中国甘薯(Ipomoea batatas)品种资源遗传多样性及分子鉴定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘薯(Ipomoea batatas(L.)Lam.)属于番薯属(Ipomoea L.),旋花科(Convolvulaceae),是蔓生性多年生或一年生草本。甘薯原产南美洲,现在广泛分布于世界热带、亚热带和温带地区。甘薯利用根、茎进行无性繁殖,四季可种,不择土壤,高产稳产,适应性广,再生能力强,根、茎、叶均能食用,营养丰富。甘薯是重要的粮食作物,在我国粮食作物中居第四位。但甘薯在遗传上的高度杂合性和种间、种内广泛存在的杂交不亲和性,严重制约了甘薯的生产和发展,培育高产、优质、抗逆性强、无病毒、耐储藏的优良甘薯品种,仍然是十分迫切的事。
     本研究采用随机扩增多态性DNA(Random Amplified Polymorphic DNA,简称RAPD)分子标记技术,首次对采自山东农业科学院和徐州甘薯研究中心的50个国内外甘薯品种进行遗传多样性和分子鉴定研究,分析这些品种之间的亲缘关系,进行种质资源分析和品种鉴定,旨在为引种鉴定、选育和杂交育种提供一定的理论依据。
     本文从386个随机引物中筛选出24个扩增强、重复性好、带型清晰、不同品种间多态性高的引物进行扩增。结果表明:24个有效引物共产生157条DNA片段,大小分布在100bp-3500bp之间,其中91条具有遗传多态性,约占总数的58%,平均每个引物扩增的DNA带数为6.54条。将任一扩增带看作一个性状,按带的有无列出二元数据矩阵,利用NTSYS-pc软件计算出材料间的Jaccard遗传相似性系数。50个甘薯品种基因型的遗传相似性分析表明,其相似性系数分布在0.496-0.930之间,这表明这些品种基因型之间的遗传多态性较为丰富。通过非加权算术平均聚类(UPGMA)的方法,绘制出这些甘薯品种基因型之间的遗传关系树状图。根据相似性系数和聚类结果,在相似性系数0.70处,这些甘薯品种明显地聚为4类:A类、B类、C类、D类。在相似性系数0.75处,这些品种可分为14个组。各组内的相似性系数都大于0.73,表明组内亲缘关系较近,但也存在一定的遗传差异。
     A类分为A1、A2两个组,B类分为B1、B2两个组,C类包括C1、C2、C3、C4四个组,D类包括D1、D2、D3、D4、D5、D6六个组。A1组包括:1 470042、26南放、11胜南,A2组包括:36烟薯6号。B1组包括:21济薯2号、32鲁薯2号、34华北52-45、37青农8号、47徐236,B2组包括:28南京92、35济薯5号、33洛红3号、45许薯4号。C1组包括:4 460188、19栗子香、23徐941、40苏薯1号,C2组包括:17徐1-2、27一窝红、30新种花、31浙薯1号、43宁远30日早、49宛薯596,C3组包括:5 460103、6 460027、14济南红、25南京51、39禺北白、50陕薯1号,C4组包括:15烟薯8号、29安薯07、44胜利百号、48丰收黄、42徐61。D1组包括:2 460363、24美国红、18徐薯18,
    
     DZ组包括:9台农 9号、12板栗黄、22辽薯 224,D3:组包括:3 460021、8
     460097、20南瑞菩、7 460379.10苏薯2号、46高系14,D4组包括:16郑
     颖红、41 安薯1号,DS组只包括38烟薯2号,D6组只包括13香薯。
     从供试的这些品种来看,国外引进品种属于几个不同的组。这表明来源不同
     的品种之间亲缘关系较远,遗传差异较大。从所有的供试材料来看,各个材料之
     间的遗传距离都大于零值,又都能聚在一起,这表明这些材料之间有相同的遗传
     背景,但相互间又存在一定的差异。
     通过随机扩增,部分品种产生了特异带,部分品种不具有某些特异带。据此,
     可以对其进行品种鉴定。有的品种用一个引物进行RAPD扩增难以区别,必须采用
     几个引物。从实验结果来看,利用多个引物根据 gi条多态带在 50个甘薯品种间
     的表现情况是可以将这些品种分开的。
Ipomoea batatas (L.) Lam., belonging to Ipomoea of Convolvulaceae, is a perennial or annual trailing herb. It initially originated from South America, and now it is widely distributed in tropical and subtropical and template regions of the world. Asexul reproduction can be carried out by root and stem. It can be planted in the four seasons and it doesn't choose soil. It has high and stable yields, wide adaptability and strong regeneration. It is rich in nutrition and its roots, stems and leaves can be edible, so it is an important crop and it is in the 4th place of crop in China. But high heterozygosity on heredity and interspecific and intraspecific hybridization incompatibility, which wildly exsisted, gravely limit its production and development. It is still urgent to cultivate fine sweetpotato cultivars of high yield, high quality, strong adversity, nonvirus and easy to store.
