钙离子信号途径依赖性磷酸酶PP2B和PP1α协同激活P-TEFb复合体的分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在真核细胞中,编码蛋白的基因的转录均由RNA聚合酶Ⅱ(RNA PolⅡ)来完成,其转录过程大致由起始前复合物组装、起始、启动子区清扫、延伸和终止等紧密衔接的步骤组成。近年来研究发现原先最不受重视的转录延伸步骤其实是细胞调控转录最重要、也最复杂的调控平台。其中正性转录延伸因子b复合体(positive transcription elongation factor b,P-TEFb复合体)被证明是协调转录延伸步骤的最重要的因子之一。P-TEFb复合体是由CDK9及CyclinT1组成的异二聚体激酶,在转录延伸过程中可磷酸化RNA polⅡ大亚基CTD上第2位丝氨酸,并克服负性延伸因子对转录延伸的抑制作用,从而保证全长mRNA的转录。作为基本转录因子,P-TEFb复合体不仅是细胞内绝大多数基因转录所必需的因子,其活性的异常调控与心肌肥大和癌症等疾病也有直接或间接的关联。更重要的是,P-TEFb复合体也是艾滋病病毒(HIV-1)转录复制过程中所必需的宿主细胞因子之一。本实验室的前期研究揭示了P-TEFb复合体活性调控的分子模式:即核蛋白HEXIM1通过核小RNA 7SK snRNA与P-TEFb复合体结合并形成无活性的7SK snRNP复合物,任何导致该复合物解离的因素均可活化P-TEFb复合体的转录活性。因此,了解细胞内调控P-TEFb复合体活化的信号途径和分子机制对于了解上述重大疾病的病因具有重要的科学意义。但迄今为止,对调控P-TEFb复合体活化的信号途径和分子机制仍知之甚少。
     本文针对调控P-TEFb复合体活化的信号途径及其分子机制展开研究,发现P-TEFb复合体的活化需通过两条不同的信号途径之间的协同作用来完成。首先,为探讨P-TEFb复合体活化的信号途径,我们对能够诱导P-TEFb复合体活化的胞外刺激因子进行了筛选,发现DNA损伤诱导因子、缺氧条件、酸性或细胞分化诱导剂HMBA等因子均能激发P-TEFb复合体的活化。提示P-TEFb复合体似乎作为多种胞内重要的生理信号途径的整合节点,协调并影响生理或病理转变中的特异性转录。采用UV和HMBA这两种经典的P-TEFb复合体活化因子处理HeLa细胞,发现均能引发HeLa细胞的钙离子内流,其后采用多种信号途径特异性抑制剂和分子生物学手段抑制或增强钙信号途径均可相应地拮抗或激发P-TEFb复合体的活化,从而证实钙离子/PP2B(calcineurin)信号通路是应答胞外刺激、调控P-TEFb复合体活化所必需的信号途径。但之后又发现该途径单独并不能直接活化P-TEFb复合体,提示需要第二条信号通路的协同作用。随后鉴定发现蛋白磷酸酶PP1α信号途径也是必需的途径之一,而且和钙离子/PP2B途径相类似,PP1α途径单独同样也不能起作用。采用共转染和共处理等分子生物学及生物化学方法,我们发现PP2B和PP1α在体内和体外均能直接并且有效地协同活化P-TEFb复合体,同时发现PP2B的去磷酸化作用必需先于PP1α的去磷酸化作用,表明两条不同的信号途径所介导的两步去磷酸化是活化P-TEFb复合体的关键机制。采用特制的抗磷酸化抗体,证实CDK9 T-loop上磷酸化的Thr186(pT186)是由PP1α去磷酸化的,并且发现该位点的去磷酸化是调控P-TEFb复合体活化的关键位点。我们的研究结果表明细胞外刺激因子可通过细胞内钙离子/PP2B及PP1α两条主要信号途径传导,并通过协同作用而激活P-TEFb复合体的活性,其中PP2B的去磷酸化作用可能是将CDK9 T-loop上的pT186暴露给PP1α并由PP1α对该位点进行去磷酸化,最终导致7SK snRNP复合物的解离而解除对P-TEFb复合体的抑制,从而激活P-TEFb复合体的转录活性。
In eukaryotes, the transcription of protein-coding genes is performed by RNA polymeraseⅡin a process consisting of several tightly connected stages designated as pre-initiation, initiation, promoter clearance, elongation and termination. The accumulating evidence has substantially demonstrated that the elongation stage, an ignored stage in the past, is, in fact, the most important and complex platform for the regulation of transcription. Among the numerous of transcription related factors, the positive transcription elongation factor b (P-TEFb) has emerged as the one of the most important factor functioning in control of elongation stage. Consisting of CDK.9 and its regulator Cyclin T1, P-TEFb functions as an RNA polymerase (Pol)Ⅱspecific kinase responsible for the phosphorylation of second serine residue (Ser2) of C-terminal domain of PolⅡ. This phosphorylation is key important for stimulation of PolⅡelongation activity to ensure the synthesis of full-length pre-mRNA. As a general transcription factor, P-TEFb not only is required for the transcription of most mRNA-encoding genes, but also is indispensable for the development of embryo, Moreover, P-TEFb also is a cellular co-factor essential for AIDS virus (HIV-1) replication. The abnormal regulation of P-TEFb activity has been demonstrated as a pathogenesis factor of cardiac hypertrophy and tumor. Our previous reports have established the P-TEFb activity regulation model: the nuclear protein HEXIM1 binds to and inhibits P-TEFb activity with 7SK snRNA as scaffold, and the release of P-TEFb from this inactive 7SK snRNP complex means the activation of P-TEFb. However, how the cell releases the P-TEFb from the association of HEXIM1/7SK snRNA to activate its activity is still remaining largely unknown.
     Reported here, we demonstrate that the activation of cellular P-TEFb activity is accomplished by the cooperative actions of two major signaling pathways. To explore the signal pathway(s) responsible for mediating the disruption of inactive 7SK snRNP complex, we firstly treated cells with different kinds of agents to screen the efficient treating model. Besides UV irradiation and HMBA short term treatment, we found that the other stimulation clues such as DNA damage-inducing agents, hypoxia-inducing agents, etc, could also induce the disruption of the inactive 7SK snRNP complex, suggesting that P-TEFb may serve as an integrating point of different signal pathways.
     By irradiation with UV and treatment with HMBA, the two classic agents used for disruption the inactive 7SK snRNP complex, we found the strong calcium influx caused by UV and HMBA in HeLa cells. With the pharmacological and molecular approaches, we demonstrated that calcium/PP2B signaling pathway is an essential but not sufficient pathway for mediating the UV- and HMBA-induced disruption of the inactive 7SK snRNP complex. Subsequently, we found that PP1αsignal pathway is also a necessary, however, insufficient pathway for mediating UV- and HMBA-induced disruption of the inactive complex. By using the co-transfection and co-treatment methods, we finally demonstrated that PP2B and PP1αmust function cooperatively and only when PP2B functions prior to PP1αto disrupt the inactive 7SK snRNP complex. With an antibody specifically against phosphor-Thr186 (pT186) of CDK9, we demonstrated that PP1αcould dephosphorylate the pT186 of CDK9, however, only accomplished when PP1αworked together with PP2B or more directly, when the 7SK snRNP was disrupted by RNase treating. Furthermore, this dephosphorylation was proven, both in vitro and in vivo, as key important for releasing P-TEFb from inactive 7SK snRNP complex. Token together, our data suggest a two-stepwise mechanism for the activation of P-TEFb, in which the function of PP2B may only serve as an accessorial factor causing the conformation change of inactive 7SK snRNP complex via the dephosphorylation on unknown phosphor-residue and make the pT186 of CDK9 accessible for PP1αwhich finally dephosphorylates pT186 of CDK9 to release the P-TEFb from inhibitory complex.
引文
[1] Leclerc V, Tassan JP, O'Farrell PH, et al. Drosophila Cdk8, a kinase partner of cyclin C that interacts with the large subunit of RNA polymerase II. Mol Biol Cell. 1996. 7(4): 505-13.
    
