氨酰胺合成酶研究进展[J].生态学杂志,2001,18(4):1~3.
    49.李华海,刘涛,王衍成,等.龙井43号良种高效茶园试验、示范、推广综合技术报告[J].中国茶叶加工,2002(4):33~35.
    50.李娟.茶树光合速率及生理生态因子的日变化[J].湖南农学院学报,1991,117 (增):567~573.
    51.李霞,阎秀峰,刘剑锋.氮素形态对黄檗幼苗生长及氮代谢相关酶类的影响[J].植物学通报,2006,
    23 (3):255~261.
    52.李学俊,文建雷,韩书成,等.氮素形态对玉米幼苗生物机制及生物量的影响[J].西北农林科技大学学报(自然科学版).2008,36(3):192~196.
    53.李亚东,赵爽,张志东等.不同氮素形态配比对越橘生长、产量及叶片元素含量的影响[J].吉林农业大学学报,2008,30 (4):477~480.
    54.梁远发,崔晓明,何光全.茶叶年生育周期和日周期的主要化学成分变化[J].贵州农业科学,1996,19(4):34~35.
    55.廖万有.茶树的氮素营养与高产优质[J].广西热作科技,1999,72:1~12.
    56.林金科,赖明志.影响茶树叶片净光合速率的生态生理因子的初步分析[J].作物学报,2000,26(1):110~115.
    57.林金科.茶树光合作用的年变化[J].福建农业大学学报,1999(b),28(1):38~42.
    58.林金科.田间茶树净光合速率及其生态生理因子的日变化[J].福建农业大学学报,1999(a),28(3):294~299.
    59.刘代平,宋海星,刘强等.油菜根系形态和生理特性与其氮效率的关系[J].土壤(Soils), 2008,40 (5):765~769.
    60.刘霞林,黄亚辉,曾贞,等.茶树年生育周期主要生化成分及几种酶活性变化研究[J].茶叶通讯,2003(4):9~13.
    61.刘永华,朱祝军,魏国强.不同光强下氮素形态对番茄谷氨酰胺合成酶和光呼吸的影响[J].植物生理学通讯,2004,40(6):680~682.
    62.刘永华,朱祝军,陈新娟等.不同光强下氮素形态对番茄根系质膜H+-ATPase和氧化还原系统活性的影响[J].浙江大学学报(农业与生命科学版),2005,31 (6) :694~696.
    63.刘祖生,梁月荣,赵学仁,等.早生优质茶树新品系“浙农139”选育[J].茶叶科学,1997,17(增刊):81~85.
    64.卢凤刚,郭丽娟,陈贵林,等.不同氮素形态及配比对韭菜产量和品质的影响[J].河北农业大学学报,2006,29(1):27~30.
    65.陆锦时,马骥.钟培竹茶树新梢年生育周期的主要化学成份变化[J].西南农业学报,1994,1:24~27.
    66.陆佩玲,于强,罗毅,等.冬小麦光合作用的光响应曲线的拟合[J].中国农业气象,2001,22(2):12~14.
    67.陆松侯,施兆鹏.茶叶审评与检验(第三版) [M ].北京:中国农业出版社,2001.
    68.罗金葵,陈巍,张攀伟,等.增铵对小白菜生长和叶绿素含量的影响[J].土壤学报,2005,42(4):614~618.
    69.骆耀平,吴姗,康孟利.二年生嫁接茶树的冬季光合特性与抗寒性[J].浙江大学学报(农业与生命科学版),2002,28(4):397~400.
    70.马新明,王志强,王小纯.氮素形态对不同专用型小麦根系及氮素利用率影响的研究[J].应用生态学报,2004,15(4):655~658.
    71.莫良玉,吴良欢,陶勤南.高等植物GS/GOGAT循环研究进展[J].植物营养与肥料学报,2001,7(2) :223~231.
    72.倪伯荣.茶树早芽种经济效益浅析[J].茶业通报,1997,19(1):8~9.