    In this paper, the technique of RAPD molecular markers was firstly used to study genetic diversity and molecular identification of 50 native and abroad sweetpotato cultivars from Shandong Agricultural Acadamy of Science and Xuzhou Sweetpotato Research Center, and to analyse their genetic relationship and germplasm resourses in order to offer theoretical foundation for identification, selection, and hybridization breeding.
    In order to select a set of suitable primers, 3 cultivars were initially surveyed with 386 10-base primers.24 were chosen for they showed strong, reproducible amplification and distinct polymorphisms from 386 10-base arbitrary primers, and a total of 157 DNA fragments were amplified from 100bp-3500bp, among which 91 were polymorphic, and which accounted for 58%. The average number of DNA band produced by each primer was 6.54. Any amplified band was reguarded as a character, and the binary data matrix was set out according as the bands existed or not. The Jaccard coefficient was worked out by using NTSYS-pc software. The result of genetic similarity analysis for 50 sweetpotato cultivar genotypes showed that Jaccard coefficient ranged from 0.496 to 0.930, suggesting that there was a close genetic relationship among them and a rich genetic polymorphism among the sweetpotato cultivars due to the Jaccard coefficient. A DNA molecular dendrogram was established for 50 sweetpotato cultivars genotypes based on UPGMA (unweighed pair-group method with arithmetic mean) cluster analysis of the 157 DNA bands amplified by 24 primers. According to the coefficient and the cluster result, when the coefficient is 0.70, these cultivar genotypes were divided into 4 groups: Group A, Group B, Group C, Group D. when the coefficient is
    
    
    
    0.75, these cultivar genotypes were divided into 14 sections. The coefficient in each section all surpasses 0.75, which suggests that the relationship among sections was fairly near, but some genetic difference exists.
    Group A was divided into section Al and A2. Group B was divided into section Bl and B2. Group C was divided into section Cl, C2, C3, and C4. Group D was divided into section Dl, D2, D3, D4, D5, and D6. Al included 3 genotypes, viz., 470042, Nanfang, Shengnan. A2 only included 1 genotypes, viz., No.6 Yanshu. Bl included 5 genotypes, viz., No.2 Jishu, No.2 Lushu, Huabei 52-45, No.8 Qingnong, Xu 236. B2 included 4 genotypes, viz., Nanjing 92, No.5 Jishu, No.3 Luohong, No.4 Xushu. Cl included 4 genotypes, viz., 460188, Lizixiang, Xu 941, NO.l sushu. C2 included 6 genotypes, viz., Xu 1-2, Yiwohong, Xinzhonghua, No.l Zheshu, Ningyuansanshirizao, Wanshu 596. C3 included 6 genotypes, viz., 460103, 460027, Ji'nanhong, Nanjing 51, Yubeibai, No.l Shanshu. C4 included 5 genotypes, viz., No.8 Yanshu, Anshu 07, Shenglibaihao, Fengshouhuang, Xu 61. Dl included 3 genotypes, viz., 460363, Meiguohong, Xushu 18. D2 included 3 genotypes, viz., No.9 Tainong, Banlihuang, Liaoshu 224. D3 included 6 genotypes, viz., 4600^1, 460097, Nanruishao, 46039, No.2 Sushu, Gaoxi 14. D4 included 2 genotypes, viz.,Zaengyinghong, No.l Anshu,. D5 included 1 genotypes, viz., NO.2 Yanshu. D4 included 1 genotypes, viz., Xiangshu.