    [2] Shilatifard A. Transcriptional elongation control by RNA polymerase II: a new frontier. Biochim Biophys Acta. 2004. 1677(1-3): 79-86.
    
    [3] Sims RJ, 3rd, Belotserkovskaya R, Reinberg D. Elongation by RNA polymerase II: the short and long of it. Genes Dev. 2004. 18(20): 2437-68.
    
    [4] Kim YJ, Bjorklund S, Li Y, et al. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell. 1994. 77(4): 599-608.
    
    [5] Koleske AJ, Young RA. An RNA polymerase II holoenzyme responsive to activators. Nature. 1994. 368(6470): 466-9.
    
    [6] Chao DM, Gadbois EL, Murray PJ, et al. A mammalian SRB protein associated with an RNA polymerase II holoenzyme. Nature. 1996. 380(6569): 82-5.
    
    [7] Maldonado E, Shiekhattar R, Sheldon M, et al. A human RNA polymerase II complex associated with SRB and DNA-repair proteins. Nature. 1996. 381(6577): 86-9.
    
    [8] Wilson CJ, Chao DM, Imbalzano AN, et al. RNA polymerase II holoenzyme contains SWI/SNF regulators involved in chromatin remodeling. Cell. 1996. 84(2): 235-44.
    
    [9] Ossipow V, Tassan JP, Nigg EA, et al. A mammalian RNA polymerase II holoenzyme containing all components required for promoter-specific transcription initiation. Cell. 1995. 83(1): 137-46.
    
    [10] Wu SY, Chiang CM. Properties of PC4 and an RNA polymerase II complex in directing activated and basal transcription in vitro. J Biol Chem. 1998. 273(20): 12492-8.
    
    [11] Wu SY, Thomas MC, Hou SY, et al. Isolation of mouse TFIID and functional characterization of TBP and TFIID in mediating estrogen receptor and chromatin transcription. J Biol Chem. 1999. 274(33): 23480-90.
    
    [12] Goodrich JA, Tjian R. Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II. Cell. 1994. 77(1): 145-56.
    
    [13] Holstege FC, van der Vliet PC, Timmers HT. Opening of an RNA polymerase II promoter occurs in two distinct steps and requires the basal transcription factors HE and IIH. Embo J. 1996. 15(7): 1666-77.
    
    [14] Kim TK, Ebright RH, Reinberg D. Mechanism of ATP-dependent promoter melting by transcription factor IIH. Science. 2000. 288(5470): 1418-22.
    
    [15] Dvir A, Conaway RC, Conaway JW. Promoter escape by RNA polymerase II. A role for an ATP cofactor in suppression of arrest by polymerase at promoter-proximal sites. J Biol Chem. 1996. 271(38): 23352-6.
    
    [16] Zawel L, Kumar KP, Reinberg D. Recycling of the general transcription factors during RNA polymerase II transcription. Genes Dev. 1995. 9(12): 1479-90.
    
    [17] Yudkovsky N, Ranish JA, Hahn S. A transcription reinitiation intermediate that is stabilized by activator. Nature. 2000. 408(6809): 225-9.
    
    [18] Dvir A, Conaway RC, Conaway JW. A role for TFIIH in controlling the activity of early RNA polymerase II elongation complexes. Proc Natl Acad Sci U S A. 1997. 94(17): 9006-10.
    
    [19] Kumar KP, Akoulitchev S, Reinberg D. Promoter-proximal stalling results from the inability to recruit transcription factor IIH to the transcription complex and is a regulated event. Proc Natl Acad Sci U S A. 1998. 95(17): 9767-72.
    
    [20] Pal M, Luse DS. The initiation-elongation transition: lateral mobility of RNA in RNA polymerase II complexes is greatly reduced at +8/+9 and absent by +23. Proc Natl Acad Sci U S A. 2003. 100(10): 5700-5.
    
    [21] Pal M, Luse DS. Strong natural pausing by RNA polymerase II within 10 bases of transcription start may result in repeated slippage and reextension of the nascent RNA. Mol Cell Biol. 2002. 22(1): 30-40.
    
    [22] Yue Z, Maldonado E, Pillutla R, et al. Mammalian capping enzyme complements mutant Saccharomyces cerevisiae lacking mRNA guanylyltransferase and selectively binds the elongating form of RNA polymerase II. Proc Natl Acad Sci U S A. 1997. 94(24): 12898-903.
    
    [23] Ho CK, Shuman S. Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme. Mol Cell. 1999.3(3): 405-11.
    
    [24] Moteki S, Price D. Functional coupling of capping and transcription of mRNA. Mol Cell. 2002. 10(3): 599-609.
    
    [25] Marshall NF, Peng J, Xie Z, et al. Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J Biol Chem. 1996.271(43): 27176-83.
    
    [26] Yuryev A, Patturajan M, Litingtung Y, et al. The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc Natl Acad Sci U S A. 1996. 93(14): 6975-80.
    
    [27] Chabot B, Bisotto S, Vincent M. The nuclear matrix phosphoprotein p255 associates with splicing complexes as part of the [U4/U6.U5] tri-snRNP particle. Nucleic Acids Res. 1995. 23(16): 3206-13.
    
    [28] Mortillaro MJ, Blencowe BJ, Wei X, et al. A hyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix. Proc Natl Acad Sci U S A. 1996. 93(16): 8253-7.
    
    [29] Kim E, Du L, Bregman DB, et al. Splicing factors associate with hyperphosphorylated RNA polymerase II in the absence of pre-mRNA. J Cell Biol. 1997. 136(1): 19-28.
    
    [30] Fong YW, Zhou Q. Stimulatory effect of splicing factors on transcriptional elongation. Nature. 2001. 414(6866): 929-33.
    
    [31] Proudfoot NJ, Furger A, Dye MJ. Integrating mRNA processing with transcription. Cell. 2002. 108(4): 501-12.
    
    [32] Barilla D, Lee BA, Proudfoot NJ. Cleavage/polyadenylation factor IA associates with the carboxyl-terminal domain of RNA polymerase II in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2001. 98(2): 445-50.
    
    [33] Licatalosi DD, Geiger G, Minet M, et al. Functional interaction of yeast pre-mRNA 3' end processing factors with RNA polymerase II. Mol Cell. 2002. 9(5): 1101-11.
    
    [34] Hirose Y, Manley JL. RNA polymerase II is an essential mRNA polyadenylation factor. Nature. 1998. 395(6697): 93-6.
    
    [35] Peterlin BM, Price DH. Controlling the elongation phase of transcription with P-TEFb. Mol Cell. 2006. 23(3): 297-305.
    
    [36] Nonet M, Sweetser D, Young RA. Functional redundancy and structural polymorphism in the large subunit of RNA polymerase II. Cell. 1987. 50(6): 909-15.
    