    73.彭晚霞,王克林,宋同清,等.施肥结构对茶树(Camelliasinensis L.Kuntze)光合作用及其生态生理因子日变化的影响[J].生态学报,2008,28(1):84~91.
    74.钱六九.乌牛早品种在东至茶树良种场的表现.茶业通报,1997,19(2):23.
    75.钱晓晴,沈其荣,王娟娟,等.模拟水分胁迫条件下水稻的氮素营养特征[J].南京农业大学学报, 2003a,26 (4) : 9~12.
    76.钱晓晴,沈其荣,徐国华.配合使用NH4+-N和NO3--N对旱作水稻生长与水分利用效率的影响[J].土壤学报,2003b,40(6):895~900.
    77.乔云发,苗淑杰,韩晓增.氮素形态对大豆根系形态性状及释放H+的影响[J].大豆科学,2008,3:265~269.
    78.上官周平,李世平.旱地作物氮素营养生理生态[M].科学出版社,2004,4:32~40.
    79.尚志强,柴家荣.氮素形态对白肋烟干物质积累及产量、质量的影响[J].内蒙古农业科技,2007( 4):42~45.
    80.施嘉瑶,谢序宾,唐茜.茶叶光合作用的强度再探[J].四川农业大学学报,1988,6(1):9~14.
    81.石正强.铵态氮和硝态氮营养与大豆幼苗的抗氰呼吸[J].植物生理学报,1997,2:204~208.
    82.宋登有.龙井43速生栽培技术[J].中国茶叶,2003,4:21.
    83.宋娜,郭世伟,沈其荣.不同氮素形态营养及水分胁迫对分蘖期水稻水分吸收及光合特性的影响[J].南京农业大学学报,2006,29 (4):64~69.
    84.孙霞,胡尚连,曹颖,等.氮肥形态对不同HMW2GS类型春小麦主要品质指标的调控效应[J].麦类作物学报,2007,27 (3):503~507.
    85.孙传范,戴延波,曹卫星.不同施氮水平下增铵营养对小麦生长和氮素利用的影响[J].植物营养126与肥料学报,2003,9(1):33~38.
    86.孙新,施卫明.氮素形态对水稻蔗糖分配的影响[J].安徽农业科学,2008,36(13):5 344~5 346,5677.
    87.唐明熙.茶树鲜叶中氨基酸含量变化对茶类适制性的影响[J].氨基酸和生物资源,1996,18(1):41~43.
    88.陶汉之,王镇恒.我国茶树光合作用研究进展及发展趋势[J].茶叶科学,1995,15(1):1~8.
    89.陶汉之.茶树光合日变化研究[J].作物学报,1991,17(6):444~451.
    90.田霄鸿,李生秀,王清君.几种作物NO3-吸收动力学参数测定方法初探[J].土壤通报,2001,32(1):16~18.
    91.田霄鸿,王朝辉,李生秀.不同氮素形态及配比对蔬菜生长和品质的影响[J].西北农业大学学报,1999,27(2):6~10.
    92.宛晓春.茶叶生物化学(第三版)[M].中国农业出版社,2003:409~417.
    93.汪建飞,沈其荣,周毅等.不同铵硝比对菠菜有机酸和淀粉含量的影响[J],中国农业科学,2008,41(4):1 100~1 107.
    94.汪晓丽,封克,盛海君,等.不同水稻基因型苗期NO3-吸收动力学特征及其受吸收液中NH4+的影响[J].中国农业科学,2003,36 (11):1 306~1 311.
    95.王娜,陈国祥,邵志广.不同形态氮素配比对水稻光合特性的影响[J].江苏农业学报,2002,18(1):18~22.
    96.王波,王梅农,赖涛,沈其荣.不同形态氮素营养对生菜光合特性的影响[J].南京农业大学学报,2007,30 (4):74~77.
    97.王常红,汪东风.栽培技术对茶树春梢生长及某些生理特性的影响[J].作物学报,1995,21(6):752~755.
