精养虾池氮磷收支研究及养殖效果分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选择海南省文昌市正瑞水产有限公司龙马养殖基地和琼海市博鳌对虾养殖场的高位虾塘作为研究对象,针对不同养殖模式、不同养殖季节和放养不同的虾苗品系,对凡纳滨对虾(Litopenaeus vannamei)的生长、养殖水质、底质和池塘氮磷收支等方面进行了系列的研究。正瑞(Z)放养由进口SPF亲虾繁育的一代苗,并根据不同放养季节设置为夏季组(ZS)、秋季组(ZF)、冬季组(ZW和ZWb);而博鳌冬季组(BW)放养由本地选育亲虾繁育的本地苗。正瑞ZWb实验组采用分段养殖,其余各实验组采用常规养殖模式。
     研究结果表明,在对虾高位池精养生产模式中,各实验池塘氮、磷输入总量分别为:808.93-1155.58kg/hm2和160.08-239.49kg/hm2。其中饲料是池塘氮磷输入的主要形式,所占比例分别达到91.76%-93.68%和94.55%-96.97%;其次是进水和肥料,而降雨和虾苗所输入的氮磷在池塘总输入中所占比例都很小。
     各实验池塘以收获对虾形式输出氮磷分别占池塘氮磷输入总量的29.46%-40.46%和12.64%-17.41%,不同实验组收获对虾输出氮磷在输入总量中所占比例的差异主要受养殖季节和虾苗品系的影响。同样是放养一代苗,冬季ZW组收获对虾输出氮磷在输入总量中所占比例分别为33.33%-38.46%和14.39%-16.66%,秋季ZF组为29.87%-38.44%和12.78%-16.56%;而夏季ZS组显著较低(P<0.05),仅为29.46%-31.58%和12.64-13.49%。夏季水温高,有机物分解速度快,水质、底质调控难度大,容易发生“耗底”现象,造成夏季对虾养殖成活率和收获对虾输出氮磷在输入总量中比例偏低。与放养一代苗的ZW组相比,放养本地苗的BW组收获对虾氮输出量在输入总量中所占比例显著较低(P<0.05),仅为30.18%-36.37%。进行分段养殖的ZWb组收获对虾输出氮磷在输入总量中所占比例最高,分别为37.63%-40.46%和16.21%-17.41%,与普通养殖模式的正瑞冬季ZW组差异不显著。
     养殖季节和对虾苗种品系对养殖效果有显著影响。夏季ZS组对虾平均生长速度达到0.175g/d,分别比秋季ZF组和冬季普通ZW组高73.0%和139.3%。冬季ZW组成活率为77.70%-87.75%,显著高于夏季ZS组和秋季ZF组(P<0.05)。与相同养殖季节放养一代苗的ZW组相比,放养本地苗的BW组养殖成活率为62.10%-72.30%,单位面积产量为8821-9878kg/hm2,均显著较低(P<0.05)。采用分段养殖的ZWb组养成池塘单造使用周期缩短56.13%,且对虾收获后底泥有机质增加幅度比ZW组低9.41%。
     实验过程中,养殖水源水质较好,基本符合渔业水质标准(GB 11607-1989)的要求。而收获时池水可溶性无机氮和可溶性无机磷平均浓度分别达到海水富营养化标准(DIN,0.30mg/L; DIP,0.045mg/L)的7.03(DIN)倍和6.50倍(DIP);并且营养状态指数(E,3886-6558)和有机污染指数(A,26.32-30.25)严重超过高富营养(E>3.0)和严重污染(A>4.0)的标准。
     各实验池塘底泥均为弱酸性,且对虾收获后池塘底泥pH值较放养前出现不同程度的下降。正瑞ZS组养殖过程中换水量(544m3/hm2·d)最大,底泥沉积的氮磷分别占池塘氮磷输入总量的14.10%-20.85%和27.59%-38.76%,显著低于其他各实验组(P<0.05)。换水量的增加有助于降低养殖水体的有机物负荷,减轻池塘底部有机物的淤积程度。根据本研究结果的计算,平均每生产1t对虾,大约有54.93kg的氮和15.31kg的磷通过养殖废水排放和池塘清洗等途径进入周边的海域。
The research was taken at the higher-place shrimp ponds of Longma culture base of Zhengrui Aquaculture Co., Ltd in Wenchang city and Bo'ao shrimp farm in Qionghai city of Hainan provience. The growth status of Litopenaeus vannamei, water quality, sediments and nitrogen and phosphorus budget of ponds were studied systematically, according to the different culture modes, culture seasons and shrimp larvae strains. In Zhengrui the shrimp stocking at summer (ZS), fall (ZF), winter (ZW and ZWb), and the shrimp larvae strain were the same first filial generation (Fl) breeded by batches of SPF Litopenaeus vannamei, while in the Bo'ao winter trial (BW), the cultured shrimp larvae was breeded by local selected brood stock. In addition, trial ZWb was piecewise cultured, while others were general cultured.