引文
1 中国科学院中国植物志编辑委员会.中国植物志.北京:科学出版社,1979
    2 盛家廉,邬景禹.中国甘薯品种志.北京:科学出版社,1993
    3 盛家廉,袁宝忠.甘薯栽培技术.北京:农业出版社,1980
    4 Espinoza, N.O., M.S.Yang, J.M. Janynes et al. Regeneration of plants of sweetpotato (Ipomoea batatas L.) transformed by Agrobaoterium rhizogenes containing a synthetic protein gene. Bioessay, 1987, 6:261-267
    5 李惟基.甘薯野生种质资源研究综述.中国甘薯,1989,(3):6-11
    6 Jones, A. Cytological observations and fertility measurements of sweetpotato [Ipomoea batatas (L.) Lam]. Proceedings of the American Society of Horticultural Science, 1965, 86:527-537
    7 Magoon, M.L., R. Krishnar, and K. Vijaya Bai. Cytological evidence on the origin of sweetpotato. Theoretical Applied Genetics, 1970, 40: 360-366.
    8 郑平,陈应东,冯祖虾.广东部分甘薯品种过氧化物酶同工酶分析.中国甘薯,1993,5-6卷:40-45
    9 郭小丁,马代夫,李秀英.甘薯与近缘野生植物嫁接后的植株生长表现及过氧化物酶同工酶分析.中国甘薯,1993,5-6卷:88-91
    10 郭小丁,邬景禹.甘薯过氧化物酶同工酶分析技术探讨.中国甘薯,1990,4期:130-132
    11 谈锋,李坤培,兰利琼,张启堂.甘薯体细胞胚的发生和植株再生.作物学报,1993,19:372-376
    12 张宝红,丰嵘.甘薯体细胞发生和人工种子的制作.西北农业大学学报,1993,21:82-87
    13 Ekanayake, I. J. and J. H. Dodds. In-vitro testing for the effects of salt stress on growth and survival of sweetpotato. Sci. Hort, 1993, 55:239-248
    14 崔红,陈睦传.甘薯生物技术研究进展.植物学报,1999,16(6):653-657
    15 Prakash C S, Varadarajan U V. Genetic transformation of sweetpotato by particle bombardment. Plant Cell Report, 1992, 11:53-57
    16 Dodds J H. Biotechnology applied to sweetpotato improvement. In: Sweetpotato Technology for the 21st Centuary, W.A. Hill, C.K.Bonsi and P.A.Loretan (eds). Tusgekee University, Alabama, USA, 1991, pp7-19
    17 Jarret R L, Gawel N. and A. Whittemore. Phylogenetic relationship of the sweet -potato [Ipomoea batatas (L.)Lam]. J. Amer. Soc. Hort. Sci, 1992, 117:633-637
    
    
    18 赖锦盛译,(Y. Kowyama).RFLP分析与甘薯及其近缘野生种的系统进化.中国甘薯,1993,5-6卷:186-187
    19 Kowyama, Y., T. Hattori, T. Asahi et al. RFLP as probes for genetic variability in the genus Ipomoea. In: Sweetpotato Technology for the 21st Cetuary. W.A.Hill, C.K.Bonsi and P.A.Loretan(eds). Tusgekee University, Alabama, USA, 1991, pp72-77
    20 Schaff, D.A. Biotechnology-gene transfer: terminology, techniques, and problems involved. Hortscience, 1991, 26:1021-1024
    21 Dodds, J.H. and K.Watanabe. Biotechnologcal tools for plant genetic resourses management. Diversity, 1990, 6(3-4): 26-28
    22 闫文昭,王大一,李晋涛.22个甘薯品种(系)遗传背景的RAPD图谱分析.农业生物技术学报,1995,5(1):40-46
    23 Zhang D.P., M.Ghislain, Z. Huaman et al. Identifying duplication in sweetpotato germplasm using RAPD. In: International Potato Center Program Report, 1996, 1995-1996, pp90-96