    98.王晶英,敖红,张杰等.植物生理生化实验技术与原理[M].东北林业大学出版社,2003:101.
    99.王瑞宝,时映,夏开宝,等.氮肥形态及揭膜对烤烟生长及产量品质的影响[J].中国农学通报,2007,23(10):449~453.
    100.王小纯,熊淑萍,马新明.不同形态氮素对专用型小麦花后氮代谢关键酶活性及籽粒蛋白质含量的影响[J].生态学报,2005,25(4):802~807.
    101.王效举.土壤条件与茶叶品质关系的研究[J].茶叶通讯,1994,2:6~9
    102.王新超,杨亚军,陈亮.茶树谷氨酸合酶的提取与活性测定[J].中国茶叶,2004,5:10~11.
    103.王新超,杨亚军,陈亮,等.茶树氮素利用效率相关生理生化指标初探[J].作物学报,2005,31(7):926~931.
    104.王余龙,姚有礼,刘宝玉,等.不同生育时期氮素供应水平对杂交水稻根系生长及其活力的影响[J].作物学报,1997,23(6):699~706.
    105.魏海燕,张洪程,张胜飞等.不同氮利用效率水稻基因型的根系形态与生理指标的研究[J].作物学报,2008,34(3):429~436.
    106.吴楚,王政权,范志强.氮素形态处理下水曲柳幼苗养分吸收利用与生长及养分分配与生物量分配的关系[J].生态学报,2005,25(6):1 282~1 287.
    107.吴芳,高迎旭,宋娜等.氮素形态及水分胁迫对水稻根系生理特性的影响[J].南京农业大学学报,2008,31 (1):63~66.
    108.吴金芝,李友军,黄明,等.不同形态氮素对弱筋小麦籽粒淀粉积累及其相关酶活性的影响[J].麦类作物学报,2008 ,28 (1):118~123.
    109.吴姗,骆耀平.嫁接茶树氨基酸含量变化及分析[J].茶叶,2000,26(2):75~77.
    110.吴洵.龙井43的生育习性及配套栽培技术.
    111.肖凯,张树华,邹定辉,等.不同形态氮素营养对小麦光合特性的影响[J].作物学报, 2000,26 (1):53~58.
    112.须海荣.浙江茶树资源光合特性研究[J].浙江农业大学学报,1992,增刊(11):32~33.
    113.徐光辉,熊淑萍,王璐等.氮素形态对烤烟成熟期叶片组织结构及叶绿素含量的影响[J].中国农学通报,2008,24(9 ):233~236.
    114.许如意,别之龙,黄丹枫.不同氮素形态配比对网纹甜瓜干物质分配和氮代谢的影响[J].农业工程学报,2005,21(1):147~150.
    115.杨丽琴,封克,夏小燕,等.不同pH和不同氮素形态对小麦根中钙分布的影响[J].植物营养与肥料学报2007,13 (1):77~80.
    116.杨肖娥,孙羲.不同水稻品种NH4+和NO3-吸收的动力学[J].土壤通报,1991,22(5):222~224.
    117.杨亚军.中国茶树栽培学[M].上海:上海科学技术出版社,2005,1: 10~20,374~390.
    118.杨耀松.茶树氮素营养研究[J].茶叶通讯,1996,1: 16~18.
    119.叶乃兴.茶树的叶色、光合色素与单叶净光合速率的相关分析[J].茶叶科学简报,1990,4 (2):12~13.
    120.印莉萍,刘祥林,林忠平,等.植物谷氨酰胺合成酶基因及基因表达[J].生物工程进展,1995,15(2):36~41.
    121.张传胜,王余龙,龙银成,等.影响籼稻品种产量水平的主要根系性状[J].作物学报,2005,31(2):137~143.
    122.张福锁,樊小林,李晓林.土壤与植物营养研究新动态:第二卷[M].北京:中国农业出版社,1995 :42~75.