    [37] Allison LA, Wong JK, Fitzpatrick VD, et al. The C-terminal domain of the largest subunit of RNA polymerase II of Saccharomyces cerevisiae, Drosophila melanogaster, and mammals: a conserved structure with an essential function. Mol Cell Biol. 1988. 8(1): 321-9.
    [38] Litingtung Y, Lawler AM, Sebald SM, et al. Growth retardation and neonatal lethality in mice with a homozygous deletion in the C-terminal domain of RNA polymerase II. Mol Gen Genet. 1999. 261(1): 100-5.
    
    [39] Hampsey M. Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol Mol Biol Rev. 1998. 62(2): 465-503.
    
    [40] Dahmus ME. Phosphorylation of mammalian RNA polymerase II. Methods Enzymol. 1996. 273: 185-93.
    
    [41] Lin PS, Marshall NF, Dahmus ME. CTD phosphatase: role in RNA polymerase II cycling and the regulation of transcript elongation. Prog Nucleic Acid Res Mol Biol. 2002. 72: 333-65.
    
    [42] Prelich G. RNA polymerase II carboxy-terminal domain kinases: emerging clues to their function. Eukaryot Cell. 2002. 1(2): 153-62.
    
    [43] Rickert P, Seghezzi W, Shanahan F, et al. Cyclin C/CDK8 is a novel CTD kinase associated with RNA polymerase II. Oncogene. 1996. 12(12): 2631-40.
    
    [44] Nelson C, Goto S, Lund K, et al. Srb10/Cdk8 regulates yeast filamentous growth by phosphorylating the transcription factor Stel2. Nature. 2003. 421(6919): 187-90.
    
    [45] Orphanides G, Lagrange T, Reinberg D. The general transcription factors of RNA polymerase II. Genes Dev. 1996. 10(21): 2657-83.
    
    [46] Akoulitchev S, Makela TP, Weinberg RA, et al. Requirement for TFIIH kinase activity in transcription by RNA polymerase II. Nature. 1995. 377(6549): 557-60.
    
    [47] Cho EJ, Kobor MS, Kim M, et al. Opposing effects of Ctkl kinase and Fcpl phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev. 2001. 15(24): 3319-29.
    
    [48] Fraldi A, Licciardo P, Majello B, et al. Distinct regions of cyclinT1 are required for binding to CDK9 and for recruitment to the HIV-1 Tat/TAR complex. J Cell Biochem. 2001. 81 (S36): 247-253.
    
    [49] Palancade B, Dubois MF, Dahmus ME, et al. Transcription-independent RNA polymerase II dephosphorylation by the FCP1 carboxy-terminal domain phosphatase in Xenopus laevis early embryos. Mol Cell Biol. 2001. 21(19): 6359-68.
    
    [50] Hausmann S, Schwer B, Shuman S. An encephalitozoon cuniculi ortholog of the RNA polymerase II carboxyl-terminal domain (CTD) serine phosphatase Fcpl. Biochemistry. 2004. 43(22): 7111-20.
    
    [51] Mandal SS, Cho H, Kim S, et al. FCP1, a phosphatase specific for the heptapeptide repeat of the largest subunit of RNA polymerase II, stimulates transcription elongation. Mol Cell Biol. 2002. 22(21): 7543-52.
    
    [52] Washington K, Ammosova T, Beullens M, et al. Protein phosphatase-1 dephosphorylates the C-terminal domain of RNA polymerase-II. J Biol Chem. 2002. 277(43): 40442-8.
    
    [53] Krishnamurthy S, He X, Reyes-Reyes M, et al. Ssu72 Is an RNA polymerase II CTD phosphatase. Mol Cell. 2004. 14(3): 387-94.
    
    [54] Sehgal PB, Darnell JE, Jr., Tamm I. The inhibition by DRB (5,6-dichloro-l-beta-D-ribofuranosylbenzimidazole) of hnRNA and mRNA production in HeLa cells. Cell. 1976. 9(3): 473-80.
    
    [55] Marshall NF, Price DH. Control of formation of two distinct classes of RNA polymerase II elongation complexes. Mol Cell Biol. 1992. 12(5): 2078-90.
    
    [56] Marshall NF, Price DH. Purification of P-TEFb, a transcription factor required for the transition into productive elongation. J Biol Chem. 1995.270(21): 12335-8.
    
    [57] Peng J, Marshall NF, Price DH. Identification of a cyclin subunit required for the function of Drosophila P-TEFb. J Biol Chem. 1998.273(22): 13855-60.
    [58] Wei P, Garber ME, Fang SM, et al. A novel CDK9-associated C-type cyciin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell. 1998.92(4): 451-62.
    
    [59] Shore SM, Byers SA, Maury W, et al. Identification of a novel isoform of Cdk9. Gene. 2003. 307: 175-82.
    
    [60] Peng J, Zhu Y, Milton JT, et al. Identification of multiple cyclin subunits of human P-TEFb. Genes Dev. 1998. 12(5): 755-62.
    
    [61] Price DH. P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol Cell Biol. 2000. 20(8): 2629-34.
    
    [62] Fu TJ, Peng J, Lee G, et al. Cyciin K functions as a CDK.9 regulatory subunit and participates in RNA polymerase II transcription. J Biol Chem. 1999. 274(49): 34527-30.
    
    [63] Chao SH, Price DH. Ftavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J Biol Chem. 2001. 276(34): 31793-9.
    
    [64] Shim EY, Walker AK, Shi Y, et al. CDK-9/cyclin T (P-TEFb) is required in two postinitiation pathways for transcription in the C. elegans embryo. Genes Dev. 2002. 16(16): 2135-46.
    
    [65] Gomes NP, Bjerke G, Llorente B, et al. Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program. Genes Dev. 2006. 20(5): 601-12.
    
    [66] Medlin J, Scurry A, Taylor A, et al. P-TEFb is not an essential elongation factor for the intronless human U2 snRNA and histone H2b genes. EmboJ. 2005. 24(23): 4154-65.
    
    [67] Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of Gl-phase progression. Genes Dev. 1999. 13(12): 1501-12.
    
    [68] Nguyen VT, Kiss T, Michels AA, et al. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature. 2001. 414(6861): 322-5.
    
    [69] Yang Z, Zhu Q, Luo K, et al. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature. 2001.414(6861): 317-22.
    
    [70] Dulac C, Michels AA, Fraldi A, et al. Transcription-dependent association of multiple positive transcription elongation factor units to a HEXIM multimer. J Biol Chem. 2005. 280(34): 30619-29.
    
    [71] Li Q, Price JP, Byers SA, et al. Analysis of the large inactive P-TEFb complex indicates that it contains one 7SK molecule, a dimer of HEXIM1 or HEXIM2, and two P-TEFb molecules containing Cdk9 phosphorylated at threonine 186.J Biol Chem. 2005. 280(31): 28819-26.
    
    [72] Yik JH, Chen R, Pezda AC, et al. Compensatory contributions of HEXIM1 and HEXIM2 in maintaining the balance of active and inactive positive transcription elongation factor b complexes for control of transcription. J Biol Chem. 2005. 280(16): 16368-76.
    
    [73] Murphy S, Di Liegro C, Melli M. The in vitro transcription of the 7SK RNA gene by RNA polymerase III is dependent only on the presence of an upstream promoter. Cell. 1987. 51(1): 81-7.
    
    [74] Egloff S, Van Herreweghe E, Kiss T. Regulation of polymerase II transcription by 7SK snRNA: two distinct RNA elements direct P-TEFb and HEXIM 1 binding. Mol Cell Biol. 2006. 26(2): 630-42.
    
    [75] Zieve G, Benecke BJ, Penman S. Synthesis of two classes of small RNA species in vivo and in vitro. Biochemistry. 1977. 16(20): 4520-5.
    