     The result showed the total inputs of nitrogen and phosphorus in the shrimp ponds was 808.93-1155.58kg/hm2(N) and 160.08-239.49kg/hm2(P) respectively. Among which the feed was the main source of nitrogen and phosphorus inputs, which accounted for 91.76%-93.68% and 94.55%-96.97%, and water inflow and fertilizer followed by, while the rainfall and shrimp larvae account for only a little.
     Within the ponds, the nitrogen and phosphorus was converted to harvested shrimp accounted for 29.46%-40.46% and 12.64%-17.41% of the total inputs. The outputs of nitrogen and phosphorus in the form of harvested shrimp were significantly affected by the shrimp larvae strains and culture seasons. When the larvae strain were the same Fl, the outputs of nitrogen and phosphorus in the form of harvested shrimp of the trial ZW were 33.33%-38.46% and 14.39%-16.66% respectively, and the trial ZF were 29.87%-38.44% and 12.78%-16.56% respectively, while trial ZS were 29.46%-31.58% and 12.64%-13.49%. The outputs of nitrogen and phosphorus in the form of harvested shrimp in summer were significantly lower than winter and fall (P<0.05), it may because that the water temperature was higher, which enhanced the respiration of organism, leading to the low survival rate and percentage of nitrogen and phosphorus outputs for the shrimp. The outputs of nitrogen in the form of harvested shrimp of trial BW were 30.18%-36.37%, which were significantly lower than ZW trial (P<0.05). The highest percentage of nitrogen and phosphorus outputs in the form of harvested shrimp were 37.63%-40.46% and 16.21%-17.41%, which was appeared in trial ZWb, while had no significantly difference with the general cultured ZW trial.
     The production performances were greatly affected by the shrimp larvae strains and culture seasons. Because of the high temperature, the average growth rate of trial ZS reached 0.175 g/d in summer, which was 73.0% and 139.3% higher than the trial ZF in fall and trial ZW in winter respectively. The survival rates of trial ZW was 77.70%-87.75%, which was significantly higher than trial ZS and trial ZF (P<0.05). While in the same culture season, the survival rates of trial BW was 62.10%-72.30% and the yield per unit area was 8821-9878kg/hm2, which was significantly lower than the trial ZW (P<0.05). Trial ZWb which was piecewise cultured shorted the culture cycle by the 56.13%, at the same time, the increase in organic matter of the sediments was 9.41% lower than the trial ZW.
     The quality of source was in accordance with water quality standard for fisheries (GB 11607-1989). While the dissolved inorganic nitrogen and phosphorus of the water were 7.03 and 6.50 times as much as the eutrophication standard (DIN,0.30mg/L; DIP,0.045mg/L) after the shrimp cultured. Furthermore, the trophic state index (E,3886-6558) and the organic pollution index (A,26.32-30.25) exceeded the high eutrophication standard (E>3.0) and serious pollution standard (A>4.0).