    24 He G.H., C.S.Prakash, and R.L.Jarret, 1995, Analysis of genetic diversity in a sweetpotoato (Ipomoea batatas) germplasm collection using DNA amplification fingerprinting. Genome, 38:938-945
    25 Ukoskit K., P.G. Thompson, and C.E. Watson. Identifying a randomly amplified polymorphic DNA (RAPD) marker linked to a gene for root-knot nematode resistance in sweetpotato. J. Amer. Soc. Hort. Sci., 1997, 122(6): 818-821
    26 Koller B A, Lehmann J M, Dermott MC et al. Identification of apple cultivars using RAPD markers. Thor Appl Genet, 1993, 85:901-904
    27 陈亮,杨亚军,虞富莲等.15个茶树品种遗传多样性的RAPD分析.茶叶科学,1998,18(1):21-27
    28 Wachira F N, Waugh R, Hackett C A et al. Detection of genetic diversity in tea (Camellia sinensis) using RAPD markers. Genome, 1995, 38:201-210
    29 Chalmers K J, Barua U M, Hackett C A et al. Idetification of RAPD markers linked to genetic factors controlling the milling energy reqirement of barley. Theor Appl Genet, 1993, 87:314-320
    30 陈新平,闫玲,丁毅.中国近缘大麦的RAPD分析与进化途径探讨.植物学报,2000,42(2):179-183
    31 Tiker N A, Rortin N A, and Mather D E. Random amplified polymophic DNA and pedigree relationship in spring barley. Theor Appl Genet, 1993, 85:976-984
    32 杜道林,苏杰,周鹏等.香蕉33个品种的RAPD研究(in English).植物学报,2001,43(10):1036-1042
    
    
    33 杜道林,苏杰,周鹏等.香蕉RAPD分析初步研究.广西植物,2001,21(3):243-246
    34 何川生,何兴金,葛颂等.烤烟品种资源的RAPD分析.植物学报,2001,43(6):610-614
    35 林同香,陈振光,戴思兰.RAPD技术在龙眼品种分类中的应用研究.植物学报,1998,40(12):1159-1165
    36 刘杰,莫结胜,刘公社等.向日葵种质资源的随机扩增多态性DNA(RAPD)研究.植物学报,2001,43(2):151-157
    37 彭建营,束怀瑞,孙仲序等.中国枣种质资源的RAPD分析.园艺学报,2000,27(3):171-176
    38 彭建营,束怀瑞,彭士琪.用RAPD技术探讨中国枣的种下划分.植物分类学报,2002,40(1):89-94
    39 罗素兰,贺朴超,郑学勤等.中国野生葡萄遗传多样性的RAPD分析.植物学报,2001,43(2):158-163
    40 Collins GG, Symons RH. Polymorphisms in grapevine DNA detected by the RAPD-PCR technique. Plant Mol Bio Rep, 1993, 11(2): 105-112
    41 史永忠,郭文武,邓秀新.柑橘RAPD技术体系建立与体细胞杂种鉴定.园艺学报,1998,25(2):105-110
    42 王三红,陈力耕,章镇,房经贵.RAPD在柑橘品系鉴别上的应用.果树科学,2000,17(1):70-72
    43 陈洪,朱立煌,徐吉臣等.RAPD标记构建水稻分子连锁图.植物学报,1995,37(9):52-56
    44 武波,韦东,秦学毅.野生稻和栽培稻的随机多态DNA(RAPD)分析.广西植物,2001,21(4):339-343
    45 Buso G S C, Rangel P H, Ferreira M E. Analysis of genetic variability of South American wild rice population (Oryza gluma-epatula) with isozymes and RAPD markers. Mol Ecol, 1998, 7:107-117
    46 Qian Q(钱前), Chen H(陈洪), Sun Z—X(孙宗修) et al. The study on determining true and false hybrid rice Ⅱ You 63 using RAPD molecular markers. Chin J Rice Sci(中国水稻科学), 1996, 10:241-242 (in Chinese)
    47 罗正荣,米森敬三,衫浦明.应用RAPD技术进行柿种类和品种鉴定.日本园艺学会杂志,1995,64:535-541