    [76] Michels AA, Nguyen VT, Fraldi A, et al. MAQ1 and 7SK RNA interact with CDK9/cyclin T complexes in a transcription-dependent manner. Mol Cell Biol. 2003. 23(14): 4859-69.
    
    [77] Yik JH, Chen R, Nishimura R, et al. Inhibition of P-TEFb (CDK9/Cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA. Mol Cell. 2003. 12(4): 971-82.
    [78] Ouchida R, Kusuhara M, Shimizu N, et al. Suppression of NF-kappaB-dependent gene expression by a hexamethylene bisacetamide-inducible protein HEXIM1 in human vascular smooth muscle cells. Genes Cells. 2003. 8(2): 95-107.
    
    [79] Michels AA, Fraldi A, Li Q, et al. Binding of the 7SK. snRNA turns the HEXIM1 protein into a P-TEFb (CDK9/cyclin T) inhibitor. EmboJ. 2004. 23(13): 2608-19.
    
    [80] Byers SA, Price JP, Cooper JJ, et al. HEXIM2, a HEXIM1-related protein, regulates positive transcription elongation factor b through association with 7SK.J Biol Chem. 2005. 280(16): 16360-7.
    
    [81] Watson CS, Gametchu B. Membrane estrogen and glucocorticoid receptors-implications for hormonal control of immune function and autoimmunity. Int Immunopharmacol. 2001. 1(6): 1049-63.
    
    [82] Wittmann BM, Fujinaga K, Deng H, et al. The breast cell growth inhibitor, estrogen down regulated gene 1, modulates a novel functional interaction between estrogen receptor alpha and transcriptional elongation factor cyclin T1. Oncogene. 2005. 24(36): 5576-88.
    
    [83] Shimizu N, Ouchida R, Yoshikawa N, et al. HEXIM1 forms a transcriptionally abortive complex with glucocorticoid receptor without involving 7SK RNA and positive transcription elongation factor b. Proc Natl Acad Sci USA. 2005. 102(24): 8555-60.
    
    [84] O'Keeffe B, Fong Y, Chen D, et al. Requirement for a kinase-specific chaperone pathway in the production of a Cdk9/cyclin Tl heterodimer responsible for P-TEFb-mediated tat stimulation of HIV-1 transcription. J Biol Chem. 2000. 275(1): 279-87.
    
    [85] Jang MK, Mochizuki K, Zhou M, et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell. 2005. 19(4): 523-34.
    
    [86] Yang Z, Yik JH, Chen R, et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell. 2005. 19(4): 535-45.
    
    [87] Jeanmougin F, Wurtz JM, Le Douarin B, et al. The bromodomain revisited. Trends Biochem Sci. 1997.22(5): 151-3.
    
    [88] Dey A, Ellenberg J, Farina A, et al. A bromodomain protein, MCAP, associates with mitotic chromosomes and affects G(2)-to-M transition. Mol Cell Biol. 2000. 20(17): 6537-49.
    
    [89] Zeng L, Zhou MM. Bromodomain: an acetyl-lysine binding domain. FEBS Lett. 2002. 513(1): 124-8.
    
    [90] Dey A, Chitsaz F, Abbasi A, et al. The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc Natl Acad Sci U S A. 2003. 100(15): 8758-63.
    
    [91] Jiang YW, Veschambre P, Erdjument-Bromage H, et al. Mammalian mediator of transcriptional regulation and its possible role as an end-point of signal transduction pathways. Proc Natl Acad Sci U S A. 1998. 95(15): 8538-43.
    
    [92] Malik S, Roeder RG Dynamic regulation of pol II transcription by the mammalian Mediator complex. Trends Biochem Sci. 2005. 30(5): 256-63.
    
    [93] Conaway RC, Sato S, Tomomori-Sato C, et al. The mammalian Mediator complex and its role in transcriptional regulation. Trends Biochem Sci. 2005. 30(5): 250-5.
    
    [94] Kanno T, Ma X, Barg S, et al. Large dense-core vesicle exocytosis in pancreatic beta-cells monitored by capacitance measurements. Methods. 2004. 33(4): 302-11.
    
    [95] Kiernan RE, Emiliani S, Nakayama K, et al. Interaction between cyclin Tl and SCF(SKP2) targets CDK9 for ubiquitination and degradation by the proteasome. Mol Cell Biol. 2001. 21(23): 7956-70.
    
    [96] Russo AA, Jeffrey PD, Pavletich NP. Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat Struct Biol. 1996. 3(8): 696-700.
    
    [97] Chen R, Yang Z, Zhou Q. Phosphorylated positive transcription elongation factor b (P-TEFb) is tagged for inhibition through association with 7SK snRNA. J Biol Chem. 2004. 279(6): 4153-60.
    
    [98] Valerie K, Delers A, Brack C, et al. Activation of human immunodeficiency virus type 1 by DNA damage in human cells. Nature. 1988. 333(6168): 78-81.
    
    [99] Casse C, Giannoni F, Nguyen VT, et al. The transcriptional inhibitors, actinomycin D and alpha-amanitin, activate the HIV-1 promoter and favor phosphorylation of the RNA polymerase II C-terminal domain. J Biol Chem. 1999. 274(23): 16097-106.
    
    [100] Sano M, Abdellatif M, Oh H, et al. Activation and function of cyclin T-Cdk9 (positive transcription elongation factor-b) in cardiac muscle-cell hypertrophy. Nat Med. 2002. 8(11): 1310-7.
    
    [101] He N, Pezda AC, Zhou Q. Modulation of a P-TEFb functional equilibrium for the global control of cell growth and differentiation. Mol Cell Biol. 2006. 26(19): 7068-76.
    
    [ 102] Marks PA, Rifkind RA. Induced differentiation of erythroleukemia cells by hexamethylene bisacetamide: a model for cytodifferentiation of transformed cells. Environ Health Perspect. 1989. 80: 181-8.
    
    [ 103] Haaland RE, Herrmann CH, Rice AP. Increased association of 7SK snRNA with Tat cofactor P-TEFb following activation of peripheral blood lymphocytes. Aids. 2003. 17(17): 2429-36.
    
    [104] Espinoza-Derout J, Wagner M, Shahmiri K, et al. Pivotal role of cardiac lineage protein-1 (CLP-1) in transcriptional elongation factor P-TEFb complex formation in cardiac hypertrophy. Cardiovasc Res. 2007. 75(1): 129-38.
    
    [105] Wada T, Takagi T, Yamaguchi Y, et al. Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro. Embo J. 1998. 17(24): 7395-403.
    
    [106] Yamaguchi Y, Inukai N, Narita T, et al. Evidence that negative elongation factor represses transcription elongation through binding to a DRB sensitivity-inducing factor/RNA polymerase II complex and RNA. Mol Cell Biol. 2002. 22(9): 2918-27.
    
    [107] Yamaguchi Y, Takagi T, Wada T, et al. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell. 1999. 97(1): 41-51.
    
    [108] Ivanov D, Kwak YT, Guo J, et al. Domains in the SPT5 protein that modulate its transcriptional regulatory properties. Mol Cell Biol. 2000. 20(9): 2970-83.
    
    [109] Yamada T, Yamaguchi Y, Inukai N, et al. P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation. Mol Cell. 2006. 21(2): 227-37.
    
    [110] Fujinaga K, Irwin D, Huang Y, et al. Dynamics of human immunodeficiency virus transcription: P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element. Mol Cell Biol. 2004. 24(2): 787-95.
    