    123.张莉.茶儿茶素和生物碱的HPLC分析[J].茶叶科学,1995,15(2):141~144.
    124.张树清,王艳玲.氮素形态对蔬菜营养液PH及磷锌铁吸收的研究[J].甘薯农业科技, 2001,7:33~34.
    125.张文锦.乌龙茶鲜叶品质性状及其施肥调控[J].茶叶科学技术,1995,1:6~9.
    126.张宪政,陈凤玉,王荣富.植物生理学实验技术[J].沈阳:辽宁科学技术出版社,1994.
    127.张新要,刘卫群,易建华.红壤、水稻土上不同氮素形态配比对烤烟碳氮代谢关键酶活性的影响[J].云南农业大学学报,2005,20(2):225~230.
    128.张彦东,范志强,王庆成,等.不同形态N素对水曲柳幼苗生长的影响[J].应用生态学报,2000,11:665~667.
    129.赵建荣,樊卫国.氮素形态对川梨培养介质pH及根系生长发育的影响[J].山地农业生物学报,2005,24(2):128~130.
    130.赵建荣,秦改花.不同氮形态配比对菠菜营养品质及抗氧化酶活性的影响[J].土壤通报,2008,39(5):1 067~1 070.
    131.赵首萍,施卫明,赵学强.不同氮效率水稻品种苗期吸氮效率差异及其机理研究[J].土壤,2006,38(4):400~409.
    132.赵首萍,施卫明.水稻NH4+转运蛋白基因OsAMT1.1 ~ 1.3,OsAMT3.1和OsAMT4.1表达部位及表达特性初析[J].土壤,2007,39 (3):460~464.
    133.赵婴荣主编.无公害蔬菜产品质量监测技术规范手册[M].中国农业大学出版社,2003: 127~132.
    134.赵越,马凤鸣,张多英.甜菜对不同氮素吸收动力学的研究[J].东北农业大学学报,2006,37(3):294~298.
    135.赵越,马凤鸣,王丽艳等.不同氮源对甜菜蔗糖合成酶的影响[J].黑龙江农业科学,2001,2:11~12.
    136.赵越,魏自民,马凤鸣.不同水平铵态氮对甜菜硝酸还原酶和谷氨酰胺合成酶活力的影响[J].中国糖料,2003(1):22~25.
    137.郑朝峰.氮素形态对小麦叶片谷氨酸合成酶的影响[J].植物生理学报,1986,4:46~48.
    138.中国科学院植物生理研究所.现代植物生理学实验指南[M].科学出版社,2003:133~162,207~223.
    139.周晓红,王国祥,杨飞等.空心菜对不同形态氮吸收动力学特性研究水土保持研究[J], 2008, 15(5):84~86.
    140.庄雪岚,徐南眉,陈芳.茶树光合作用的基本变化趋势[J].茶叶科学,1964,(1):33~37.
    141.宗会,温华东,张燕,等.氮肥形态、用量和种植密度对香料烟光合作用的影响[J].烟草科技,2004 (1):33~35.
    142.邹春琴,李春俭,张福锁.铁和不同形态氮素对玉米植株吸收矿质元素及其在体内分布的影响[J].植物营养与肥料学报,1996,2(1):68~73.
    143.邹春琴,王晓凤,张福锁.铵态氮抑制向日葵生长的作用机制初步探讨[J].植物营养与肥料学报,2004,10(1):82~85.
    144. Aslam M., Travis R., Huffaker R.. Comparative kinetics and reciprocal inhibition of nitrate and nitrite uptake in roots of uninduced and induced barley (Hordeum vulgare L.) seedlings[J]. Plant Physiology,1992, 99: 1 124~1 133.
    145. Baey M.V., Kiriukhin M.Y., Tsygankov Y.D.. Regulation of ammonia assimilation in an obligate methylotroph Methylobacillus flagellatum under steady-state and transient growth conditions[J]. Antonie van Leeuwenhoek, 1997, 71: 353~361.