    48 Williams J G K, Hanafey M K, Rafalski J A. et al. Genetic analysis using random amplified polymorphic DNA markers. Meth Enzymol, 1993, 218:704-740
    
    
    49 Williams J G K, Kubelik A R, Livak K J et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res, 1990, 18: 6531-6535
    50 Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucl Acids Res, 1990, 18:7213-7219
    51 McCouch S R. Molecular markers for plant breeding: Comparisons of RFLP and RAPD genotyping costs. Theor Appl Genet, 1993, 86:975-984
    52 Roy A., Frascada N., Mackay J et al. Segregating radom amplified polymorphic DNA (RAPDs) in Betula alleghaniensis. Theor Appl Genet, 1992, 85:173-180
    53 鲍晓明,黄百渠等.用RAPD技术鉴定两个小冰麦易位系.遗传学报,1993,20(1):81-87
    54 Kresovich S, Williams J G K, McFerson J R et al. Characterization of genetic identities and relationships of Brassica oleracea L.via an amplified polymorphic DNA assay. Theoretical and Applied Genetic, 1992, 85(2-3): 190-196
    55 惠东威,陈受宜.RAPD技术及其应用,生物工程进展,1992,12(5):12-15
    56 Li Rugang. Application of molecular diagnostics to plant genetic resources conservation. CHINESE BIODIVERSITY, 1995, 3(supplement): 22-29
    57 Yang X, Quiros C F. Identification and clssification of celery cultivars with RAPD markers. Theor Appl Genet, 1993, 86:205-212
    58 Stiles J I, Lemme C, Sondur S et al. Using mdomly amplified polymorphic DNA for evaluating genetic relationships among papaya cultivars. Theor Appl Genet, 1993, 85:697-701
    59 Hu J, Quiros C F. Identification of broccoli and cauliflower cultivars with RAPD markers. Plant Cell Rep, 1991, 10:505-511
    60 梁红建,刘敏,钟志宇,吴应祥,李文彬.中国部分兰花品种RAPD分析.园艺学报,1996,23(4):365-370.
    61 Torres A M. Identifying rose cultivars using random amplified polymorphic DNA markers. HortScience, 1993, 28(4): 333-334
    62 Connolly A G, Godwin I D, Cooper M et al. Interpretation of randomly amplified polymorphic DNA marker data for fingerprinting sweetpotato genotypes. Theor Appl Genet, 1994, 88:332-336
    63 Landry B S, Li R Q, Cheung W Y et al. Phylogeny analysis of 25 apple rootstocks using RAPD markers and tactical gene tagging. Theor Appl Genet, 1994, 89: 847-852
    
    
    64 Schnell R J, Roning C M, Knight Jr R J. Identification of cultivars and validation of genetic relationships in Mangifera indica L. using RAPD markers. Theor Appl Genet, 1995, 90: 269-274
    65 Abo-elwafa A, Murai K, Shimada T. Intra-and Inter-specific variations in Lens revealed by RAPD markers. Theor Appl Genet, 1995,90: 335-340
    66 张立平,林伯年,沈德绪等,葡萄属RAPD分类研究[J].园艺学报, 1998,25(2) : 191-193.