    [111]Zhou Q, Yik JH. The Yin and Yang of P-TEFb regulation: implications for human immunodeficiency virus gene expression and global control of cell growth and differentiation. Microbiol Mol Biol Rev. 2006. 70(3): 646-59.
    
    [112] Fong YW, Zhou Q. Relief of two built-in autoinhibitory mechanisms in P-TEFb is required for assembly of a multicomponent transcription elongation complex at the human immunodeficiency virus type 1 promoter. Mol Cell Biol. 2000. 20(16): 5897-907.
    
    [113] Bres V, Gomes N, Pickle L, et al. A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat. Genes Dev. 2005. 19(10): 1211-26.
    
    [114] Yan D, Perriman R, Igel H, et al. CUS2, a yeast homolog of human Tat-SFl, rescues function of misfolded U2 through an unusual RNA recognition motif. Mol Cell Biol. 1998. 18(9): 5000-9.
    
    [115] Ping YH, Rana TM. Tat-associated kinase (P-TEFb): a component of transcription preinitiation and elongation complexes. J Biol Chem. 1999. 274(11): 7399-404.
    
    [116] Zhou M, Halanski MA, Radonovich MF, et al. Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription. Mol Cell Biol. 2000. 20(14): 5077-86.
    
    [117] Zhou M, Kashanchi F, Jiang H, et al. Phosphorylation of the RAP74 subunit of TFIIF correlates with Tat-activated transcription of the HIV-1 long terminal repeat. Virology. 2000. 268(2): 452-60.
    
    [118] Barboric M, Peterlin BM. A new paradigm in eukaryotic biology: HIV Tat and the control of transcriptional elongation. PLoS Biol. 2005. 3(2): e76.
    
    [119] Jones KA. Taking a new TAK on tat transactivation. Genes Dev. 1997. 11(20): 2593-9.
    
    [120] Karn J. Tackling Tat. J Mol Biol. 1999. 293(2): 235-54.
    
    [121] Bharucha DC, Zhou M, Nekhai S, et al. A protein phosphatase from human T cells augments tat transactivation of the human immunodeficiency virus type 1 long-terminal repeat. Virology. 2002. 296(1): 6-16.
    
    [122] Ammosova T, Washington K, Debebe Z, et al. Dephosphorylation of CDK9 by protein phosphatase 2A and protein phosphatase-1 in Tat-activated HIV-1 transcription. Retrovirology. 2005. 2: 47.
    
    [123] Ammosova T, Jerebtsova M, Beullens M, et al. Nuclear protein phosphatase-1 regulates HIV-1 transcription. J Biol Chem. 2003. 278(34): 32189-94.
    
    [124] Ammosova T, Jerebtsova M, Beullens M, et al. Nuclear targeting of protein phosphatase-1 by HIV-1 Tat protein. J Biol Chem. 2005. 280(43): 36364-71.
    
    [125] Kanazawa S, Soucek L, Evan G, et al. c-Myc recruits P-TEFb for transcription, cellular proliferation and apoptosis. Oncogene. 2003. 22(36): 5707-11.
    
    [126] Foskett SM, Ghose R, Tang DN, et al. Antiapoptotic function of Cdk9 (TAK/P-TEFb) in U937 promonocytic cells. J Virol. 2001. 75(3): 1220-8.
    
    [127] Cai D, Latham VM, Jr., Zhang X, et al. Combined depletion of cell cycle and transcriptional cyclin-dependent kinase activities induces apoptosis in cancer cells. Cancer Res. 2006. 66(18): 9270-80.
    
    [128] Shan B, Zhuo Y, Chin D, et al. Cyclin-dependent kinase 9 is required for tumor necrosis factor-alpha-stimulated matrix metalloproteinase-9 expression in human lung adenocarcinoma cells. J Biol Chem. 2005. 280(2): 1103-11.
    
    [129] Sadoshima J, Izumo S. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol. 1997. 59: 551-71.
    
    [130] MacLellan WR, Schneider MD. Genetic dissection of cardiac growth control pathways. Annu Rev Physiol. 2000. 62: 289-319.
    
    [131] Oh H, Taffet GE, Youker KA, et al. Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Proc Natl Acad Sci U S A. 2001. 98(18): 10308-13.
    
    [132] Shioi T, McMullen JR, Kang PM, et al. Akt/protein kinase B promotes organ growth in transgenic mice. Mol Cell Biol. 2002. 22(8): 2799-809.
    
    [133] Huang F, Wagner M, Siddiqui MA. Ablation of the CLP-1 gene leads to down-regulation of the HAND1 gene and abnormality of the left ventricle of the heart and fetal death. Mech Dev. 2004. 121(6): 559-72.
    [134] Napolitano G, Majello B, Licciardo P, et al. Transcriptional activity of positive transcription elongation factor b kinase in vivo requires the C-terminal domain of RNA polymerase II. Gene. 2000. 254(1-2): 139-45.
    
    [135] Adams JW, Sakata Y, Davis MG, et al. Enhanced Galphaq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci U S A. 1998. 95(17): 10140-5.
    
    [136] Molkentin JD, Lu JR, Antos CL, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998. 93(2): 215-28.
    
    [137] Sano M, Wang SC, Shirai M, et al. Activation of cardiac Cdk9 represses PGC-1 and confers a predisposition to heart failure. EmboJ. 2004. 23(17): 3559-69.
    
    [138] Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev. 2003. 24(1): 78-90.
    
    [139] Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004. 18(4): 357-68.
    
    [140] Scarpulla RC. Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta. 2002. 1576(1-2): 1-14.
    
    [141] Backs J, Olson EN. Control of cardiac growth by histone acetylation/deacetylation. Circ Res. 2006.98(1): 15-24.
    
    [142] Rockman HA, Koch WJ, Lefkowitz RJ. Seven-transmembrane-spanning receptors and heart function. Nature. 2002. 415(6868): 206-12.
    
    [143] Olson EN, Schneider MD. Sizing up the heart: development redux in disease. Genes Dev. 2003. 17(16): 1937-56.
    
    [144] Lips DJ, deWindt LJ, van Kraaij DJ, et al. Molecular determinants of myocardial hypertrophy and failure: alternative pathways for beneficial and maladaptive hypertrophy. Eur Heart J. 2003. 24(10): 883-96.
    
    [145] Dorn GW, 2nd, Force T. Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest. 2005. 115(3): 527-37.
    
    [146] Wilkins BJ, Molkentin JD. Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Biochem Biophys Res Commun. 2004. 322(4): 1178-91.
    
    [147] Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol. 2006. 7(8): 589-600.
    
    [148] Wu X, Zhang T, Bossuyt J, et al. Local InsP3-dependent perinuclear Ca~(2+) signaling in cardiac myocyte excitation-transcription coupling. J Clin Invest. 2006. 116(3): 675-82.
    
    [149] Clerk A, Sugden PH. Activation of protein kinase cascades in the heart by hypertrophic G protein-coupled receptor agonists. Am J Cardiol. 1999. 83(12A): 64H-69H.
    
    [150] Fan G, Jiang YP, Lu Z, et al. A transgenic mouse model of heart failure using inducible Galpha q. J Biol Chem. 2005. 280(48): 40337-46.
    
    [151] D'Angelo DD, Sakata Y, Lorenz JN, et al. Transgenic Galphaq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci U S A. 1997. 94(15): 8121-6.
    
    [152] Mende U, Kagen A, Cohen A, et al. Transient cardiac expression of constitutively active Galphaq leads to hypertrophy and dilated cardiomyopathy by calcineurin-dependent and independent pathways. Proc Natl Acad Sci U S A. 1998.95(23): 13893-8.
    