    146. Boxman A .W ., Roelofs J .G .M . Some effects of nitrate versus ammonium nutrition on the nutrion fluxes in Pinussylvestris seedling. Effects of mycorrhizal infection[J]. Can. J. Bot., 1988,66: 1 091~1 097.
    147. Chai X.Q., Yin L.P., Liu X.L., et al. Influence of different concentrations of NO3- and NH4+ on the activity of glutamine synthetase and other relevant enzymes of nitrogen metabolism in wheat roots[J]. Acta Botanica Sinica,1996,38(10): 803~808.
    148. Colmer T.D. , Bloom A.J. . A comparison of NH 4+ andNO3- net fluxes along roots of rice and maize [J] .Plant ,Cell and Environment ,1998 ,21: 240~246.
    149. Coschigano K.T., Melo O.R., Lim J., et al. Arabidopsis gls mutants and distinct Fd-GOGATgenes:Implications for photorespiration and primary nitrogen assimilation[J]. Plant Cell,1998,10: 274~752.
    150. Crawford N.M., Glass A.D.M.. Molecular and physiological aspects of nitrate uptake in plants[J] . Trends in Plant Science ,1998 ,3 : 389~395.
    151. Cren M., Hirel B.. Glutamine synthetase in higher plant: Regulation of gene and protein expression from the organ to the cell[J]. Plant Cell Physiol.,1999,40: 1 187~1 193.
    152. Cruz C., Lips S. H., Martins L.M A. The effect of nitrogen on photosynthesis of carbon at high CO2 concentrations[J]. Physiology Plant,1993,89: 552~556.
    153. Dong C.X., Shen Q.R. , Wang G. Tomato growth and organic acid changes in response to partial replacement of NO3--N by NH4+-N[J]. Pedosphere, 2004, 14: 159~164.
    154. Engels C., Marschner H.. Influence of the form nitrogen supply on root uptake and translocation of cations in the xylem exudates of maize[J]. Journat of Experimental Botany,1993,44: 1 695~1 701.
    155. Epstein E.. Mineral Nutrition of Plant[M].Wiley,New York, 1972.
    156. Ericsson T.. Growth and shoot: Root allocation of seedlings in relation to nutrient availability[J]. Plant Soil, 1995, 168: 205~214.
    157. Farquhar G.D., Sharkey T.D.. Stomatal conductance and photosynthesis[J]. Ann Rev Plant Physiol, 1982,33:317~345.
    158. Forde B.G., Clarkson D.T.. Nitrate and ammonium nutrition of plants: physiological molecular perspectives[J]. Advances in Botanical Research, 1999, 30: 1~90.
    159. Forde B.G.. Local and long-range signaling pathways regulating plant responses to nitrate[J]. Annu. Rev. Plant. Biol. , 2002, 53: 203~224.
    160. Forde B.G.. Nitrate transporters in plants: structure, function and regulation[J]. Biochimicaet Biophysica Acta,2000,1465: 219~235.
    161. Glass A.D.M., Shaff J.E., Kochian L.V.. Studies of the uptake of nitrate in barley.Ⅳ: Electrophysiology[J]. Plant Physiology,1992,99: 456~463.
    162. Granato T.C., Raper C.D.. Proliferation of maize roots in response to localized supply of nitrate[J]. Journal of Experimental Botany, 1989, 40: 263~275.
    163. Hirose S., Hayakawa T., Yamaya T.. Inducible accumulation of mRNA for NADH-dependent glutamate synthase in roots in response to ammonium ions[J]. Plant Cell Physiol.,1997, 38: 1 295~1 297.
    164. Huang N.C., Chiang C.S., Crawford N.M., et al. CHL1 encodes a componet of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots[J]. The Plant Cell, 1996,8: 2 183~2 191.
    165. Ishiyama K., Hayakawa T., Yamaya T.. Expression of NADH-dependent glutamate synthase protein in the epidermis and exodermis of rice roots in response to the supply of ammonium ions[J]. Planta ,1998,204: 288~294.