     The sediment was shown light acidic and it tended to decrease with the culture. The trial ZS with the maximum water exchanged showed the least rate in budget of nitrogen (14.10%-20.85%) and phosphorus (27.59%-38.76%) in the sediments. It was significantly lower than other trials (P<0.05). It could decrease the nutrient loading rates of the water and sediment when increase the quantity of exchanged water. According to the study,59.43kg nitrogen and 15.31kg phosphorus will be released to the environment by effluent discharging and pond sediment washing for one ton of shrimp production.
引文
[1]陈晓汉,陈琴,谢达祥.南美白对虾含肉率及肌肉营养价值的评定[J].水产科技情报,2001,28(4):165-168.
    [2]潘英,王如才,罗永巨等.海水和淡水养殖南美白对虾肌肉营养成分的分析比较[J].青岛海洋大学学报,2001,31(6):828-834.
    [3]傅玉祥,柳正.中国渔业统计年鉴[M].北京:中国农业出版社,2004:203-210.
    [4]刘增胜,柳正.中国渔业统计年鉴[M].北京:中国农业出版社,2007:204-207.
    [5]张平远.美国对水产品的技术性贸易壁垒[J].水产科技情报,2005,32(2):94.
    [6]王玉堂,李清.日本的渔药管理体制与管理[J].中国水产,2006,(8):95-97.
    [7]廖泽芳,宁凌.中国对虾产业分析[J].海洋开发与管理,2009,26(4):31-35.
    [8]陈琴,陈晓汉.不同盐度养殖的南美白对虾含肉率及其肌肉营养成分[J].海洋科学,2001,25(8):16-18.
    [9]宋盛宪,郑石轩.南美白对虾健康养殖[M].北京:海洋出版社,2001,36-46.
    [10]王兴强,马生生,董双林等.凡纳滨对虾生物学及养殖生态学研究进展[J].海洋湖沼通报,2004,(4):94-100.
    [11]张伟权.南美白对虾半精养生产技术指南[J].海洋科学,1994,(3):3-55.
    [12]张伟权,于琳江,童宝福等.南美白对虾全人工授精技术研究[J].海洋与湖沼,1993,24(4):428-432.
    [13]胡超群,任春华,沈琪等.凡纳对虾和细角对虾规模化全人工繁殖技术的研究[A].第三届全国海珍品养殖研讨会论文集,2001.
    [14]沈俊宝,张显良.引进水产优良品种及养殖技术[M].上海:金盾出版社,2002:300-328.
    [15]Chen J C, Lin J N, Chen C T, et al. Survival, growth and intermolt period of juvenile Penaeus chinensis (Osbeck) reared at different combinations of salinity and temperature [J]. J Exp Mar Biol Ecol,1999,204(1-2):169-178.
    [16]田相利,董双林,吴立新等.恒温和变温下中国对虾生长和能量收支的比较[J].生态学报,2005,25(11):2811-2817.
    [17]李松青,林小涛,李卓佳等.摄食对凡纳滨对虾耗氧率和氮、磷排泄率的影响[J].热带海洋学报,2006,25(2):44-48.
    [18]李健,孙跃,宋晓玲.中国对虾行为规律研究[J].海洋科学,1994,17(5):9-11.
    [19]李玉全,李健,王清印等.溶解氧含量和养殖密度对中国对虾生长的影响[J].中国水产科学,2005,12(06):751-756.
    [20]庄雪峰.我国对虾主要养殖种类的耐盐性[J].水产养殖,1992,5(19):28-29.
    [21]王吉桥,罗鸣.水温和盐度对南美白对虾幼虾能量收支的影响[J].水产学报,2004,28(2):161-166.
    [22]黄凯,王武,卢洁等.饲料中钙、磷和水体盐度对南美白对虾幼虾生长的影响[J].海洋科学,2004,28(2):21-26.