    67 Aruna M, Austin M E, Akins P O et al. Random amplified polymorphic DNA fingerprinting for identifying rabbiteye blueberry(Vaccinium ashei Reade) cultivars [J] . J Amer Soc Hort Sci, 1995, 120(5) : 710-713.
    68 Rowland L J, Levi A. RAPD-based genetic linkage map of blueberry derived from a cross between diploid species (Vaccinium darrowi and V.elliotii). Theor Appl Genet, 1994,87: 863-868
    69 Binneli G, Bucci G. A genetic linkage map of Picea abies Karst, based on RAPD markers, as a tool in population genetics. Theor Appl Genet, 1994, 88: 283-288
    70 Caetano-Anolles G, Bassam BJ, Gresshoff PM. DNA fingerprinting-mapping out a RAPD redeginition. BioTechnology, 1992,10: 937
    71 Chaparro J, Wilcox P, Grattapaglia D et al. Genetic mapping of pine using RAPD markers: construction of a 191 marker map and development of half-sip genetic analysis. In Advance in Gene Technology: Feeding the World in the 21st Century. 1992, Miami Winter Symposium, Miami. FL
    72 Chaparro J X, Wermer D J, Malley D et al. Targeted mapping and linkage analysis of morphological isozyme and RAPD markers in peach. Theor Appl Genet, 1994, 87: 805-815
    73 Conner PL, Brown SK, Weeden NF. Random Amplified Polymorphic DNA-based genetic linkage maps of three apple cultivars. J Am Soc Hotic Sci, 1997,122(3) : 350-359
    74 Emebiri L C, Devey M E, Matheson A C et al. Linkage of RAPD to NESTUR, a stem growth in radiant pine seedlings. Theor Appl Genet, 1997,95(1-2) : 119-124
    75 Grattapaglia D., Sederoff R R. Genetic linkage maps of Eucalyptus grandis and E.Urophylla using a pseudo-testcross mapping strategy and RAPD markers. Genetics, 1994,137:1121-1137
    76 Kesseli RV, Paran I, Michelmore RW. Analysis of a detailed genetic linkage map of Lactuca sativa (Lettuce)constructed from RFLP and RAPD markers. Genetics,
    
    1994, 136:1435-1446
    77 Micheli M R, Bova R, Pascale E et al. Reproducible DNA fingerprinting with the random amplified polymorphic DNA (RAPD) method. Nucleic Acids Res, 1994, 22:1921-1922
    78 Ukoskit K and P.G. Thompson. Autopolyploidy versus allopolyoloidy and low-density randomly amplified polymorphic DNA linkage maps of sweetpotato. Journal of the American Society of Horticultural Science, 1997, 122(6): 822-828.
    79 Williams JGK, Reiter RS, Young Rm et al. Genetic mapping of mutations using phenotypic pools and mapped RAPD markers. Nucleic Acids Res, 1993, 21: 2697-2702
    80 Rieseberg L H, Choi H, Chan R et al. Genomic map of a diploid hybrid species. Heredity, 1993, 70:285-293
    81 Martin G B, Williams J G K, Tanksley S D. Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and near-isogenic lines. Proc Natl Acad Sci USA, 1991, 88:2336-2340
    82 Penner G A, Chong J, Levesque-Lemay M et al. Identification of a RAPD marker linked to the oat stem rust gene Pg3. Theor Appl Genet, 1993, 85:702-705
    83 Striem MJ, Ben-Hayying G, spiegel-Roy P. Identifying molecular genetic marker associated with seedlessness in grape.J Amer Soci Hort Sci, 1996, 12(5): 758-763
    84 王京兆,王斌.用RAPD方法分析水稻光敏核不育基因.遗传学报,1995,22(1):53-58.