    166. Kosegarten H., Grolig F., Esch A., et al. Effect s of NH 4+ ,NO 3 -and HCO3- on apoplast pH in the cuter cortex of root zones of maize ,as measured by the fluorescence ratio of fluorescein boronic acid [J] . Planta ,1999 ,209: 444~452.
    167. Kronzucker H.J., Britto D.T., Davenport R.J., et al .Ammonium toxicity and the real cost of transport [J] .Trends in Plant Science , 2001 , 6 (8): 335~337.
    168. Kronzucker H.J., Glass A.D.M., Siddiqi M.Y.. Inhibition of nitrate uptake by ammonium in barley[J]. Analysis of component fluxes. Plant Physiology, 1999,120: 283~291.
    169. Kronzucker H.J., Siddiqi M.Y., Glass A.D.M. Kinetics of NH4+influx in spruce[J]. Plant Physiol, 1996,110: 773~779.
    170. Kronzucker H.J., Siddiqi M.Y., Class A.D.M., et al. Nitrate ammonium synergism in rice: a subcellular flux analysis[J]. Plant Physiology, 1999, 119: 1 041~1 045.
    171. Kronzucker H.J., Siddiqi, M.Y., and Glass, A.D.M.. Conifer root discrimination against soil nitrate and the ecology of forest succession[J]. Nature ,1997, 385: 59~61.
    172. Ladha J.K.,Kirk G.J.D.,Bennett J.,et al.Opportunities for increased nitrogen use efficiency from improved lowland rice germplasm[J].Field Crops Research,1998,56: 41~7l.
    173. Lam H.M., Coschigano K.T., Oliveira I.C., et al.The molecular genetics of nitrogen assimilation into amino acids in higher plants[J]. Ann Rev Physiol Plant Mol Biol,1996,47: 569~593.
    174. Lea P. J., Miflin B.J.. Alternative route for nitrogen in higher plants[J].Nature,1974, 251: 614~616.
    175. Lemoine R.. Sucrose transporters in plants :update on function and structure[J].Biochim Biophys Acta ,2000 ,1465(1/ 2) : 246~262.
    176. LenkaⅤ., Edita M., Olga V., et al.. Growth and biomass allocation of sweet flag (Acorus calamus L.) under different nutrient conditions[J]. Hydrobiologia, 2004, 518: 9~22.
    177. LI Z.S., Zhang C.F, Lin Q.H., et al. Effect of exogenous Ammonium on glutamine synthetase,glutamate synthase,and glutamate dehydrogenase in the root of rice seedling[J]. Wuhan University Journal of Natural Science,1999, 4(3): 358~362.
    178. Lidia S., Zed R., Cai X.T.. The effect of nitrogen nutrition on cluster root formation and proton extrusion by Lupinus albums[J]. Annals of botany, 2002,89: 435~442.
    179. Lillo C., Meyer C., Lea U.S., et al. Mechanism and importance of post-translational regulation of nitrate reeducates[J]. Journal of Experimental Botany, 2004, 55(401): 1 275~1 282.
    180. Majdi H., Persson H.. Effects of ammonium sulphate application on the chemistry of bulk, soil rhizosphere, find and fine-root distribution in a Picea abies L.Karst Stand[J]. Plant and Soil,1995,168: 151~160.
    181. Malagoli M., Dal C.A., Quaggiotti S., et al.. Differences in nitrate and ammonium uptake between Scots pine and European larch[J]. Plant Soil,2000, 221: 1~3.
    182. Margolis H. A., Vezina L. P., Ouimet R., et al. Relation of light and nitrogen source to growth, nitrate reductase and glntamine synthetase activity of jack pine seedlings[J]. Physiol Plant,1988, 72: 790~795.
    183. Marschner H., Kirkby E.A., Cakmak T.. Effect of mineral nutritional status on shoot-root partitioning of photoassilates and cycling of mineral nutrients[J]. Journal of Experiment Botany , 1996 , 47 :1 255~1 263.