    [23]吴凯,时翔,徐晓群等.急性盐度变化对凡纳滨对虾仔虾呼吸和排泄代谢的影响[J].厦门大学学报,2007,46(1):149-154.
    [24]Bray W A, Lawrence A L, Leung Trojillo J R. The effect of salinity on growth and survival of Penaeus vannamei, with observations on the interaction of 1HHN virus and salinity [J]. Aquaculture,1994,122(2-3):133-146.
    [25]朱春华.盐度对南美白对虾生长性能的影响[J].水产科技情报,2002,29(4):166-168.
    [26]孙舰军.虾池生态系统中诸因子对虾体的影响[J].海洋科学,1997,(2):24-25。
    [27]罗杰,钟志华,罗伟林.凡纳滨对虾(Litopenaeus Vannamei)高位池养殖中几个单项因子试验[J].海洋湖沼通报,2005,(3):38-43.
    [28]王方国.对虾养殖水质与饵料的关系研究[J].东海海洋,1995,13(2):9-15.
    [29]Tenore K R, Boyer L F, Cal R M, et al. Coastal upwelling in the Rias Bajas, N W Spain: Contrasting the benthic regimes of the Rias de Arosa and de Muros [J]. J Mar Res,1982, 40(3):701-772.
    [30]Gowen R J, Bradbury N B. The ecological impact of salmonid fanning in coastal waters: a review [J]. Oceanogr Mar Biol Ann Rev,1987, (25):563-575.
    [31]杨庆霄,蒋岳文,张听阳.虾塘残饵腐解对养殖环境影响的研究[J].海洋环境科学,1999,18(2):11-15.
    [32]申玉春,熊邦喜,叶富良等.凡纳滨对虾高位池养殖系统的水质理化状况[J].湛江海洋大学学报,2006,26(1):17-21.
    [33]孙国铭,汤建华,仲霞铭.氨氮和亚硝酸氮对南美白对虾的毒性研究[J].水产养殖, 2002,(1):22-24.
    [34]姚庆桢,臧维玲,戴习林等.亚硝酸盐和氨对凡纳对虾和日本对虾幼体的毒性作用[J].上海水产大学学报,2002,11(]):11-21.
    [35]宋盛宪.南美白对虾无公害健康养殖[M].北京:中国农业出版社,2004:104-109.
    [36]柯清水.硝化细菌与水产养殖的关系如何[J].养鱼世界,1999,(1):83-86.
    [37]荣长宽,梁素秀.中国对虾人工养殖生态环境的研究[J].海洋渔业,1990,12(1):10-14.
    [38]胡义波,王玥,姜乃澄.氨态氮、亚硝态氮对罗氏沼虾血细胞及超微结构的影响[J].浙江大学学报,2005,32(6):691-697.
    [39]张亚娟,刘存歧,王军霞,等.氨态氮和亚硝态氮对日本沼虾血细胞数量及血蓝蛋白含量的影响[J].四川动物,2008,27(5):853-854.
    [40]Boyd C E. Water quality:an introduction [M]. Kluwer academic publishers, Norwell Massachusetts, USA,2000, (9):15-23.
    [41]赖子尼,石存斌,吴淑勤.池塘氮、磷浓度及藻相水色的研究[J].中山大学学报论丛,1998,(6):65-69.
    [42]Meybeck M. Carbon, nitrogen, and phosphorus transport by world rivers [J]. American Journal of science,1982, (282):401-450.
    [43]Herber R A. Nitrogen cycling in coastal marine ecosystems [J]. FEMS Microbiolgy Reviews,1999, (23):563-590.
    [44]崔毅,陈碧娟,任胜民等.渤海水域生物化学环境现状研究[J].中国水产科学,1996,3(2):1-12.
    [45]王小平.牛头岛深湾网箱养殖区底质溶液中的氮和磷[J].中国水产科学,1998,5(3):126-128.