    [153] Akhter SA, Luttrell LM, Rockman HA, et al. Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science. 1998. 280(5363): 574-7.
    
    [ 154] Esposito G, Rapacciuolo A, Naga Prasad SV, et al. Genetic alterations that inhibit in vivo pressure-overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation. 2002. 105(1): 85-92.
    
    [155] Wettschureck N, Rutten H, Zywietz A, et al. Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Galphaq/Galphal 1 in cardiomyocytes. Nat Med. 2001. 7(11): 1236-40.
    
    [156] Asakura M, Kitakaze M, Takashima S, et al. Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat Med. 2002. 8(1): 35-40.
    
    [157] Sugden PH, Clerk A. "Stress-responsive" mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res. 1998. 83(4): 345-52.
    
    [158] Garrington TP, Johnson GL. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol. 1999. 11(2): 211-8.
    
    [159] Bueno OF, De Windt LJ, Tymitz KM, et al. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. Embo J. 2000. 19(23): 6341-50.
    
    [160] Sanna B, Bueno OF, Dai YS, et al. Direct and indirect interactions between calcineurin-NFAT and MEK1-extracellular signal-regulated kinase 1/2 signaling pathways regulate cardiac gene expression and cellular growth. Mol Cell Biol. 2005. 25(3): 865-78.
    
    [161] Nicol RL, Frey N, Pearson G, et al. Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy. Embo J . 2001. 20(11): 2757-67.
    
    [162] Liao P, Georgakopoulos D, Kovacs A, et al. The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy. Proc NatlAcadSci U S A. 2001. 98(21): 12283-8.
    
    [163] Petrich BG, Gong X, Lerner DL, et al. c-Jun N-terminal kinase activation mediates downregulation of connexin43 in cardiomyocytes. Circ Res. 2002. 91(7): 640-7.
    
    [164] Petrich BG, Molkentin JD, Wang Y. Temporal activation of c-Jun N-terminal kinase in adult transgenic heart via cre-loxP-mediated DNA recombination. Faseb J. 2003. 17(6): 749-51.
    
    [165] Molkentin JD. Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res. 2004. 63(3): 467-75.
    
    [166] Liang Q, Bueno OF, Wilkins BJ, et al. c-Jun N-terminal kinases (JNK) antagonize cardiac growth through cross-talk with calcineurin-NFAT signaling. EmboJ. 2003. 22(19): 5079-89.
    
    [167] Tachibana H, Perrino C, Takaoka H, et al. JNK1 is required to preserve cardiac function in the early response to pressure overload. Biochem Biophys Res Commun. 2006. 343(4): 1060-6.
    
    [168] Oudit GY, Sun H, Kerfant BG, et al. The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J Mol Cell Cardiol. 2004. 37(2): 449-71.
    
    [169] Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002. 296(5573): 1655-7.
    
    [170] Shioi T, Kang PM, Douglas PS, et al. The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EmboJ. 2000. 19(11): 2537-48.
    
    [171] McMullen JR, Shioi T, Zhang L, et al. Phosphoinositide 3-kinase(p110alpha) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc Natl Acad Sci U S A. 2003. 100(21): 12355-60.
    
    [172] Crackower MA, Oudit GY, Kozieradzki I, et al. Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways. Cell. 2002. 110(6): 737-49.
    [173] Patrucco E, Notte A, Barberis L, et al. PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell. 2004. 118(3): 375-87.
    
    [174] Chen WS, Xu PZ, Gottlob K, et al. Growth retardation and increased apoptosis in mice with homozygous disruption of the Aktl gene. Genes Dev. 2001.15(17): 2203-8.
    
    [175] Cho H, Thorvaldsen JL, Chu Q, et al. Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem. 2001. 276(42): 38349-52.
    
    [ 176] Cho H, Mu J, Kim JK, et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science. 2001.292(5522): 1728-31.
    
    [177] Shiojima I, Sato K, Izumiya Y, et al. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest. 2005. 115(8): 2108-18.
    
    [178] Li HH, Kedar V, Zhang C, et al. Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. J Clin Invest. 2004. 114(8): 1058-71.
    
    [179] Sanbe A, Gulick J, Hanks MC, et al. Reengineering inducible cardiac-specific transgenesis with an attenuated myosin heavy chain promoter. Circ Res. 2003.92(6): 609-16.
    
    [180] Proud CG Ras, P13-kinase and mTOR signaling in cardiac hypertrophy. Cardiovasc Res. 2004. 63(3): 403-13.
    
    [181] McMullen JR, Sherwood MC, Tarnavski O, et al. Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation. 2004. 109(24): 3050-5.
    
    [182] Shioi T, McMullen JR, Tarnavski O, et al. Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation. 2003. 107(12): 1664-70.
    
    [183] Wilkins BJ, De Windt LJ, Bueno OF, et al. Targeted disruption of NFATc3, but not NFATc4, reveals an intrinsic defect in calcineurin-mediated cardiac hypertrophic growth. Mol Cell Biol. 2002. 22(21): 7603-13.
    
    [184] Heineke J, Ruetten H, Willenbockel C, et al. Attenuation of cardiac remodeling after myocardial infarction by muscle LIM protein-calcineurin signaling at the sarcomeric Z-disc. Proc Natl Acad Sci US A. 2005. 102(5): 1655-60.
    
    [185] Braz JC, Bueno OF, Liang Q, et al. Targeted inhibition of p38 MAPK promotes hypertrophic cardiomyopathy through upregulation of calcineurin-NFAT signaling. J Clin Invest. 2003. 111(10): 1475-86.
    
    [186] Antos CL, McKinsey TA, Frey N, et al. Activated glycogen synthase-3 beta suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A. 2002. 99(2): 907-12.
    
    [187] Bueno OF, van Rooij E, Molkentin JD, et al. Calcineurin and hypertrophic heart disease: novel insights and remaining questions. Cardiovasc Res. 2002. 53(4): 806-21.
    
    [188] De Windt LJ, Lim HW, Bueno OF, et al. Targeted inhibition of calcineurin attenuates cardiac hypertrophy in vivo. Proc Natl Acad Sci USA. 2001. 98(6): 3322-7.
    
    [189] Hill JA, Rothermel B, Yoo KD, et al. Targeted inhibition of calcineurin in pressure-overload cardiac hypertrophy. Preservation of systolic function. J Biol Chem. 2002. 277(12): 10251-5.
    
    [190] Rothermel BA, McKinsey TA, Vega RB, et al. Myocyte-enriched calcineurin-interacting protein, MC1P1, inhibits cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A. 2001.98(6): 3328-33.
    
    [191] Bueno OF, Wilkins BJ, Tymitz KM, et al. Impaired cardiac hypertrophic response in Calcineurin Abeta -deficient mice. Proc Natl Acad Sci U S A. 2002. 99(7): 4586-91.
    [192] Sanna B, Brandt EB, Kaiser RA, et al. Modulatory calcineurin-interacting proteins 1 and 2 function as calcineurin facilitators in vivo. Proc Natl Acad Sci U S A. 2006. 103(19): 7327-32.
    
    [193] Vega RB, Rothermel BA, Weinheimer CJ, et al. Dual roles of modulatory calcineurin-interacting protein 1 in cardiac hypertrophy. Proc Natl Acad Sci U S A. 2003. 100(2): 669-74.
    
    [194] Crabtree GR. Calcium, calcineurin, and the control of transcription. J Biol Chem. 2001. 276(4): 2313-6.
    