    184. Marschner H., Hausslings M., and George E.. Ammonium and nitrate uptake rates and rhizosphere pH in non-mycorrhizal roots of Norway spruce Picea abies (L.) Karst.[J]. Trees,1991, 5: 14~21.
    185. Mengel K., Krikby E.A.. Principles of Plant Nutrition [M].International Potash Institute, Switzerland,1987.
    186. Mengel K. Iron chlorosis of corn related to alkalinity[J]. Physiol. Plant, 1988, 72: 460~465.
    187. Miflin B. J., Dimah Z. H.. The role of glutamine systhetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops[J]. Journal of Experimental Botany,2002, 53(370): 979~987.
    188. Miranda-Ham M.L., Loyola-Vargas V.M.. Ammonia assimiliation in Canavalia ensiformis plants under water and salt stress[J]. Plant cell Physiol.,1998,29: 747~753.
    189. Muller B., Touraine B.. Inhibitions of NO3- uptake by various phloem-translocated amino acids in soybean seedlings[J]. Journal of Experimental Botany, 1992,43: 617~623.
    190. Munos S., Cazettes C., Fizames C., et al. Transcript profiling in the chl1-5mutant of Abrabidopsis reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter, NRT2.1[J]. Plant Cell,2004,16(9): 2 433~2 447.
    191. Ochs G., Schoth G., Trischler M., et al. Complexity and expression of the glutamine synthetase multigene family in the amphidiploid crop Brassica napus[J]. Plant Mol. Biol.,1999,39: 395~405.
    192. Orsel M., Filleur S., Fraisier V., et al. Nitrate transport in plants: which gene and which control[J]. Journal of Experimental Botany,2002,53(370): 825~833.
    193. Ota K., Yamamoto Y.. Effects of different nitrogen sources on glutamine synthetase and feeredoxin dependent glutamate synthase activites and on free amino acid composition in radish[J]. Soil Sci. Plant Nutr., 1990,36: 645~652.
    194. Parry G., Woodall J., Nuotio S., et al. Glutamine synthetase isoforms in Trientalis europaea: a biochemical and molecular approach[J]. Plant and Soil , 2000,221: 39~45.
    195. Qusji G.O., Madu W.C.. Ammonium ion salvage by glutamate dehyrogenase duringe defence response in maize[J]. Phytochemistry,1996,42: 1 491~1 498.
    196. Ruan T.Y., Zhang F.S., Mink H.W.. Effect of nitrogen form and phosphorus source on the growth ,nutrient uptake and rhizosphere soil properth of Camellia sinenisis L[J]. Plant and Soil,2000,223: 63~71.
    197. Schachtman D.P., Schroeder J.I.. Structure and transport mechanism of a high-affinity potassium transporter from high plants[J]. Nature,1994,370: 655~658.
    198. Schubert S., Yan Y.. Nitrate and ammonium nutration of plants : Effects on acid/base balance and adaptation of root cell plasmalemma H+ ATPase[J]. Zeit schrift fur Pflanzenernahrung und Bodenkunde , 1996 , 160 : 275~281.
    199. Sechley K. A., Yamaya T., Oaks A.. Compartment of nitrogen assimilation in higher plants[J]. Int Rev Cytol,1992,134: 85~163.
    200. Serna M.D., Legaz B.F., Primo M.E.. The influence of nitrogen concentration and ammonium/nitrate ratio on N-uptake, mineral composition and yield of citrus[J]. Plant and Soil, 1992,147: 13~23.
    201. Shelden M.C., Dong B., Bruxelles D.G., et al. Arabidopsis ammonium transporters, AtAMT1.1 and AtAMT1.2 have different biochemical properties and functional roles[J]. Plant Soil, 2001,231: 151~160.