    [46]李兰生,林洪.虾池生态系的氮平衡氨水平的生物调控虾池中三氮的动态趋势[J].海洋湖泊通报,1999,(4):53-57.
    [47]韦蔓新,童万平,何本茂等.北海湾磷的化学形态及其分布转化规律[J].海洋科学,2001,25(2):50-53.
    [48]陈水土,苏国成,张跃平等.九龙江口、厦门西海域磷的生物地球化学研究-Ⅲ生物活动参与下的磷形态转化及磷循环估算[J].海洋学报,1994,16(2):63-71.
    [49]邓超冰.海水水质的模糊综合评价模型的比较[J].海洋环境科学,1993,12(2):22-28.
    [50]彭云辉,王肇鼎.珠江河口富营养化水平评价[J].海洋环境科学,1991,10(3):7-12.
    [51]曹立业.关于养虾池水质监测指标的建议[J].水产科学,1996,15(6):22-37.
    [52]项福亭,曲维功,张益额.庙岛海峡以东浅海养殖结构调整的研究[J].齐鲁渔业,1996,13(2):1-4.
    [53]Green B W, Boyd C E. Chemical budgets for organically fertilized fish ponds in the dry tropics [J]. Journal of the World Aquaculture Society,1995,26(3):284-296.
    [54]Funge-Smith S F, Briggs M R P. Nutrient budgets of in intensive shrimp ponds: implication for sustainability [J]. Aquaculture,1998, (164):117-133.
    [55]Paez-Osuna F, Guerrro S R, Ruiz A C. Discharge of nutrients from shrimp farming to coastal waters of the Gulf of California [J]. Marine Pollution Bulletin,1999,38(7):585-592.
    [56]齐振雄,李德尚,张曼平等.对虾养殖池塘氮磷收支的实验研究[J].水产学报,1998,22(2):124-128.
    [57]Christopher J, Nigel P, Peter J T, et al. Nitrogen budget and effluent nitrogen components at an intensive shrimp farm [J]. Aquaculture,2003, (218):397-411.
    [58]Dhirendra P T, Lin C K. Water quality and nutrient budget in closed shrimp (Penaeus monodon) culture systems [J]. Aquacultural Engineering,2003,27 (3):159-176.
    [59]臧维玲,杨明,戴习林等.凡纳滨对虾室内封闭式养殖水质变化与氮收支的试验研究[J].农业环境科学学报,2009,28(5):1019-1024.
    [60]Briggs M R P, Funge-Smith S F. A nutrient budget of some intensive marine shrimp ponds in Thailand [J]. Aquaculture and Fisheries Management,1994, (25),789-811.
    [61]Teichert-Coddington D R, Martinez D, Ramirez E. Partial nutrient budgets for semi-intensive shrimp farms in Honduras [J]. Aquaculture,2000, (190):139-145.
    [62]Hugues Lemonnier, Seabastien Faninoz. Effect of water exchange on effluent and sediment characteristics and on partial nitrogen budget in semi-intensive shrimp ponds in New Caledonia [J]. Aquaculture Research,2006, (37):938-948.
    [63]Daniels H V, Boyd C E. Chemical budgets for polyethylene lined, brackish water ponds [J]. Journal of the World Aquaculture Society,1989,20(2):53-60.
    [64]常杰,田相利,董双林等.对虾、青蛤和江蓠混养系统氮磷收支的实验研究[J].中国海洋大学学报,2006,36(Sup):33-39.
    [65]Be T T, Dung L C and Brennan D. Environmental cost s of shrimp culture in the rice-growing regions of the Mekong Delta [J]. Aquaculture Economics & Management, 1999,3(1):31-42.
    [66]陈雪清.对红树林的生态功能和生物多样性的全面认识及维护[J].林业资源管理,2001,(6):65-69.