    85 李松涛,张忠廷等.用新的分子标记方法(RAPD)分析小麦白粉病pm4a的近等基因系.遗传学报,1995,2(2):103-108.
    86 汪小全,邹喻苹,张大明.RAPD应用于遗传多样性和系统学研究中的问题.植物学报,1996,38(12):954-962
    87 葛颂,洪德元.遗传多样性及其检测方法.见:钱迎倩,马克平(主编)生物多样性研究的原理和方法.北京:中国科学技术出版社,1994
    88 汪小全,邹喻苹,张大明等.银衫遗传多样性的RAPD分析.中国科学(c辑),1996,26:436-441
    89 Doldi M L, Vollmann J, Lelley T. Genetic diversity in soybean as determined by RAPD and microsatellite analysis. Plant Breeding, 1997, 116:331-335
    90 Iqbal M J, Aziz N, Saeed N A et al. Genetic diversity evaluation of some elite cotton varieties by RAPD analysis. Theoretical and Applied Genetic, 1997, 94: 139-144
    
    
    91 Bai D-P, Brandle J, Reeleder R. Genetic diversity in north American ginseng (Panax quinquefolium L.) grown in On-tario detected by RAPD analysis. Genome, 1997, 40:111-115
    92 解新明,云锦凤,尹俊.蒙古冰草遗传多样性的RAPD分析.西北植物学报,2002,22(1):56-62
    93 Mosseler A. 1992. Low levels of genetic diversity in red pine confirmed random amplified polymorphic DNA markers. Canadian Jounal of Forest Research, 1992, 22(9): 1332-1337
    94 Wang X Q, Zou Y P, Zhang D M. 1997. Genetic diversity analysis by RAPD in Cathaya argyrophylla Chun et Kuang. Science in China (series C), 40(2): 145-151
    95 冯丽春,杨光伟,余茂德等.利用RAPD对桑属植物种间亲缘关系的研究.中国农业科学,1997,30(1):52-56
    96 庄炳昌,惠东威等.中国不同纬度不同进化类型大豆的RAPD分析.科学通报,1994,39(23):2178-2180
    97 Chalmers K J, Waugh R, Sprent JI et al. Detection of genetic variation between and within populations of Gliricidia sepium and G. maculta using RAPD markers. Heredity, 1992, 69:465472
    98 Hollingsworth P M, Gornall R G, and Preston C D. Genetic variability in British population of Potamogton coloratus (Potamogetonaceae) P1.Syst. Evol., 1995, 71-85
    99 Kresovich S, Lamboy W F, Li Rugang et al. Application of molecular methods and statistical analysis for discrimination of accessions and clones of vetiver grass. Crop Science, 1994, 34:805-809
    100 Tingey S V, Tufo J P. Genetic analysis with random amplified polymophic DNA marker. Plant Physiology, 1993, 101(2): 349-352
    101 李汝刚.应用RAPD标记鉴定苹果的芽变与实生苗植株.见:中国科学技术协会学部编,1995
    102 Gotllieb LD. Electrophoretic evidence and plant systematics. Ann Mo Bot Gard, 1977, 64:161-180
    103 Brown AHD. Enzyme polymorphism in plant populations. Theor Appl Genet, 1979, 15:1-42
    104 Orozco-Castillo C, Chalmers K J, Waugh R et al. Detection of genetic diversity and selective gene introgression in coffee using RAPD markers. Theor Appl Genet, 1994, 85:190-196
    
    
    105 Wilde Wilde J, Waugh R, Powell W. Genetic fingerprinting of Theobroma clones using randomly amplified polymorphic markers. Theor Appl Genet, 1992, 83: 871-877
    106 Demeke T, Kawchuk L M, Lynch D R. Identifiation of potato cultivars and clonal variants by random amplified polymophic DNA analysis. Am Potato J, 1993, 70: 561-570
    107 Demeke T, Adams R P, Chibbar R et al. Potential taxonomic use of random amplified polymorphic DNA: a case study in Brassica. Theor Appl Genet, 1992, 84(7-8) : 990-994
    108 Dweikat I, Mackenzie S, Ohm H. Pedigree assessment using RAPD-DGGE in cereal crop species. Theor Appl Genet, 1993, 85: 497-505