    202. Shiviv A., Hazan O., Neulnanm P. M., Hapln J.. Increasing salt tolerance of wheat by mixed ammonium nitrate nutrition[J]. Journal of Plant Nutrition,1990,10: 1 227~1 239.
    203. Sitt M., Scheible W.R.. Nitrate acts as a signal to control gene expression, metabolism and biomass allocation. In: Kruger N.J., et al, eds.Regulation of primary metabolic pathways in plants[J]. Netherlands: Kluwer Academic Publishers, 1999: 275~306.
    204. Smith F.W., Rae A.L., Hawkesford M. J.. Molecular mechanisms of phosphate and sulphate transport in plants[J]. Biochimica et Biophysica Acta, 2000,1465: 236~245.
    205. Takei K., Takahashi T., Sugiyama T., et al. Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytok inin[J]. J. E xp. Bot. , 2000, 53: 971~977.
    206. Teixeira J., Pereira S., Canovas F., et al. Glutamine synthetase of potato (Solanum tuberosum L. cv. Desiree) plants: cell- and organ-specific expression and differential developmental regulation reveal specific roles in nitrogen assimilation and mobilization[J]. Journal of Experimental Botany, 2005, 56(412): 663~671.
    207. Tobin A.K., Yamya T..Cellular compartmentation of ammonium assimilation in rice and barely[J]. Journal of Experimental Botany, 2001,52(356): 591~604.
    208. Unkles S.E., Hawker K.L., Grieve C., et al. cnrA encodes a nitrate transporter in Aspergillus nidulans[J]. Proceedings of the National Academy of Sciences, USA,1991, 88: 204~208.
    209. Vanoni1 M.A, Dossena1 L., Robert H., et al. Structure–function studies on the complex iron–sulfur flavoprotein glutamate synthase: the key enzyme of ammonia assimilation[J]. Photosynthesis Research, 2005, 83: 219~238.
    210. Wang M.Y., Siddiqi M.Y., Ruth T.J., et al. Ammonium uptake by rice roots: Kinetics of 13NH4+ influx across the plasmalemma[J]. Plant Physiol, 1993,103: 1259~1267.
    211. Wang R., Liu D., Crawford N.M.. The Arabidopsis CHL1 protein plays a major role in high-affinity nitrate transport in higher plants[J]. Proceedings of the National Academy of Sciences, USA,1999,95: 15 200~15 205.
    212. Wang X.B., Wu P., Xia M., Wu Z.C., et al. Identification of genes enriched in rice roots of the local nitrate treatment and their expression patterns in split-root treatment[J]. Gene, 2002, 297: 93~102.
    213. Wang X.B., Wu P.,Hu B., et al. Effects of Nitrate on the Growth of Lateral Root and Nitrogen Absorption in Rice[J]. Acta Botanica Sinica , 2002, 44 ( 6): 678~683.
    214. Wang Y.Q. Zhang J.J., Zhu G.H..Differential expression of proteins in rice leaves cultivated with different forms of nitrogen nutrients[J]. Journal of Plant Physiology and Molecular Biology, 2006, 32 (4): 403~410,403.
    215. Yamaya T., Tanno H., Hirose N., et al. A supply of nitrogen cause increase in the level of NADH-dependeng glutamate synthase protein and in the activity of the enzyme in roots of rice seedlings[J]. Plant CellPhysiol.,1995,36: 1 197~1 204.
    216. Yang C.H.,Yang L. Z.,YangY.X.,et al.Rice root growth and nutrient uptake as influenced by organicmanure in continuously and alternately flooded paddy soils[J].Agricultural Water Management,2004,70(1): 67~81.
    217. Zhang H., Andrea J., Peter W., et al. Dual pahtways for regulation of root branching by nitrate[J]. Plant biology,1999,96(11): 6 529~6 534.
    218. Zhu Z.J., Qian Y.R., Wolfgang P.. Effect of nitrogen form on the activity of tonoplast pyrophosphatase in tomato roots[J]. Acta Botanica Sinica, 2001, 43(11): 1 146~1 149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700