    [67]Stenton-Dozey J M E, Jackson L F, Busby A J. Impact of mussel culture on macrobenthic community structure in Saldanha Bay, South Africa [J]. Marine Pollution Bulletin,1999,39 (122):357-366.
    [68]Rees A P, Joint I, Donald K M. Early spring bloom phytoplankton-nutrient dynamics at the Celtic Sea Shelf Edge [J]. Deep-sea Research,1999, (46):483-510.
    [69]Townsend D W, Thomas A C. Winter-spring transition of phytoplankton chlorophyll and inorganic nutrients on Georges bank [J]. Deep-sea Research,2001, (48):199-214.
    [70]Mazzola A, Mirto S, La Rosa T, et al. Fish-fanning effects on benthic community structure in coastal sediments:analysis of meiofaunal recovery [J]. ICES Journal of Marine Science,2000, (57):1454-1461.
    [71]La Rosa T, Mirto S, Favaloro E, et al. Impact on the water column biogeochemistry of a Mediterranean mussel and fish farm [J]. Water Research,2002, (36):713-721.
    [72]Oviatt C, Lane P, Fred F, et al. Phytoplankton species and abundance in response to eutrophication in coastal marine mesocosms [J]. J. Plank. Res.1989, (11):1223-1244.
    [73]Fenchel T M, Riedl R J. The sulfide system:a new biotic community underneath the oxidized layer of marine sand bottoms[J]. Mar Biol,1970, (7):255-268.
    [74]Hein L. Toward improved environmental and social management of Indian shrimp farming [J]. Environ Manage,2002, (29):349-359.
    [75]翟美华.烟台市养虾废水排放及控制[J].海洋环境科学,1996,15(4):58-61.
    [76]孙耀,赵俊.中国对虾养殖中自身有机质污染和急待解决的问题[J].海洋与海岸带开发,1994,11(1):29-32.
    [77]陈桂荣.水化学实验指导[M].北京:中国农业科技出版社,1996:159-160.
    [78]GB/T 12763.4-2007,海洋调查规范第4部分:海水化学要素调[S].
    [79]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999:146-168.
    [80]Blain W A. Ammonia nitrogen loss from streams Discussion [J]. J San Eng Div Am Soc Sov Eng,1969, (95):975-978.
    [81]Weiler R. Rate of loss of ammonia from water to the atmosphere [J]. Fish Res Board, 1979, (36):685-689.
    [82]GB 11607-1989,渔业水质标准[S].
    [83]GB 3097-1997,海水水质标准[S].
    [84]邹景忠,董丽萍,秦保平.渤海湾富营养化和赤潮问题的初步探讨[J].海洋环境科学,1983,2(2):41~54.
    [85]周玉琴.厦门西港海域水质污染状况分析[J].海洋环境科学,1998,17(4):59-64.
    [86]郭卫东,章小明,杨逸萍等.中国近岸海域潜在性富营养化程度的评价[J].台湾海峡,1998,1(17):64-68.
    [87]Lester L J, Pante M J. Penaeid temperature and salinity responses. In:Fast A W, Lester L J (ED), Marine shrimp culture:principles and practices. Elsevier, Amsterdam,1992,515-534.
    [88]Menz A, Bowers A B. Bionomics of Penaeus vannamei Boone and Penaeus stylirostris Stimpson in a lagoon on the Mexican Pacific coast [J]. Estuar Coast Mar Sci,1980, (10), 685-697.
    [89]Wyban J, Walsh W A, Godin D M. Temperature effects on growth, feeding rate and food conversion of the Pacific white shrimp(Penaeus vannamei) [J]. Aquaculture,1995,(138): 267-279.
    [90]谢仁政,刘建勇,范才军等.高位池养殖凡纳滨对虾生长的研究[J].广东海洋大学学报,2007,27(6):50-54.
    [91]宋协法,刘鹏,葛长字.温度、盐度交互作用对凡纳滨对虾耗氧和氨氮、磷排泄的影响[J].渔业现代化,2009,36(2):1-6.