    [195] Beals CR, Clipstone NA, Ho SN, et al. Nuclear localization of NF-ATc by a calcineurin-dependent, cyclosporin-sensitive intramolecular interaction. Genes Dev. 1997. 11(7): 824-34.
    
    [196] Zhou P, Sun LJ, Dotsch V, et al. Solution structure of the core NFATC1/DNA complex. Cell.1998. 92(5): 687-96.
    
    [197] Chen L, Glover JN, Hogan PG, et al. Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature. 1998. 392(6671): 42-8.
    
    [198] Crabtree GR. Generic signals and specific outcomes: signaling through Ca~(2+) calcineurin, and NF-AT. Cell. 1999. 96(5): 611-4.
    
    [199] Yano S, Tokumitsu H, Soderling TR. Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature. 1998. 396(6711): 584-7.
    
    [200] Soderling TR. Structure and regulation of calcium/calmodulin-dependent protein kinases II and IV. Biochim Biophys Acta. 1996. 1297(2): 131-8.
    
    [201] Enslen H, Sun P, Brickey D, et al. Characterization of Ca~(2+)/calmodulin-dependent protein kinase IV. Role in transcriptional regulation. J Biol Chem. 1994.269(22): 15520-7.
    
    [202] Ikura M, Osawa M, Ames JB. The role of calcium-binding proteins in the control of transcription: structure to function. Bioessays. 2002. 24(7): 625-36.
    
    [203] Chawla S, Hardingham GE, Quinn DR, et al. CBP: a signal-regulated transcriptional coactivator controlled by nuclear calcium and CaM kinase IV. Science. 1998. 281(5382): 1505-9.
    
    [204] Avantaggiati ML, Ogryzko V, Gardner K, et al. Recruitment of p300/CBP in p53-dependent signal pathways. Cell. 1997. 89(7): 1175-84.
    
    [205] Bannister AJ, Oehler T, Wilhelm D, et al. Stimulation of c-Jun activity by CBP: c-Jun residues Ser63/73 are required for CBP induced stimulation in vivo and CBP binding in vitro. Oncogene. 1995. 11(12): 2509-14.
    
    [206] Janknecht R, Nordheim A. Regulation of the c-fos promoter by the ternary complex factor Sap-la and its coactivator CBP. Oncogene. 1996. 12(9): 1961-9.
    
    [207] Dai P, Akimaru H, Tanaka Y, et al. CBP as a transcriptional coactivator of c-Myb. Genes Dev. 1996. 10(5): 528-40.
    
    [208] Oelgeschlager M, Janknecht R, Krieg J, et al. Interaction of the co-activator CBP with Myb proteins: effects on Myb-specific transactivation and on the cooperativity with NF-M. Embo J. 1996. 15(11): 2771-80.
    
    [209] Yuan W, Condorelli G, Caruso M, et al. Human p300 protein is a coactivator for the transcription factor MyoD. J Biol Chem. 1996. 271(15): 9009-13.
    
    [210] Eckner R, Yao TP, Oldread E, et al. Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation. Genes Dev. 1996. 10(19): 2478-90.
    
    [211] Kwok RP, Laurance ME, Lundblad JR, et al. Control of cAMP-regulated enhancers by the viral transactivator Tax through CREB and the co-activator CBP. Nature. 1996. 380(6575): 642-6.
    [212] Chakravarti D, LaMorte VJ, Nelson MC, et al. Role of CBP/P300 in nuclear receptor signalling. Nature. 1996. 383(6595): 99-103.
    
    [213] Hu SC, Chrivia J, Ghosh A. Regulation of CBP-mediated transcription by neuronal calcium signaling. Neuron. 1999. 22(4): 799-808.
    
    [214] Singh H, Sen R, Baltimore D, et al. A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature. 1986. 319(6049): 154-8.
    
    [215] Emmel EA, Verweij CL, Durand DB, et al. Cyclosporin A specifically inhibits function of nuclear proteins involved in T cell activation. Science. 1989. 246(4937): 1617-20.
    
    [216] Mattila PS, Ullman KS, Fiering S, et al. The actions of cyclosporin A and FK506 suggest a novel step in the activation of T lymphocytes. EmboJ. 1990. 9(13): 4425-33.
    
    [217] Frantz B, Nordby EC, Bren G, et al. Calcineurin acts in synergy with PMA to inactivate I kappa B/MAD3, an inhibitor of NF-kappa B. EmboJ. 1994. 13(4): 861-70.
    
    [218] Venkataraman L, Burakoff SJ, Sen R. FK506 inhibits antigen receptor-mediated induction of c-rel in B and T lymphoid cells. J Exp Med. 1995. 181(3): 1091-9.
    
    [219] Ullman KS, Flanagan WM, Edwards CA, et al. Activation of early gene expression in T lymphocytes by Oct-1 and an inducible protein, OAP40. Science. 1991.254(5031): 558-62.
    
    [220] Ullman KS, Northrop JP, Admon A, et al. Jun family members are controlled by a calcium-regulated, cyclosporin A-sensitive signaling pathway in activated T lymphocytes. Genes Dev. 1993.7(2): 188-96.
    
    [221] Su B, Jacinto E, Hibi M, et al. INK is involved in signal integration during costimulation of T lymphocytes. Cell. 1994. 77(5): 727-36.
    
    [222] Chin ER, Olson EN, Richardson JA, et al. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev. 1998. 12(16): 2499-509.
    
    [223] Sommer H, Beltran JP, Huijser P, et al. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. Embo J. 1990. 9(3): 605-13.
    
    [224] Lu J, McKinsey TA, Nicol RL, et al. Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc NatlAcadSci U S A. 2000. 97(8): 4070-5.
    
    [225] Mao Z, Bonni A, Xia F, et al. Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science. 1999. 286(5440): 785-90.
    
    [226] Youn HD, Sun L, Prywes R, et al. Apoptosis of T cells mediated by Ca~(2+)-induced release of the transcription factor MEF2. Science. 1999. 286(5440): 790-3.
    
    [227] Fuentes JJ, Genesca L, Kingsbury TJ, et al. DSCR1, overexpressed in Down syndrome, is an inhibitor of calcineurin-mediated signaling pathways. Hum Mol Genet. 2000. 9(11): 1681-90.
    
    [228] Kingsbury TJ, Cunningham KW. A conserved family of calcineurin regulators. Genes Dev. 2000. 14(13): 1595-604.
    
    [229] Gorlach J, Fox DS, Cutler NS, et al. Identification and characterization of a highly conserved calcineurin binding protein, CBPl/calcipressin, in Cryptococcus neoformans. Embo J. 2000. 19(14): 3618-29.
    
    [230] Lin X, Barber DL. A calcineurin homologous protein inhibits GTPase-stimulated Na-H exchange. Proc Natl Acad Sci U S A. 1996.93(22): 12631-6.
    
    [231] Lin X, Sikkink RA, Rusnak F, et al. Inhibition of calcineurin phosphatase activity by a calcineurin B homologous protein. J Biol Chem. 1999.274(51): 36125-31.
    
    [232] Sun L, Youn HD, Loh C, et al. Cabin 1, a negative regulator for calcineurin signaling in T lymphocytes. Immunity. 1998. 8(6): 703-11.
    
    [233] Lai MM, Burnett PE, Wolosker H, et al. Cain, a novel physiologic protein inhibitor of calcineurin. J Biol Chem. 1998.273(29): 18325-31.
    
    [234] Miskin JE, Abrams CC, Goatley LC, et al. A viral mechanism for inhibition of the cellular phosphatase calcineurin. Science. 1998. 281(5376): 562-5.
    