    109 He S, Ohm H, Mackenzie S. Detection of DNA sequence polymorphisms among wheat varieties. The Appl Genet, 1992, 84: 573-578
    110 Joshi CP, Nguyen HT. Application of the random amplified polymorphic DNA technique for the detection of polymorphism among qild and cultivated teraploid wheat. Genome, 1993,36: 602-609
    111 Mulcahy DL, Cresti M, Sansavinr S et al. The use of random amplified polymorphic DNAs to fingerprint apple genotype. Sci Hortic, 1993, 54: 89-96
    112 Wilkie SE, Isaac PG, Slater RJ. Random amplified polymorphic DNA(RAPD) markers for genetic analysis in Allium. Theor Appl Genet, 1993, 86: 497-504
    113 Halward T, Stalker T, LaRue E. Using of single-primer DNA amplification in genetic studiesof peanut (Arachis hypogaea L.).Plant Mol Biol, 1992,18: 315-325
    114 Gonzalez J M, Ferrer E. Random amplified polymorphic DNA analysis in Hordeum species. Genome, 1993,36: 1029-1031
    115 Marillia E F, Scoles G J. The use of RAPD markers in Hordeum phylogeny. Genome, 1996, 39: 646-654
    116 De Bustos A, Casanova C, Soler C. RAPD variation in wild population of four species of the genus Hordeum. Theor Appl Genet, 1998,96:101-111
    117 Halward T M, Stalker H T, LaRue E A et al. Genetic variation detectable with molecular markers among unadapted germplasm resources of cultivated peanut and related wild species. Genome, 1991b, 34:1013-1020
    118 邹喻苹,葛颂,王晓东.系统与进化植物学中的分子标记,北京:科学出版社,2001
    119 克拉尔克,植物分子生物学实验手册(顾红雅,瞿礼嘉主译,陈章良主校 1998) .
    
    北京:高等教育出版社,1997
    120 Rohlf FJ. NTSYS-pc Numerical Taxonomy and Multiariate Analysis System. Version 1. 80. New York: Exeter Software, Setauket, 1993
    121 Yang X, Quiros C. Identification and classification of celery cultivars with RAPD markers. Theor Appl Genet, 1993, 86: 205-212
    122 Karihaloo J L, Bauner S, Gottlieb L. Random amplified polymorphic DNA variation in the eggplant, Solanum melongena L. (Solanaceae), Theor Appl Genet, 1995, 90:767-770
    123 Williams C E, St Clair D Aa. Phenetic relationships and levels of variability detected by restriction fragment length polymorphism and random polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum. Genome, 1993,39:619-630
    124 Sharma S K, Dawson I K, Wangh R. Relationships among cultivated and wild lentils revealed by RAPD analysis. Theor Appl Genet, 1995,91: 647-654
    125 Wilhelmina T G, Van de ven Ronnie J. The use of RAPD markers for the identification of Stika spuce (Picea sitchensis) clones. Heredity, 1995,76: 126-132
    126 Schnell R J, Ronning C M, Knight Jr R T. Identification of cultivars and validation of genetic relationships in Mangifera indica L. using RAPD markers. Theor Appl Genet, 1995,91:269-274
    127 Roges SO, Bendich AJ. Extraction of DNA from milligram amounts of fresh, herbarium and mummifield plant tissue [J]. Plant Mol.Biol. 1985,5: 69-76
    128 Scott OR, Benndich AJ. Extraction of DNA from plant tissue [J]. Plant Mol.Biol.Manul, 1998, A6: 1-10
    129 Dolye JJ, Doyle JL. Isolation of plant DNA from fresh tissue[J]. Focus, 1990, 2: 13-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700