    [92]Racotta L S, Hernadez-Herrera R. Metabolic responses of the white shrimp. Penaeus vannamei, to ambient ammonia [J]. Comp. Biochem. Physiol.2000, (125):437-443.
    [93]颉晓勇,苏天凤,陈文.凡纳滨对虾6个养殖群体遗传多样性的比较分析[J].南方水产,2008,4(6):42-48.
    [94]张海琪,丁雪燕,薛辉利等.南美白对虾两养殖群体遗传多样性的比较分析[J].宁波大学学报:自然科学版,2006,19(1):44-48.
    [95]童馨,龚世圆,喻达辉等.凡纳滨对虾(Litopenaeus vannamei)不同世代养殖群体的遗传多样性分析[J].海洋与湖沼,2009,40(2):214-220.
    [96]童馨,龚世圆,喻达辉等.凡纳滨对虾不同世代生长性状的变异[J].南方水产, 2007,3(6):30-33.
    [97]斯烈钢,王建平,吴雄飞.SPF南美白对虾种质和种苗特性调查[J].科学养鱼,2007,(11):5-6.
    [98]王鸿霞,吴长功,相建海.凡纳滨对虾繁殖中不同亲本对子代遗传贡献率的差异[J].动物学报,2006,52(1):175-181.
    [99]曾祥高,张东霞,刘宗理.南美白对虾虾苗暂养技术[J].齐鲁渔业,2006,25(7):40.
    [100]刘国才,李德尚,卢静等.对虾养殖围隔生态系颗粒悬浮物的研究[J].应用生态学报,1999,10(3):350-352.
    [101]臧维玲,王为东,戴习林等.河口区斑节对虾淡化养殖塘水化学状况与水质管理模式[J].中国水产科学,2001,8(4):73-78.
    [102]赵卫红,焦念志,赵增霞.烟台四十里湾养殖水域氮的存在形态研究[J].海洋与湖沼,2000,31(1):53-59.
    [103]刘长发,蔡志仁.环境友好的水产养殖业-零污染排放循环水产养殖系统[J].大连水产院学报,2002,17(3):220-226.
    [104]杨逸萍,王增焕,孙建等.精养虾池主要水化学因子变化规律和氮的收支[J].海洋科学,1999,(1):15-17.
    [105]李玉全,李健,王清印等.养殖密度对工厂化对虾养殖池氮磷收支的影响[J].中国水产科学,2007,14(6):926-931.
    [106]曹梅,王兴强,阎斌伦.密度和投饵频率对凡纳滨对虾存活和生长的影响[J].水利渔业,2006,26(2):34-35.
    [107]田相利,李德尚,阎希等.对虾池封闭式三元综合养殖的实验研究[J].中国水产科学,1999,6(4):49-54.
    [108]刘鹰.高密度水产养殖生态工程设计及循环水流转机理研究[D].杭州.浙江大学博士论文,2001.
    [109]罗勇胜.江蓠与有益菌在对虾养殖废水无害化处理中的应用[D].青岛.中国海洋大学硕士论文,2006.
    [110]武雯婷,翁立江.沉入式膜生物反应器处理池塘污水的初步实验研究[J].环境技术,2006,24(04):46-48.
    [111]赖秋明.精养虾塘水质净化研究[A].全国海水养殖学术研讨会论文摘要集.2007.
    [112]Toru S, Yoshimi F, Chumpol S, et al. Effect of water exchange with mangrove enclosures based on nitrogen budget in Penaeus monodon aquaculture ponds [J]. Fisheries science.2007, (73):221-226.
    [113]Dirk E, Putth S, Teeyaporn K, et al. Nitrogen dynamics in the settlement ponds of a small-scale recirculating shrimp farm(Penaeus monodon) in rural Thailand [J]. Aquacult. 2007,(15):55-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700