    [235] Coghlan VM, Perrino BA, Howard M, et al. Association of protein kinase A and protein phosphatase 2B with a common anchoring protein. Science. 1995. 267(5194): 108-11.
    
    [236] Aramburu J, Rao A, Klee CB. Calcineurin: from structure to function. Curr Top Cell Regul. 2000. 36: 237-95.
    
    [237] Hemenway CS, Heitman J. Calcineurin. Structure, function, and inhibition. Cell Biochem Biophys. 1999.30(1): 115-51.
    
    [238] Stemmer PM, Klee CB. Dual calcium ion regulation of calcineurin by calmodulin and calcineurin B. Biochemistry. 1994. 33(22): 6859-66.
    
    [239] Wang KK, Roufogalis BD, Villalobo A. Characterization of the fragmented forms of calcineurin produced by calpain I. Biochem Cell Biol. 1989. 67(10): 703-11.
    
    [240] Tallant EA, Brumley LM, Wallace RW. Activation of a calmodulin-dependent phosphatase by a Ca~(2+)-dependent protease. Biochemistry. 1988. 27(6): 2205-11.
    
    [241] Manalan AS, Klee CB. Activation of calcineurin by limited proteolysis. Proc Natl Acad Sci USA. 1983. 80(14): 4291-5.
    
    [242] Hubbard MJ, Klee CB. Characterization of a high-affinity monoclonal antibody to calcineurin whose epitope defines a new structural domain of calcineurin A. Eur J Biochem. 1989. 185(2): 411-8.
    
    [243] Yang SA, Klee C. Study of calcineurin structure by limited proteolysis. Methods Mol Biol. 2002. 172:317-34.
    
    [244] Wu HY, Tomizawa K, Oda Y, et al. Critical role of calpain-mediated cleavage of calcineurin in excitotoxic neurodegeneration. J Biol Chem. 2004. 279(6): 4929-40.
    
    [245] Chen D, Zhou Q. Tat activates human immunodeficiency virus type 1 transcriptional elongation independent of TFIIH kinase. Mol Cell Biol. 1999. 19(4): 2863-71.
    
    [246] Chen D, Fong Y, Zhou Q. Specific interaction of Tat with the human but not rodent P-TEFb complex mediates the species-specific Tat activation of HIV-1 transcription. Proc Natl Acad Sci U S A. 1999. 96(6): 2728-33.
    
    [247] Chen D, Wang M, Zhou S, et al. HIV-1 Tat targets microtubules to induce apoptosis, a process promoted by the pro-apoptotic Bcl-2 relative Bim. Embo J. 2002. 21(24): 6801-10.
    
    [248] Chen D, Zhou Q. Caspase cleavage of BimEL triggers a positive feedback amplification of apoptotic signaling. Proc Natl Acad Sci U S A. 2004. 101(5): 1235-40.
    
    [249] Yik JH, Chen R, Pezda AC, et al. A human immunodeficiency virus type 1 Tat-like arginine-rich RNA-binding domain is essential for HEXIM1 to inhibit RNA polymerase II transcription through 7SK snRNA-mediated inactivation of P-TEFb. Mol Cell Biol. 2004. 24(12): 5094-105.
    
    [250] Barboric M, Yik JH, Czudnochowski N, et al. Tat competes with HEXIM1 to increase the active pool of P-TEFb for HIV-1 transcription. Nucleic Acids Res. 2007. 35(6): 2003-12.
    
    [251] Wilson S, Tavassoli M, Watts FZ. Schizosaccharomyces pombe rad32 protein: a phosphoprotein with an essential phosphoesterase motif required for repair of DNA double strand breaks. Nucleic Acids Res. 1998. 26(23): 5261-9.
    
    [252] Bodalina UM, Hammond KD, Gilbert DA. Temporal changes in the expression of protein phosphatase 1 and protein phosphatase 2A in proliferating and differentiating murine erythroleukaemia cells. Cell Biol Int. 2005. 29(4): 287-99.
    
    [253] Cohen PT. Protein phosphatase 1-targeted in many directions. J Cell Sci. 2002. 115(Pt 2): 241-56.
    
    [254] Pereira LA, Bentley K, Peeters A, et al. A compilation of cellular transcription factor interactions with the HIV-1 LTR promoter. Nucleic Acids Res. 2000.28(3): 663-8.
    
    [255] Carr AN, Schmidt AG, Suzuki Y, et al. Type 1 phosphatase, a negative regulator of cardiac function. Mol Cell Biol. 2002. 22(12): 4124-35.
    
    [256] Zhou M, Nekhai S, Bharucha DC, et al. TFIIH inhibits CDK9 phosphorylation during human immunodeficiency virus type 1 transcription. J Biol Chem. 2001. 276(48): 44633-40.
    
    [257] Jeronimo C, Forget D, Bouchard A, et al. Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. Mol Cell. 2007. 27(2): 262-74.
    
    [258] Halpain S, Girault JA, Greengard P. Activation of NMDA receptors induces dephosphorylation of DARPP-32 in rat striatal slices. Nature. 1990. 343(6256): 369-72.
    
    [259] Hemmings HC, Jr., Greengard P, Tung HY, et al. DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature. 1984. 310(5977): 503-5.
    
    [260] Elbrecht A, DiRenzo J, Smith RG, et al. Molecular cloning of protein phosphatase inhibitor-1 and its expression in rat and rabbit tissues. J Biol Chem. 1990. 265(23): 13415-8.
    
    [261] Neumann J, Gupta RC, Schmitz W, et al. Evidence for isoproterenol-induced phosphorylation of phosphatase inhibitor-1 in the intact heart. Circ Res. 1991. 69(6): 1450-7.
    
    [262] Mumby MC, Walter G Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiol Rev. 1993. 73(4): 673-99.
    
    [263] Shenolikar S. Protein serine/threonine phosphatases-new avenues for cell regulation. Annu Rev Cell Biol. 1994. 10:55-86.
    
    [264] Millward TA, Zolnierowicz S, Hemmings BA. Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem Sci. 1999.24(5): 186-91.
    
    [265] Kremmer E, Ohst K, Kiefer J, et al. Separation of PP2A core enzyme and holoenzyme with monoclonal antibodies against the regulatory A subunit: abundant expression of both forms in cells. Mol Cell Biol. 1997. 17(3): 1692-701.
    
    [266] He WJ, Chen R, Yang Z, et al. Regulation of two key nuclear enzymatic activities by the 7SK small nuclear RNA. Cold Spring Harb Symp Quant Biol. 2006. 71:301-11.
    
    [267] Contreras X, Barboric M, Lenasi T, et al. HMBA Releases P-TEFb from HEXIM1 and 7SK snRNA via PI3K/Akt and Activates HIV Transcription. PLoS Pathog. 2007. 3(10): el46.
    
    [268] Houzelstein D, Bullock SL, Lynch DE, et al. Growth and early postimplantation defects in mice deficient for the bromodomain-containing protein Brd4. Mol Cell Biol. 2002. 22(11): 3794-802.
    
    [269] De Falco G Bellan C, D'Amuri A, et al. Cdk9 regulates neural differentiation and its expression correlates with the differentiation grade of neuroblastoma and PNET tumors. Cancer Biol Ther. 2005.4(3): 277-81.
    
    [270] Marks PA, Richon VM, Kiyokawa H, et al. Inducing differentiation of transformed cells with hybrid polar compounds: a cell cycle-dependent process. Proc Natl Acad Sci U S A. 1994. 91(22): 10251-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700